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Abstract: The article is an original insight into interdisciplinary challenges of shaping innovative
unconventional complex free form buildings roofed with multi-segment shell structures arranged
with using novel parametric regular networks. The roof structures are made up of nominally plane
thin-walled folded steel sheets transformed elastically and rationally into spatial shapes. A method is
presented for creating such symmetric structures based on the regular spatial polyhedral networks
created as a result of a composition of many complete reference tetrahedrons by their common
flat sides and straight side edges arranged regularly and symmetrically in the three-dimensional
Euclidean space. The use of the regularity and symmetry in the process of shaping different forms
of (a) single tetrahedral meshes and whole consistent polyhedral structures, (b) individual plane
walls and complex elevations, (c) single transformed folds, entire corrugated shell roofs, and their
structures allow a creative search for attractive rational parametric solutions using a few author’s
parametric algorithms and their implementation as built-in commands of the AutoCAD visual editor
or applications of the Rhino/Grasshopper program.

Keywords: unconventional building free forms; polyhedral spatial networks; ruled surfaces;
transformed corrugated steel roofs; steel shell structures; parametric shaping; visual editor
programming; thin-walled folded sheets; symmetric shape transformations

1. Introduction

Thin-walled steel sheets are profiled in one direction to use them as members and coverings for
roofing. The rationality of using such sheets results from the very favorable ratio of self-weight to
load-bearing capacity or covering surface area, and from quick roof assembly [1]. Due to the orthotropic
properties of the sheeting, including very different stiffness in two orthogonal directions, flat profiled
sheets have been elastically deformed into two shell forms, i.e., rotational cylinder [2,3], Figure 1,
and central sectors of right hyperbolic paraboloids [3,4], Figure 2.

Geometric and mechanical changes of the transformed sheets depend on the imposed boundary
conditions including the type and degree of the shape transformations. The possibility of using
elastically deformed folded sheets as roof coverings depends primarily on the amount of the initial
stresses caused by the shape transformations. Therefore, shallow hyperbolic paraboloid sheeting
shaped as a result of small twist transformations are most often used [2], Figure 2.

Thin-walled steel sheets having open profiles and folded in one direction can be joined with their
longitudinal edges into nominally flat sheeting and transformed into ruled shell shapes as a result
of spreading onto at least two skew roof directrices, Figure 3a. The shell shape of each transformed
sheeting depends on a mutual position and curvature of two edge directrices. The sheeting can be
modeled with a regular smooth ruled undevelopable surface called a warped surface [1], Figure 3b.
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Figure 2. Elastically twisted hyperbolic paraboloid steel shells: (a) two-layer by J.E. Parker [4];
(b) one-layer by Abramczyk [3].
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Figure 3. (a) An axis-symmetric experimental thin-walled corrugated steel shell supported by two

curved skew directrices; (b) elements of a smooth model used for shaping the transformed shells.

The analyses related to a static strength work of such deformed and loaded corrugated shells
are based on analytical methods leading to calculations of critical forces [5] or FEM describing the
entire behavior of these shells [6]. All spatial shape transformations investigated in the present article
are effective because freedom of the transverse width increments of each shell fold diversified along
its length is ensured [7]. The effective shape transformations are accomplished to obtain a rational
static strength work of each shell fold and then very attractive visual building forms [8]. Each shell
sheeting transformed effectively, Figure 4, is characterized by a line of contraction passing through the
half-length of each shell fold and the smallest possible pre-stresses [9].
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Figure 4. An accurate mechanical thin-walled folded model of a nominally plane folded sheet
transformed elastically into a shell shape and the graphical expression of the “effective” stresses in

MPa on its top surface.

The specific feature of the investigated effective shape transformations is that they particularly
provide an easy shaping of various symmetric unconventional and rational shell-free forms of roofs,
entire buildings, and their structural systems [10], Figure 5a,b. In this way, very attractive free forms of
buildings having oblique eaves, girders, and elevations can be shaped [11].

'*x&-‘.\ _ —
71

=
ﬁ“’i’\ 4'1{0‘; o

(b)

Figure 5. Two unconventional symmetric shell-free forms: (a) an erected roof shell by Reichhart [10];
(b) a computer model of a bar structural system intended for the transformed shell roof sheeting.

The aforementioned basic properties and restrictions of a rational shaping of single corrugated
ruled shell-free forms transformed effectively, concerning the complexity of their shapes, including the
contractions, results in the fact that two complete corrugated shell sheets cannot be joined with their
crosswise ends, that is perpendicular to their fold’s direction, to obtain one resultant smooth shell [3].
Straight or curved edges must appear between two individual shell sheeting joined transversally
towards their folds, Figure 6a. Thus, such shells must be modeled by means of complex multi-segment

roof shell structures, Figure 6b.



Symmetry 2020, 12, 763 4 of 37

(a) (b)

Figure 6. A symmetric shell structure roofing the experimental hall at Rzeszow University of Technology:

(a) an internal view; (b) an external view.
2. State of the Art

Thin-walled folded steel sheets of open profiles allow easy deformations of their folds, including
their flat rectangular walls and inclination angles between flanges and webs. Nilson studied the
possibilities of the sheet’s deformations into hyperbolic paraboloid shells and published his research in
1962 [12]. He showed that double-layered fold sheeting transformed elastically into a central sector
of a hyperbolic paraboloid or a symmetrical arrangement of four quarters of such a sector is more
economical than a reinforced concrete hyperbolic paraboloid shell.

The research conducted under the guidance of Winter [13] confirmed the most important Nilson’s
conclusions. It was associated with a greater variety of the sheet profiles and dimensions of two-layer
hyperbolic paraboloid shells. Central sectors and compositions of quarters of the hyperbolic paraboloid
shells were examined. Parker studied roof structures consisting of four folded quarters of a right
hyperbolic paraboloid. The analyzed segments were made of two layers of sheets located orthogonally
and stiffened with a circumference frame. He analyzed the behavior of the transformed sheeting,
including the changes in stiffness and potential energy of these sheets [4]. The Muscat’s research [14]
concerned primarily critical loads and stability of the sheeting of the type analogous with the one
investigated by Parker and Nilsen. Banavalkar made a thorough analysis of the static strength work of
these shells [15].

A comprehensive summary of the research performed at Cornwell University is the report made
by Gergely et al., [16]. The authors carried out a complete detailed analysis of the static strength work
of single and complex profiled hyperbolic paraboloid shells. These shells were made up of plane sheets
profiles located in two mutually orthogonal layers, which enables these researches to analyze the shells
as isotropic. They examined folded shells of different profiles.

Behavior of a central sector of a folded steel hyperbolic paraboloid stiffened with a circumferential
frame was studied by McDermott [17]. Gioncu and Petcu [18] studied the work of the analogous
hyperbolic paraboloid shells using traditional analytical analyses of strength and critical loads.
They finally developed a novel HYPBUCK computer program for calculating critical loads. They also
studied umbrella shell sheeting composed of four symmetrical right hyperbolic paraboloid quarters in
various configurations, Figure 7a,b.
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Figure 7. Symmetrically arranged hyperbolic paraboloid units by Petcu and Gioncu [5]: (a) an erected
corrugated umbrella shed; (b) various configurations of umbrella shell structures.

Parallel studies and analyzes related to the static strength work of single and complex hyperbolic
paraboloid shells made up of flat folded sheets of different profiles were conducted by Egger et al. [19].
Their method is based on the performed tests, conventional analyses, and analytical calculations of
strength and critical loads.

The shells investigated by the aforementioned researchers were undergone forced shape
transformations causing relatively big pre-stresses due to the imposed boundary conditions, including
the joints between two orthogonal layers arranged over the whole area of the transformed shells
and the frames stiffen the quadrangular edges of the shells, so only shallow hyperbolic paraboloid
shells called hypars could be created, Figure 8a,b. In addition, the adjustment of all longitudinal
shell fold’s axes to the calculated rulings of the designed hyperbolic paraboloid quarters imposes a
significant change in the width of the transverse fold’s ends passing along each shell directrix affecting
important initial stresses. To limit the level of the pre-stresses, a maximum deformation degree has to
be introduced. Initial forced deformations of the nominally plane folded sheets have been used by
Dawydov in prefabrication of long-span roof panels [20].

Figure 8. Two symmetric experimental hyperbolic paraboloid shells: (a) a single shell by McDermott [17];

(b) an umbrella structure of four quarters by Banavalkar and Parker [16].

Davis and Bryan [21] described the most important geometrical and mechanical characteristics of
flat and thin-walled transformed shell folds. They presented a complete way of analyzing and designing
shells and structures made up of two-layer corrugated sheets located orthogonally. Two most important
general conclusions given by these authors and regarding the transformed roof shells are as follows.
The researchers found that, theoretically, it is possible to shape many different types of the transformed
folded shell sheeting. Practically, however, it is possible to build only cylindrical and hyperbolic
paraboloid types of the transformed folded steel shells for roofing due to the available technology.

The use of the well-known conventional design methods [1,16,19,21], known from the traditional
courses of theory of thin-walled shells, in shaping of such transformed shell roofs is ineffective because it
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usually results in high values of normal and shear stresses, local buckling and distortion of thin-walled
walls: flanges and webs. The assembly of each designed shell sheeting into skewed roof directrices is
often impossible because of the plasticity of the fold’s edges between flanges and webs. Reichhart
developed a specific method for calculating the arrangement and the length of the supporting lines of
all folds in transformed one-layer corrugated shell sheeting [10], Figures 5a and 6a,b. The method is
based on the orthotropic geometric and mechanic properties of the folded sheets and limits the value
of the pre-stresses. His method enables one to shaped right hyperbolic paraboloids or other deep right
ruled surfaces [22].

The Reichhart’s method is effective only for the cases where the fold’s longitudinal axes are
perpendicular to roof directrices or very close to those [3]. The method leads to serious errors as it is
demonstrated by Abramczyk [3]. These errors result from the lack of conditions providing similar values
of stresses at both transverse ends of the same fold. Abramczyk significantly improved the Reichhart’s
concept and has proposed an innovative method [3,8], so that the transformation would cause the
smallest possible initial stresses on the shell folds resulting from this transformation. The visible result
of different stress values at both transverse ends of the same shell fold is that the transverse contraction
of the fold does not pass halfway along its length, on the contrary, it is shifted closer to one of these ends.

In order to create a method for shaping the considered type of the roof shells transformed rationally,
Abramczyk [3] proposed a condition requiring the contraction of each entire shell to pass halfway
along the length of each shell fold, Figure 3a,b. The condition has to be ensured to obtain a shell
fold characterized by the effectiveness of the shape transformations [23]. The Abramczyk’s method
employs some specific geometric properties of warped surfaces, primarily their lines of striction.
The second condition utilized by Abramczyk relates to calculations of the respective surface areas
modeling compressing and stretching zones on the transformed folds [24]. Both conditions are based
on the results of his experimental tests and computer simulations [25], Figures 1 and 2. They are
implemented in the Abramczyk’s application [23] developed in the Rhino/Grasshopper program used
for parametric modeling of engineering objects.

Simple shell structures composed of a few complete corrugated shells were used in different
architectural configurations, most often as shells supported by stiff constructions based on very few
columns [24,25]. Such shell structures are used for achieving (a) large spans; (b) greater architectural
attractiveness; and (c) skylights letting sunlight into the building interior. Reichhart arranged the
complete corrugated shells on horizontal or oblique planes [10] to achieve continuous ribbed structures,
Figures 6 and 9. He developed a simple method for geometrical and strength shaping of the transformed
shell roofs. He designed a few corrugated shell sheeting supported by very stiff frameworks or planar
girders with additional intermediate directrices, members, and roof bracings.

Figure 9. The external view of one elevation of the experimental hall at Rzeszow University of
Technology roofed with the shell structure.

In the 70s, Biswas and Iffland [26] presented two concepts of two continuous regular roof structures
composed of many identical hyperbolic paraboloid segments made up of transformed folded steel
sheets arranged on two various spheres. In the first concept, Figure 10a,b, they proposed triangular
shell segments having three-segment edge lines. Another important feature of this concept is that the
proposed plane system, dividing the roof structure into tetrads of triangular shell segments, which is
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based on a sphere. This concept requires significant oblique cuts and big transformation degree of all
rectangular folded sheets.
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Figure 10. The first Field House structure proposed by Biswas and Iffland [26]: (a) concept and
elevation; (b) plan.

In the second concept, typical quadrilateral transformed hyperbolic paraboloid segments are used,
Figure 11a,b. This concept is more realistic, but the degree of twisting and deflection of the complete
hyperbolic paraboloid segments are small.
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Figure 11. The second structure proposed by Biswas and Iffland [26]: (a) elevation; (b) framing plan of
a quarter of the structure.

At present, shell structures consisting solely of steel decks are not visually appealing. In order to
increase their attractiveness, it is possible to use: (1) areas of discontinuity between the metal steel
segments, filled with, e.g., glass panels, (2) green plant gardens on the transformed segments, (3) coat
the segments with different plastic membranes, (4) communication routes between the segments, (5) a
coherent connection of glass facades and steel shell roof.
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In order to create medium and long span free form building structures roofed with complex
corrugated shells, Abramczyk [27,28] has proposed certain types of the so-called reference tetrahedrons
to model complete free forms covered with folded glass elevations and roofed with complete
transformed corrugated steel shell sectors. These tetrahedrons can be arranged regularly in the
three-dimensional space to model complex building free forms, Figure 12a,b. Prokopska [29,30] has
drawn drew attention to the architectural aspects of shaping such forms.

(a) (b)

Figure 12. Two complex building free forms covered with multi-segment roof shell structures

and plane-walled folded glass elevations characterized by (a) curved roof directrices; (b) straight
roof directrices.

One of the Abramczyk’s methods [31] relates to positioning of many aforementioned reference
tetrahedrons along ellipses fy and w, contained in two orthogonal principal planes (x,z) and (y,z)
of symmetry of a reference ellipsoid w,, Figure 13a. The method allows the investigated form of
a polyhedral structure to be a regular network and precisely take into account by the designer the
variable curvature of w,. The method replaces a finite number of the selected straight lines f;; normal
to w, with side edges k; ; of the sought-after reference tetrahedrons. A specific feature of the reference
tetrahedrons is that two their subsequent straight side edges k;; and ;1 j belonging to the same side
must intersect, while two corresponding straight lines ¢;; and ¢;,1; normal to w, do not intersect to
each other, Figure 13b. The positions of ;; and t;,1; have to be replaced by k;; and k;,1 , so that the
positions of k;; and k;,1; have to be defined based on the geometric properties of w,. An architectural
study of a free form created with the help of the method is presented in Figure 14.

(a) (b)

Figure 13. Creation of a coherent complex free form arranged over a double-curved reference ellipsoid:

(a) a quarter of the final structure; (b) normals to the reference ellipsoid.

Parameterization of the reference tetrahedrons enables to computationally search for attractive
unconventional building free forms [23,27] and innovative structural systems intended for the
investigated complex building free forms. In the analyses of these systems, the supported himself with
the following works Obrebski [32] developed a few methods for shaping very diversified shell rod
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structures. Rebielak [33] developed steel rod structural systems supporting flat roof covers composed
of corrugated sheets. A team of researchers led by Abel and Mungan [34] published comprehensively
many examples of the construction systems associated with shaping very diversified roof shells and
building free forms. A parametric method for shaping rod shells in the form of Catalan surfaces
using the Rhino/Grasshopper program is presented by DZwierzyriska and Prokopska [35]. The exact
geometrical characteristics and methods for determining regular curves and surfaces have been
presented by Carmo [36] and Gray [37].

Figure 14. The architectural study of a free form optimized on the basis of the investigated
reference ellipsoid.

Transformed folded steel sheets are also used as curved supports for shell panels of individual
roof covers [38], Figure 15. Convex roof shells characterized by the positive Gaussian curvature can be
created in this way.

R R A

(a) (b)

Figure 15. Two steel structural systems supporting transformed folded sheets by Zwirek [38]: (a) the
erection of the final shell roof; (b) experimental tests.

3. Aim

The aim is to present a novel method for parametric shaping of building complex free forms based
on the innovative spatial polyhedral networks. The presentation is focused on using symmetry for (1)
obtaining attractive complex shapes of shell roof structures, folded multi-plane elevations and entire
free form buildings, (2) reducing the number of the variables required to define the geometric objects
employed, (3) making the proposed algorithm very intuitive, (4) getting rationality of the transformed
shell roof forms and their structural systems. The shell roof structures designed with the help of the
method are composed of many complete shell sectors arranged in conformity with shapes of various
regular reference surfaces. In addition, each elevation should be composed of many planar and oblique
walls coherent with the designed shell roof structure.
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4. Concept of the Method

The algorithm of the investigated method allows a rational use of the shape transformations of
nominally flat thin-walled open folded steel sheets to achieve visually attractive shell roofs whose
shapes determine unconventional building free forms as well as their innovative structural systems.
Since any two roof directrices are mutually skew straight or curved lines, it is convenient to contain
these directrices in the planes of facade walls or in the planes of roof girders. The directrices should be
assumed as segments of the roof shell eaves. In addition, a controlled inclination of all elevations to
the vertical makes it possible to increase the attractiveness of the created free form buildings.

A smooth resultant shell cannot be the result of a composition of two transformed individual shells
with their transverse edges due to the location of the fold’s contraction of each effectively transformed
roof shell with respect to the roof directrices. Thus, both smooth shells must be separated by a common
rib disturbing the smoothness of the resultant complex structure. The ribs- between many complete
transformed shells can be taken for common directrices of many pairs of the adjacent shells in the
complex roof shell structure.

Following the method’s algorithm, a system of the planes separating all roof shell segments and
containing the aforementioned edges, including directrices, has to be adopted. Such a spatial system is
called a polyhedral reference network I'. Each reference network I'is characterized by the following
geometrical properties. Each complete mesh I';; of I' is limited by four adjacent planes of the system
defined by means of four vertices Wagij, Wepij, Wapij, and Wpgcjj, Figure 16. Each single shell segment
Q)jj and each complete free form %;; are located in one mesh I';;, so that facade walls, roof directrices
and eaves segments are included in the aforementioned quadruple of planes of I';;.

av12 Qﬁ

(a) (b)

Figure 16. Creation of a complex free form by means of a reference network I' composed of tetrahedral
meshes I';; (i =j = 1): (a) I';; before setting (b) I'; after setting in I'.

Every two adjacent planes of each single mesh I';j intersect in the side edges: ajj, bi]‘, Cij. dij, and,
every two opposite planes intersect in the axes u;; or v;; of I';;. The side edges and axes of I';; are defined
by means of four vertices Wag;;, Wepij, Wapij, Wgcij, Figure 16a. Thus, each possible triple of these
vertices determines one plane of I';;. On the basis of these vertices, four points Sajj, Spij, Scij and Spj;
are constructed on four side edges a;;, bjj, ¢jj, djj. These points are vertices of a spatial quadrangle
S4iSBijScijSpij determining a certain piece of a reference surface wr, Figure 16b. In relation to w,, four
vertices Ajj, Bjj, Cjj, Dj; of single eaves By;j are determined to obtain mutually skew roof directrices.
Vertices P ajj, Ppij, Pcij, Ppij, Figure 16a, belonging to a flat horizontal base of the sought-after free form %
are constructed in relation to the aforementioned four vertices Wygij, Wepij, Wapij, Wacij- The complex
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free form X created on the basis of such a reference network I' is a sum of all individual free forms Z;.
Finally, a resultant z-axis symmetric free form structure can be achieved, Figure 17a,b.

(b)

Figure 17. A complex free form building structure X roofed with a continuous shell structure: (a) edge

model; (b) architectural stadium.

Parameterization realized in the process of the geometric shaping of such free forms X. is based
on a definition of a finite set of variables entering into computer application in the form of either the
measures of stiff motions, like rotations and translations, or division coefficients of all pairs of the
adopted vertices of I'. An algorithm of the stiff motions leading to the creation of X is presented in
Section 5. An example of using the division coefficients in creating a spatial reference network is
presented in Section 6.

5. Method’s Algorithm

In the first step of the method’s algorithm, the first mesh I';; of a reference network I is
created so that the positions of its four vertices Wap11, Wep11, Wap11, and Wpeq1 are defined in the
three-dimensional space. For this purpose, a global coordinate system [x,y,z] must be taken, Figure 18a,
where a point O is the origin of [x,y,z]. These vertices are arranged symmetrically in relation to the
principal planes of [x,y,z], so the sought-after mesh must be symmetric. The first set of initial data is
formed from the measures of the vectors and angles employed to determine all characteristic points
of FH.

San
R Spn
Wap
Capie
0 " Wasn
(@) ®)

Figure 18. Creation of I'1y: (a) vertices: Wep11, Wag11, Wap11 and Wpe1y; (b) side edges: a7 = (Wap11,
Wag11), b11 = (Wpc11, Wag11), c11 = (Wep11, Wae11) and d1y = (Wap11, Wepi1)-
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On the basis of the aforementioned set of initial data, four vertices of I'1; are determined as
follows. The position of vertex Wcp1j is the result of the translation Tocp11 of the point O by the vector
OWcp11 whose measure is defined by means of one element of the first initial set. In an analogous way,
the position of vertex Wxp1; is defined by means of the translation Tpsp11 of the point O by the vector
OWy4p11 so that its location is on opposite side of O on the x-axis.

The position of vertex Wap11 is the result of a composition of the rotation Ocp11_ ap11 of the z-axis
about the x-axis by the angle @4p11 and the translation Tpap11 of O by the vector OW4p11, where the
measures of asp11 and OWyp11 are two elements of the first set of initial data. The position of vertex
Wpc11 can be obtained in an analogous way, that is, by means of the rotation O4p11_cp11 of the z-axis
about the x-axis by the angle apc11 opposite to a4p11 and the translation Tppc11 of O. If we want to
achieve a z-axis-symmetric reference tetrahedron, the absolute values of the above vectors and angles
must be equal to each other, respectively.

The obtained vertices Wap11, Wep11, Wap11 and Wpeq1 determine four straight side edges:
a11, b1, c11 and dqq of T'11. In order to obtain four points Sa11, Sp11, Sc11 and Spy1 of a reference
surface and four vertices A11, B11, C11 and Dqq of eaves By of a shell roof structure, four vectors have
to be measured along the side edges a11, b11, 11 and dy, Figure 19a,b, so that Sa11= Tsa11(Wap11),

Sp11 = Tsp11(Wac11), Sc11 = Tsc11(Wae11), and = Tsp11(Wap11), and A1y = Ta11(Sa11), Bi1 = Tp11(Sp11),
C11 = Tc11(5¢11), and D11 = Tp11(Sp11)- The measures of these vectors belong to the set of initial data.

y0 *Wigns

(a) (b)

Figure 19. Two subsequent steps of the creation of ¥11: (a) vertices A1, B11, C11 and Dy5; (b) eaves By11.

In order to determine a horizontal plane base of the complete free form I'y1, a point Pp11 = Tpp1z
(Wep11) has to be defined on dy1. The measure of the vector Wep11Pp11 must be one of the elements of
the first set of initial data. Other points of this base can be calculated as the intersection of the horizontal
base plane passing through the point Ppq; and the four side edges of I'y;.

The second step of the algorithm relates to the determination of the reference tetrahedron I'y,
Figure 20a,b. At first, a second set of initial data must be adopted. The set is composed of the measures
of the angles and vectors employed in the algorithm to define the positions of all characteristic points
of 1"12.

Four vertices of I';p are determined as follows. Vertex Wyp1o is identical with Wepqq of T'yp
introduced previously. Positions of the vertices Wpc12 = Tpc12(Wac11), Wapi2 = Tap12(Wap11) are
defined on two side edges b1» = c11, a12 = d11 so that the measures of the vectors W4p11Wap1z and
Wpc11Wpc12 are elements of the second set of initial data. The position of vertex W¢p1; is obtained as
a result of a composition of the rotation Owap12_wpci2 of O12W4p11 about the axis Wap12Wpc12 by
the angle acp1y and the translation Tcpip of O1p by the vector O1,Wep12, where Oy is a point of the
(Wap12, Wpc12) straight line. If the reference tetrahedron I'y; is to be symmetrical about the z-axis,
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Wpgc12 and Wp1p have to be symmetric to each other towards the (x,z)-plane and O, has to be the
middle point of the edge Wpc12Wap12. Four vertices Wag12, Wep12, Wap12, and Wpe1p determine four
straight side edges: a1, b1, 12, and dip of I'5.

; uWAHH

(a) (b)

Figure 20. Two subsequent steps of the determination of (a) the vertices Wap12, Wpc12, Wap12, Wepi12
of 1"12; (b) the vertices Aer BlZ/ ClZ/ D12 of B‘DIZ-

Four auxiliary points belonging to a reference surface w, and I are constructed so that S412 = Sp11,
Sp12 = Sc11, Sc12 = Tsc12(Wac12), Sp12 = Tsp12(Wap12), where the measures of the vectors Wpc125c12
and W4p12Sp12 are two elements of the second set of initial data. On the basis of two other elements
of the second set, four points A1 = D11, Bz = C11, C12 = Tc12(Sc12), D12 = Tp12(Sp12), Figure 20b,
constituting the vertices of a closed spatial quadrilateral line modeling shell roof eaves are constructed.

The third step of the method’s algorithm relates to determination of the reference tetrahedron
I'p1, Figure 21a,b. The third set of initial data, composed of the measures of the respective angles and
vectors employed to define all specific points of I'; is adopted.

Sp21 Scii= g1z 42 Iy
0 1= 5412

~Sg12

b Fey Xt

"~ >p Spi
L,
G
- dy=ay
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Wap21™Warn
ay
Wasn
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(a) (b)

Figure 21. Two subsequent steps of the method’s algorithm related to the construction of; (a) the

vertices of I'y1; (b) the eaves side edges of ;.
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Four vertices Wagp»1, Wepo1, Wapo1, and Wpepy of T'p1 are determined as follows, Figure 21a.
The vertex WADZl = WBCll' The pOSitiOl’lS of vertices WABZl = TABZI(WABH)/ WCDZ] = TCDZI(WCDH)
are defined on two side edges ap; = by1, dy1 = c11, Figure 21b, so that the measures of the vectors
Wap11Wap21 and Wep11Wepo1 are two elements of the third set of initial data. The position of
Wpgc21 = Tpc21Owep21 wap21(Wpe11) is obtained as a result of a composition of the rotation
Owcp21_wap21 of Ox1Wapo1 about the axis WepoiWapp1 by the angle apcy; and the translation
Tpco1 of Op1 by the vector Oy Wpea1, where Oy is a point of the straight line Wepo Wypp1. If the
reference tetrahedron I'p; is to be symmetrical towards the (y,z)-plane, the positions of points Wep»;
and W4pp1 have to be symmetric to each other towards the (y,z)-plane and O;; has to be the middle
point of the segment Wcpy1 Wapa1. Four vertices Wapo1, Wepai, Wapai, and Wpeap determine four
straight side edges: a51, 21, ¢p1 and dpg of I'pg.

Four auxiliary points belonging to w, are determined on the side edges of I'y; so that S421 = Sp11,
Spo21 =5c11, Sc21 = Tsc21(Wpea1) and Spat = Tspr1(Wpece21), where the measures of the vectors Wgc21Sc21
and Wpcp1Sp21 belong to the third set of initial data.

The fourth step of the method’s algorithm concerns a determination of the reference tetrahedron
I'py, Figure 22a,b. The fourth set composed of the measures of the vectors and angles employed in this
step is adopted.
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Figure 22. Two subsequent steps of the method’s algorithm related to the construction of (a) all vertices
of I'yy; (b) all side edges of Xy;.

Four vertices Wap2z = Wgc12, Wap22 = Wepa1, Wee2z2 = Tpe2a(Wace21), Wep2z2 = Tep22(Wep12) of
I'1p, Figure 22a, are defined so that the measures of the vectors Wpco1 Wpe2e and Wepo1 Wepap are two
elements of the fourth set of initial data. Four vertices Wap2, Wepoo, Wapas, and Wpeo, determine
four straight side edges: ay, b2y, 22, and dyy and two axes 1y, and vy, of I'yy Figure 23a.

Four auxiliary points of I' belonging to w, are constructed so that Sa2> = Sc11, Sp22 = Sc12, S22
= Sco1, and Scop = Tepp(Wpep), Figure 23b, where the measure of the vector W2 Seoo is a value
belonging to the fourth set of the initial data. On the basis of these points of w,, four points Ay = Cy3,
Bop = Co1, Coo = T2(Sc22), Do = Cqp constituting the vertices of a closed spatial quadrilateral line
modeling complete shell roof eaves are constructed.

The result of adding up the four reference tetrahedrons I';; constructed above is a subnet I'y
constituting about one-fourth of the designed reference network I'. The other three parts of I' can be
built using z-axis symmetry and two (x,z)- and (y,z)-plane symmetries called 3D-mirrors, Figure 24a,b,
in the way described Section 6 with the help of a certain example. All obtained points Sajj, Sij, Scij,
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and Sp;j, Figure 24a, and their images obtained as a result of the aforementioned symmetries are the
selected vertices of a certain net defining w;, Figure 24b. In relation to this net, a roof structure ()
composed of nine sectors ();; is positioned. Thus, the vertices of the eaves of each ();; segment of the
roof structure () are defined on the basis of w;, Figure 25.

Oy CippZ

o 2B L
Aot Bm Ol §—

\
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‘I"‘-‘I 7 a

=3\ s Iy

Ay p =
1P =
§ DAy

T\ Wiss
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(a) (b)

Figure 23. Subsequent steps of the method’s algorithm concerning: (a) definition of the I'’s axes;
(b) creation of the vertices of 257, ¥9s.

e e z
S.z.zz' SDZT 31'::5{11

(@) (b)

Figure 24. Subsequent steps of the method’s algorithm related to the creation: (a) a quarter of I'; (b) the
entire network I' and the reference surface w, symmetrical about the z-axis.
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Figure 25. The final step of creating > and () symmetrical about the z-axis.

In addition, it is worth paying attention to the following properties of the reference network I
built so far. The vertices of each reference tetrahedron I';; designate side edges a;;, bj;, cj;, and d;; and
planes of I'. Each new reference tetrahedron I';,; or I'jj;1 is created as a spatial mesh having four
sought-after vertices defined in the selected side edges of the previously constructed tetrahedrons I';; to
obtain subsequent pairs of the adjacent meshes having common planes. In the aforementioned planes
of T', the locations of roof directrices are determined.

In the case of creating a reference tetrahedron contained in any of the two orthogonal directions
related to the first z-axially symmetrical tetrahedron I';1, one its vertex is laid outside the side edges of
the already created subnet of I'. This vertex determines a new plane of I' passing through the already
constructed axis of this tetrahedron. However, in the case of two directions diagonal in relation to
the first I';1, each new reference tetrahedron has to have two vertices identical to two from the four
previously constructed vertices of I and two other new vertices have to be determined on two side
edges of the previously created subnet of I'.

This way of constructing the subsequent reference tetrahedrons located in these orthogonal and
diagonal directions leads to the fact that each inner side edge of I' is shared by four adjacent reference
tetrahedrons and eight vertices of these four tetrahedrons belong to this side edge. In a general case,
these vertices occupy four different positions, in pairs.

Therefore, it seems rational to carry out a process of a geometric parameterization of this type of
reference networks, especially the mutual positions of their vertices and other characteristic points.
An example of using such an algorithm for a parametric determination of reference polyhedral
networks I' and eaves nets B, is given in Section 6, where certain division coefficients of the selected
pairs of some adjacent vertices by other vertices of the reference network are employed. In addition,
some points belonging to a reference surface and vertices of the eaves edge line of each individual roof
shell segment are defined at each side edge of the network I'. It is also advisable to use analogous
division coefficients of pairs of the reference network’s vertices in determining these points of the
reference surface and the eaves limiting the individual roof shell segments. An example of making
such a parameterization is included in Section 6.

6. Parametric Shaping of an Example Reference Network and a Free Form Shell Roof

The algorithm assisted computationally leads to creation of intuitive engineering parametric and
regular models of attractive and rational building free forms. To create such models stiff motions
including translations and rotations of points and planes presented in the previous section are going to
be replaced by slightly more complex actions related to the division coefficients and proportions of
some elements of the reference I and eaves B, networks. These coefficients and proportions allow us
to define the positions of (1) the sought-after vertices of I' with respect to the adopted or calculated
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at one of the previous steps pairs of other vertices of T, (2) the subsequent planes of T, (3) the points
Sair, SBij, Scij, and Sp;j belonging to a reference surface wy, (4) the vertices A;; Bj;, Cjj and Dj; of B,
relative to the already determined vertices of I and these points of w;.

A use of the method for determining a quarter I'y of a reference network I, Figure 26, and a quarter
By of By consisting of closed spatial quadrangles By;;, is presented below. It is based on some adopted
proportions. All vertices of the other three quarters I'yr, I'sp, 'y, of I, Figure 26, and Booy, Bozp, Boar of
B, are determined using: (1) a z-axial symmetry, in the case of I';;, (2) a (x,z)-plane symmetry called
3D-mirror, where I',, is constructed, (3) a (y,z)—plane symmetry for I'y,

ijs

Figure 26. A multi-segment reference network I'composed of four symmetric subnets I'y, I'y7, I3y, and Iy,

Creating the z-axially symmetric network I' is started with defining the first z-axially symmetric
mesh I'1y, Figure 27. The subsequent meshes I';; are determined in the order presented in the previous
section, Figures 18-25. In order to build the mesh I'y1, the following quantities and proportions are
adopted. The values of these variables are given in Table 1.

Two opposite planes (WABll/ WCDllr WBCll) and (WABH/ WCDllr WADll)r Figure 27a—c, are inclined
to each other at an angle @11 = 2 apc11 = 2 aap11, Figure 19. The length of the edge Wep11Wapn1
contained in the u1-axis was adopted in accordance with the values given in Table 1.

Table 1. The initial data defining the shapes of the meshes I'); and By11 of I' and B,.

Variable or Division Coefficient Value Unit
a1 10.0
Wap11Wep11 2000.0 mm
OWpcnn 100,00.0 mm
dow11 1.0 -
ds11 25 -

ddy; 0.1 -
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Figure 27. Creation of two initial reference tetrahedrons: (a) I'11; (b) I'1»; and (c) a detail of 'y,

The Wpc11Wap11's length results from the adopted values of the angle av1; and the height OWpc1p

of the triangle <Wag11, Wep11, Wpe11> as well as the proportion
dow11= OWap11/OWpc11

The positions of points Sa11, Sy11, Sc11, and Spy; are defined with the same constant dgq; listed

in Table 1 as follows . N
dsa11 = m(Wap11Sa11)/m(Wap11Wapn1)
dspi1 = m(WABl—;SBll)/m(WABll_)WBCH)
dsci1 = m(WCDl—;SCH)/ m(Wepn Wacn)
dspn = m(WCDl_l)SDll)/m(WCDll_)WADll)

dsp11 =dsa11 = dsc11 =dsp11 = ds11

where WAB“ WAD11 is the Vector starting with W4g11 and ending at Wp11, m(WABn Wap11) is the

measure of WABH Wapi1, WABHS 11 is the vector whose starting point is W4p11 and ending point is

Sa11, etc. Thus, the location of points S411, Sp11, Sc11 and Sp11 is defined on the basis of the adopted

division coefficients of all pairs {Wag11, Wap11}, {Was11, Wac11}, {Wep11, Wee1i} and {Wep11, Wap1i}
of the vertices of the I'j; mesh. The subsequent four points S411, Sp11, Sc11 and Sp11 usually form a flat

rectangle determining the reference surface w; in relation to which the shell segments of the designed
multi-segment shell roof are arranged in the three-dimensional space.
The locations of the vertices A1y, B11, C11 and Dy of I'yq, Figure 27a, are defined by means of the
following proportions
dan = m(Wap11A11)/m(Wap11Wapi1)
dpi1 = m(Wap11B11) /m(Wap11 Waci1)

dc11 = m(Wep11Cin) /m(Wep11 W)
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dp11 = m(Wep11D11) /m(Wep11Wapii)

where Wy BTlAll is the vector having the starting point at W4p11 and the end point at A4, etc. Points
A11, B11, €11, and Dy; determine a spatial quadrangle By1; constituting the eaves of a single, smooth,
shell segment ()1; modeling a single shell of a complex roof structure. It was adopted a constant dd1;
to calculate the values of four division coefficients d411, dg11, dc11, and dpq1. This constant is used
with positive or negative sign depending on whether the points Ay, B11, C11, and Dy, lie above or
below w, defined in the corresponding area by means of the quadrangle S4115p115¢115p11, Figure 27a.
The ratios d411, dg11, dc11, and dpqp are calculated as follows

da11 =dsa1n +ddan

dp11 =dsp11 +ddpn
dc11 =dscn + dden
dp11 =dsp11 +ddpn
ddpq1 = —dda11 = —dd¢1p =ddpyy =ddy;

In order to construct I'y,, Figure 27b, the values presented in Table 2 were adopted.

Table 2. The initial data defining the shapes of I'1; and By1».

Division Coefficient Value
dacmz 1.2
do12wcep12 1.0
dwac12, dwap12 11
dsci2, dsp12 25
ddy, 0.1

The angle acpip is defined by means of the angle a1 adopted in the previous step and the
following formula.
dacpiz2 = acpiz/an

In order to determine Wcp1», it was also adopted the following relationship

do1awepi2 = m(012Wepi2) /m(O12Wapi2)

where Oj; is the middle of the segment Wap12Wpc12. The aforementioned values are listed in Table 2.
Two new division coefficients dypc12 and dyapio are adopted as follows

dwgci2 = m(Wep11Waeiz) /m(Wep11 Waci1)

dwapi2 = m(Wep11Wapi2) /m(Wep11Wapii)

where m(WCD11 Wpc12) is the measure of the vector WCD11 Wpc12 having the startmg point at Wep11

and the end point at Wpc1,, and m(WCDH Wgc11) is the measure of the vector WCD11 Wpc11, etc.
The positions of points S41, and Spyp are similar to the positions of Spy1 and Sc11 determined
previously for I'11. The positions of Sc1, and Sp1p result from the following proportions

dsci2 =dsp12 =ds1
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The assumed values of these proportions are given in Table 2. The positions of points Ajp = D13,
Byp = Cqj are calculated previously for I'1;. The positions of points Cj, and Dj; can determined by
means of the following proportions

dci2 =dsciz + ddern

dpi2 =dspi12 +ddp12
ddci2 = —ddpip =ddjp =ddpy

where the considered values are listed in Table 2.

The sought-after vertices Wap13, Wap13, Wepis, and Wpe1s of I'13 constituting one mesh of I'y,
Figure 28a, the points S413, Sp13, Sc13, and Sp13 of w, and the vertices Ay3, B13, C13, and D3 of the
closed eaves quadrangle B,13, Figure 28b, can be defined analogously as for I'j» and By, using the
following formula

dacpiz = acpiz/an

doswepiz = m(ol3IX}CD13)/ m(O13 V—\;ABB)
dwsacis = m(WCD1;WBc13) / m(WCDl;WBCH)
dwap1z = m(chl;WAD13) / m(WCDl;WAD12)
dsciz = dsp1z =dsn1
dc1z = dsci3 + ddcs

dp13 = dsp13 + ddp13
ddpi3 = —ddci3 = ddy3 = ddy

where Oj3 is the middle point of W4p13Wpc13.

L Waps
' Wapiz
Wapn

\%L’H

Won=Wign

%B'H

(b)

Figure 28. The step related to creation of I'13: (a) vertices; (b) a general shape.

The mutual position of the adjacent meshes B,1; and By13 results from the relationships adopted
for all meshes of B,, which are as follows S413 = Sp12, Sg13 = Sc12, A13 = D12, B13 = C1, Figure 28a.
The values of the adopted new proportions are given in Table 3.
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Table 3. The initial data defining the shapes of the meshes I';3 and By13 of I and B,.

Division Coefficient Value
dacmg 1.2
do1swepiz 1.0
dwac13, dwap13 11
dsci3, dsp13 25
ddys 0.1

Compared to the investigated way for creating I'y; and By1; meshes (for j = 1 to 3) of the first
orthogonal direction in I, the manner of determining the subsequent I';; and By;; meshes (fori =1 to 3)
of the second orthogonal direction in I', Figure 29a, needs a slight modification.

-C
Sz, z

SB11= 9421

/f LiWagn
— W Y W W
Y= W, T 0
21
(a) (b)

Figure 29. The step related to creation of I'p;: (a) a general shape; (b) vertices.
The angle apcp1 is a function of the angle a1, defined with the help of the following formula
dapea1 = @ pear/ann

The following relations were adopted
doziwsc2r = m(O021Wpea1) /m(O21 Wpei1)

dwep21 = m(Wpc11Wepat) /m(Wpe11Wepi1)

dwap21 = m(Wap11Wepa1) /m(Wap11Wepit)
where O is the middle point of the edge Wcp21 Wapo1, Figure 29b. The positions of points S451 and
Spp1 are similar to the positions of points Sg11 and Sc11 obtained previously for I';;. The positions of
points Sgp1 and Scpg, Figure 29a, result from adopting of the following proportions

dsp21 = dsc21 = ds11

dspo1 = m(Wap21SB21) /m(Wag211Wacea1)
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dsco1 = m(Wep21Scar) /m(Wep2i Weeat )

whose values are given in Table 4. The positions of points Ap; = B1; and Dy1 = Cq1. The positions of
the points By and Cp; result from adopting of the following proportions

dpp1 =dspo1 + ddpa
dc21 = dsca1 + ddean

ddcp1 = —ddpp1 = ddy; =ddyy

Table 4. The initial data defining the meshes I'p; and Byy1.

Division Coefficient Value
dacml 1.2
do21wac21 1.0
dwcp21, dwag21 11
dsp21, dsc21 25
ddy, 0.1

To create I'y; and Byy1, Figure 29a, the values listed in Table 4 are employed.

All vertices WA331, WAD31/ WCDSl and WBC31 of F31, four points SA31, 5331, SC31/ and SDSl of Wy
and all vertices A3z, B31, C31, and D3 of By3; are determined like for I'y1, Figure 30a,b. For this purpose,
the following proportions are defined

dapesr = & pea1/a et

doziwacs1 = m(O31 IX}Bcsl)/ m(oaleCﬂ)
dwepst = m(Wacar Weps ) /m(Waca Wepan)
dwass = m(Wapa Wepar) /m(Wapar Wepnr )
dsps1 = dsca1 = ds11
dsps1 = m(WAB;5331)/ (W aga Wacs )
dscs1 = m(WCD3_15C31)/ m(WCD?)l—)WBCSl)
dpa1 = dspa1 + ddpa

dca1 = dscar + ddess
ddpz1 = —ddc31 = dd3; = ddy

where Os; is the middle point of Wcp31 Wap3i. The locations of points S431 = Sp21, Spa1 = Sco1, Azl =
By1, and D31 = Cy. All values of the proportions defined above are shown in Table 5.

Table 5. The initial data defining the meshes I's; and By3;.

Division Coefficient Value
dacpsi 1.0
dos1iwacst 1.0
dwcp31, dwagat 11
dsp31, dsczi 25

dds; 0.1
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Figure 30. The step related to the creation of the reference tetrahedron I';;: (a) a general shape;

(b) vertices.
To create the tetrahedron I'y; and the quadrangle By, Figure 31a, the values listed in Table 6 are
adopted. To determine the position of Wcpy on the straight line ¢y, Figure 31a,c, a coefficient dwcpao

defining the division of the edge Wpc12Wcep12 by the point Wepg, is defined as follows

dwepze = m(Wgc12Wepaz) /m(Weci2Wepi2)

Sp217 5177522

avy
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o7y,

Wepi1=Wasn

(@) (©)

Figure 31. Determination of I'py: (a) a general shape; (b) vertices of Byyy; (c) vertices of T'p,.
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Table 6. The initial data defining the shapes of the meshes I'y; and Byy;.

Division Coefficient Value
dwep22 1.0
dwgc22 1.0

dsc2 25
ddy; -0.1

To determine the location of Wpcay on byy = cp1, a coefficient dypcoo defining the division of the
edge Wcpo1 Wpeo1 by the point Wiy, is assumed, Figure 31c, so that

dwgce = m(Wep12Waeaz) /m(Wepot Wae1)

In addition, Wap22 = Wepa1, Wap22 = Wpe1z. Similarly, the values of two coefficients dgcp, and
ddcy are adopted. The first value defines a division ratio of the edge WcpooWpea by Sca, Figure 31c,

— -
dscoo = m(Wep2aScaz) /m(Wepo Waea2)

The second proportion together with the first one enables one to define a division ratio of the
edge Wcp2oWacaz by C

ddscor = m(Wep2Ca2) /m(Wep2o Wz )

where

dc2o = dsca + ddsca

Analogous proportions as for I'y; positioned diagonally towards I'1; are defined for: (1) I';3 and
I'sp, located diagonally in relation to I'1p and I'y. (2) I's3 located diagonally towards I'yp. Values of
these proportions are listed in Table 7. A sum of all I';; (for i = 1-3) achieved so far is a subnet I';
constituting about one quarter of I. It is contained in the dihedral angle limited by the planes (x,z) and
(v,z) containing the positive y-axis and negative x-axis, Figure 32.

Figure 32. A quarter I'y of the entire reference network I'.
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Table 7. The initial data defining the meshes I'p3, I'sp, I'33 and Byy3, By3z, Buss-

Division Coefficient Value
dwcp2s 1.0
dwgc23 1.0

dsc23 2.5
dwcpaz 1.0
dwgca2 1.0

ddcs; 0.1
dwcpas 1.0
dwgc233 1.0

dscos3s 25

ddcss -0.1

The reference tetrahedrons I'yj and T'j; for (for 7, j = 1 to 3) of the subnet I'; were arranged in two
orthogonal directions along the principal planes (x,z) and (y,z) of [x,y,z]. However, other tetrahedrons
I (for i, j = 2 to 3) are arranged in diagonal directions towards the I';; mesh. To construct these
tetrahedrons, a relatively small number of the respective proportions is employed.

The calculated coordinates of all vertices of the subnets I'; and By; are given in Tables A1-A3
posted in Appendix A. Table Al applies to all vertices Wag;j, Wepij, Wapij, and Wpgjjof I'y (for i, j =1 to 3).
Table A2 relates to the vertices Sajj, Spij, Scij, and Spj; of w,. Table A3 concerns all vertices Ay, Bjj, Cjj,
and Dj; of Byy.

In order to create the second pair of subnets I’y and By, of I' and By, the z-axis-symmetry of all
characteristic points WABij/ WCDij/ WADij/ WBCijr Ai]', Bijr Cl']', Dijr SAijr SBijr SCij/ and SDij of the pI‘eViOLlSly
constructed subnets I'; and By is used. As a result of this transformation, the vertices Wyg;jr, Wepijr,
Wapiji and Wpcjj, of a1, the vertices Ajjr, Bjjr, Cijr, and Djjp of By as well as the points S4jjr, Spijr,
SCijL/ and SDijL of w, are determined so that SAijL/ SBz'er SCi]‘L, SDier AijL/ Bier CijL/ and DijL belong to the
dihedral angle located between the (x,z)-plane and (y,z)-plane and including the positive x-half-axis
and the negative y-half-axis, Figure 33. Examples of a single reference tetrahedron I'j3; of the subnet
I';; and a mesh By13;, of the subnet By are shown in Figure 33.

Figure 33. Two steps of the determination of the second quarter I',; of the designed z-axis-symmetric
reference network I'.



Symmetry 2020, 12, 763 26 of 37

For the subnets I';; and B,;;, there are many proportions between the lengths of their side edges
and axes and the measures of their angles, identical to those obtained for I'y and B,;. Some selected
relations resulting from the z-axis-symmetry of the vertices of I';; and Byy;, and the corresponding
vertices of I'1 and B, are listed in Tables A4—-A6 posted in Appendix A. Table A4 applies to the vertices
WABier WCDijL/ WADijL/ and WBCijL of I'; . Table A5 relates to the vertices SAijL/ SBijL/ SCijL/ and SDijL of
wy. Table A6 consists of the coordinates of the vertices A;jr, Bjj, Cij, and Dy, belonging to By

To create the third pair of the subnets I's;, and By, of I and By, a (x,z)-plane-symmetry, of the
previously constructed nets I'y and By is used. Based on this symmetry, the following are transformed:
(1) all vertices Wagij, Wepij, Wapij, and Wpcjj of I't, (2) all vertices Aj;, Bjj, Cjj, and Dj; of Byy, (3) the points
Saij» SBij» Scij, and Spj; of wy. As a result of this transformation, the vertices Wag;jy, Wepijp, Wapijp, and
WBCijp of 1"3,,, the vertices Aijp/ Bijp/ Cijp/ and Dijp of Bvijp and the points SAijp/ SBijp/ SCijp/ and SDijp of w,
are determined, Figure 34. The obtained points Saijy, Sgijp, Scijp, Spijp, Aijp, Bijp, Cijp, and D, belong to
the subspace contained between the planes (x,z) and (y,z), so that both the negative x-half-axis and the
negative y-half-axis are included in this subspace. Examples of the reference tetrahedron I'ys, of I'3,
and the mesh B3, of B3, are shown in Figure 34.

Figure 34. Three quarters I'y, I';, and I's;, of the reference network I'.

For the subnets I's, and By3;,, many specific proportions between their side edge and axis lengths
and angle measures similar to those obtained for I'1 and B,; can be found. Some relations resulting
from the (x,z)-plane-symmetry of the vertices of I's, and By3, and the corresponding vertices of I'; and
By created previously are listed in Tables A7-A9 posted in Appendix A. Table A7 relates to the vertices
WABijp/ WCDijp/ WADijp/ and WBCijp of ng. Table A8 concerns the points SAijp/ SBijp/ SCijp/ and SDijp of w;.
Table A9 applies to the vertices Ajjp, Bijp, Cijp, and Djj, of By

To determine the fourth subset I'y, of I and subnet Bys, of By, a (y,z)-plane-symmetry of I'; and
By is used. The positions of the vertices Wagijr, Wepijr, Wapijr, and Wpcijr of Ty, the vertices Ay,
Bijr, Cijr, and Dj; of By and the points Sajj, Spij, Scij, and Sp;; of wy are determined as a result of the
transformations of (1) the vertices Wag;j, Wepij, Wapij, and Wpc;j of I'y, (2) the vertices Ay, Bjj, Cjj,
and Dij of By, (3) the points SAij/ SBij/ SCij/ and SDij of w,, so that SAijrr SBijrr SCi]'rr SDijrr Ai]'r/ Bijrr Cijr/
and Dj;, belong to the dihedral angle limited by the (x,z)-half-plane and (y,z)-half-plane containing the
positive x-half-axis and the positive y-half-axis, Figure 26.
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Some selected relations between the vertices of I'y, and Bys, and the corresponding vertices of I'y
and By, resulting from the (y,z)-plane-symmetry of I and B, are given in Tables A10-A12 included
in Appendix A. Table A10 relates to the Wagij;, Wepijr, Wapijr, and Wpcjr vertices of I'y,. Table Al1
concerns the points Sajj, Sgijr, Scijr, and Spjjr of w,. Table A12 applies to the vertices Ajj, Bjjr, Cijr,
and Djj, of Byy,. Finally, the sought-after nets I' and B, are created as the sums of the respective
symmetric subnets I'y, By1, [21, Boor, I'sp, Bosp, I'sy, and Byg, have already been constructed. These nets
have to be supplemented with roof shell sectors and a plain base to obtain complete building free
form model.

7. Discussion

The proposed method for creating parametric spatial networks enables implementation of the
novel algorithms in computer programs to conveniently and intuitively search for unconventional
shapes and position of elevation walls and roof shells. The benefits of the parameterization include (1)
the possibility of defining and reducing a number of the independent variables entered into the method’s
algorithm, (2) specifying the special relations between dependent and independent variables to obtain
the intuitiveness of the free form shaping, the regularity and respective curvature of the resultant
complex shell roofs, (3) interesting outside roof and elevation patterns in an arrangement of many
complete shell roof sectors and plane walls facets. The shape and mutual position parameterization
of all reference tetrahedrons constituting the meshes of the investigated reference networks allowed
developing various types of the innovative polyhedral reference networks. The activity aims at making
a parametric description of these networks by means of the smallest possible number of independent
variables so that such networks become regular and consistent, as well as determine diversified
geometrical properties of the employed reference surfaces, including the negative, positive or zero
Gaussian curvature, Figures 35 and 36.

The points Sajjk, Sgijk, Scijk, and Spjjx (for i, j = 1-3, k = ¢, L, p, r, where ¢ is the empty set)
used in the example presented in the previous section designate a regular double-curved surface
wy characterized by the positive Gaussian curvature, Figures 26 and 35, because the values of the
proportions dsajjk, dsgijk, dscijk, and dspjjx are bigger than 1.0. Double-curved surfaces having the
negative Gaussian curvature can be obtained when the coefficients range from 0.0 to 1.0, Figure 36.
The investigated method allows one to enter certain points to determine such networks I" and B, for
which the resultant reference surface is a single-curved surface having the zero Gaussian curvature.
For this case, selected groups of the axes of some reference tetrahedrons I';; have to be contained in the
same straight lines. This problem is going to be presented in further publications.

polyhedral reference
network I~

single reference
tetrahedron

\ 4
first auxiliary network )%

Figure 35. A sum of many spatial quadrangular meshes arranged compatible with a regular surface of

the positive Gaussian curvature by means of a polyhedral reference network determined on the basis
of the pair of auxiliary orthogonal networks composed of plane meshes.
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Figure 36. A sum of many spatial quadrangular meshes arranged compatible with a regular surface of
the negative Gaussian curvature by means of a polyhedral reference network determined on the basis
of the pair of auxiliary orthogonal networks composed of plane meshes.

In the presented example, it was shown how to create a regular, spatial, polyhedral reference
network I' on the basis of which eaves quadrilateral network B, determining an unconventional shell
roof structure can be built. All rijk (fori,j=1-3,k=¢, L, p, r) of I are tetrahedrons whose vertices,
side edges, planes and axes take specific mutual positions influencing diversified types of the created
reference surfaces w, and eaves roof networks B,. Meshes T'j affect the rationality of the designed
building free form structures due to the specific mutual positions of the side edges a;j, bjjk, cijx and d;j
of I'. By (for i, j =1-3,k = ¢, L, p, r) of B, are closed spatial quadrangles whose two opposite sides
can be taken as roof directrices. The parametric shapes and mutual positions of the directrices may
positively affect a process of designing the attractive building structures by automatically changing the
proportions d Aijs dBij/ dcl‘]‘, and le’]‘ defining the positions of the Bw‘]‘k'S vertices on Aijk, bijk/ Cijk and dijk
in accordance with w,.

The investigated method relies on special setting all subsequent reference tetrahedrons together,
so that each pair of two adjacent tetrahedrons has one plane in common. Many reference tetrahedrons
can be set together to obtain an edge roof shell structures having regular edge patterns on its surfaces
and attractive patterns of folded plane areas on its elevations. The analyzed specific properties of
the innovative spatial reference networks should lead to a creative intuitive computational shaping
of attractive, rational complex-building free forms of medium and large span and novel structural
systems intended for these forms.

The network B, introduced in Section 6, Figure 26, and the network shown in Figure 36 are
characterized by the fact that each pair of their adjacent quadrilateral meshes Byjx and Bymys arranged
orthogonally in relation to the mesh Byj1 (fori=1orj=1andm=1orn=1andk s=¢, L, p, r) has one
common edge, including their directrix, and two common vertices. In addition, each tetrad of adjacent
quadrilaterals By has one common vertex. In contrast, the B, network shown in Figure 35 was
created so that each of the two adjacent quadrangles By and Byuns arranged in any of the orthogonal
directions compatible with the principal planes (x,z) and (y,z) do not have a common edge, but their
corresponding edges are inclined to each other and intersect in one point. In this case, each two
adjacent meshes-quadrangles arranged diagonally in B, have only one common vertex.

The shell roof structure () presented in Section 6 is continuous and has many edges between
smooth sectors () limited by eaves quadrangles By (fori=1orj=1and m=1orn =1 and
k=¢,L,p, ). The edges model a set of ribs between the complete transformed shells of a roof structure.
In the parametric description of I implemented to computer applications, it is possible to easily change
the positions of all vertices Ajj, Bjjk, Cijk, Dijx of the meshes B along the side edges of I', relative to
reference surface w, by modifying the division coefficients of some specific pairs of—the vertices of I'.
The change may cause the resultant structure (2 to become discontinuous, Figure 35. The structure ()
can contain many empty flat areas dividing the roof shell sectors (). These openings should be built
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by windows illuminating the interior of the designed building with the sunlight. This problem is also
going to be analyzed in the further publications.

The author has developed some activities leading to minimize the number of independent
parameters describing the geometrical properties of the presented reference networks. For this purpose,
symmetrical forms of buildings must be sought. The possibility of adopting one parameter constituting
only one independent variable used in defining all proportions between the selected roof and elevation
elements is also developed by the author to find similar and different types of various free forms.

8. Conclusions

There are significant limitations in creating building free forms roofed with transformed corrugated
shell sheeting concerning the complicated orthotropic geometrical and mechanical properties of
thin-walled folded steel sheets. To overcome these limitations, the novel method based on the
polyhedral reference networks and quadrilateral eaves nets helpful in shaping individual free forms
and their specific multi-plane and multi-shell structures were carried out. As a result, the intuitive
method supported by novel computer applications uses the presented relatively great possibilities of
searching for diverse and innovative building structures based on the proposed shape transformations.

The main goals of combining the complete transformed shells in any roof structure include
increasing the span of the roof and entire building, integrating the roof and fagade forms, increasing
the visual attractiveness of the entire building free form, and making it sensitive to the natural or
built environments. The most common concept used in a shaping of such transformed folded shell
structures is a combination of central sections of right hyperbolic paraboloids, their halves or quadrants
set in various configurations, and joined along their common edges. The author developed many
coherent rules for creating such complex structures covered with plane-walled folded elevations and
multi-segment transformed shell roof structures. The developed algorithms allowed a radical increase
in the variety of the shapes employed in design.

The presented method uses the novel vector and parametric descriptions of shaping complex
building free forms characterized by the shape integration of their complex multi-shell roofs and
multi-plane facades. The method’s algorithm requires entering specific sets of parameters defining
the general shapes of the investigated complex free forms and their individual roof and elevation
elements. The parameters are either the measures of the vectors and angles of stiff motions such as
translations and rotations, or the division coefficients of certain characteristic points, of the proposed
novel networks by their other characteristic points.

Many proportions between geometric properties of all roof and elevations elements can be
defined using functions based on the measures of the investigated types of stiff motions to achieve
diversified attractive patterns on multi-plane folded elevations and multi-shell roof structures.
More comprehensive studies seem to be targeted at an assignment of (a) the possible types of the
independent and dependent variables, (b) the specific proportions between the dependent parameters
to obtain such specific groups of the architectural free forms that are characterized by similar or
different properties, (c) the search for some ranges of the values of the selected independent parameters
defining attractive building free forms.

Achieving optimal, rational and attractive solutions appearing as the result of the process of
shaping building free forms roofed with transformed corrugated shells and their complete elements
require using regularity and symmetry of (a) single reference tetrahedrons and entire reference
polyhedral networks, (b) plane walls and entire elevations of the designed complex building free forms,
(c) some strips of the transformed folded sheets and entire complete transformed roofs shells and their
structures, (d) structural systems intended for these forms. The research initiated and developed by the
author on parametric process of architectural, geometrical, and static strength shaping of the regular
free form structures roofed with transformed corrugated shell structures, and their structural systems
is very extensive and requires a certain number of complete steps. One of these steps associated with
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geometrical and computational shaping such forms was elaborated by the author and the obtained
results are presented in this paper.
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Appendix A

Table A1. The coordinates of the vertices Wap;j, Wcpij, Wapij, Wacij (for i, j = 1, 2, 3) of the polyhedral
reference network I'y shown in Figure 27.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Wap11 4500.0 —4793.6 54,790.7
Wepn 4500.0 4880.7 55,786.9
Wapi1 ~4500.0 4793.6 54,790.7
Wacii 45000 48807 55,786.9
WaB12 xWep11 yWepn zWepn
Wepia 3254.3 0.0 468.2
Wap1a ~100.0 ~958.7 10,958.1
Wpc1a ~100.0 958.7 10,958.1
WaB13 xWep12 yWep12 zWep12
Wepis 5572.7 0.0 28c1
Wap13 4354 ~1054.6 12,007.1
Wpc1s —435.4 1054.6 12,007.1
W apa1 ~1100.0 ~87.2 ~996.2
Wepai 1100.0 872 ~996.2
Wap21 xWpc11 YWaent zWpcn1
Wpean 0.0 2574.0 9677.1
W apa1 ~1210.0 -353.3 ~2063.5
Wepst 1210.0 353.3 20635
Waps1 —xWpgc21 YWac21 zWpca1
Wgest 0.0 4374.6 9074.6
Wag22 xWep21 yWep2r zWep21
Wep2 3589.7 0.0 —580.8
Wap2 xWpc12 yWac12 zWpc12
Wgcoo -110.0 2840.1 10,744.4
Wag23 xWep2z yWepao zWep2
Wepas 6173.6 -105.5 435.5
Wap23 xWpc13 yWpac1s zWpc13
Wgcos —480.0 3133.7 11,876.9
Wap32 xWepa1 YWepst zWeps1
Websp 3959.7 —-389.5 -1713.3
Waps2 xWpc22 YWac22 zWpc22
Wge3a -121.0 4847 .4 10,188.4
Wag33 xWep32 YWepa2 zWep32
Webpss 6838.9 —429.4 —708.6
Waps33 xWgc23 yWpco2s zWpgc23

Wscas ~529.1 5371.0 11,378.6
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Table A2. The coordinates of the points S4jj, Spij, Scij, Spij for (ij = 1, 2, 3) of the reference surface wy.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
San 4500.0 47936 54,790.7
Sen 4500.0 4880.7 55,786.9
Se1 ~4500.0 4793.6 54,790.7
Sp ~4500.0 48807 55,786.9
Sa12 xSp11 ¥Spn z5p11
Sp12 xSc11 ¥Scn zSc1i1
Sci ~13,517.1 4793.6 52,918.0
Spia ~13,517.1 —4793.6 52,918.0
Sa13 xSp12 ¥Sp12 z5p12
Sp13 xSc12 ¥Sc12 zSc12
Sc1s -21,737.1 4793.6 49,304.2
Sp13 ~21,737.1 47936 49,3042
San xSp11 ¥Sp11 z8p11
Spo1 4500.0 13,460.5 53,340.4
Sco —4500.0 13,460.5 53,340.4
Sp21 xSc11 YSc11 z5c11
Sas1 xSpa1 ¥SB21 zSpn
Sp31 4500.0 21,957.5 50,497.3
Sca —4500.0 21,957.5 50,497.3
Sp31 xSca1 ¥Scan z5¢c21
Sax xSc11 ¥Scu zScn
Sp22 xSca1 YSca1 z5¢21
Sca ~13,675.6 13,605.3 52,270.2
Spx xSc12 ¥Sc12 zSc12
Sa23 xSc12 ¥Sc12 z5¢c12
Sp23 xSc22 ¥Sc22 z5c2
Scos3 —22,104.0 13,660.9 49,061.5
Sp23 xSc13 ¥Sc13 z5¢13
Sa3 xSca1 ¥Scan z5c21
Sp32 xSc31 ¥Sca1 zSc31
Sca ~13,692.4 22,263.8 49,770.7
Spa2 xSc2 YSc22 z8¢c2
Sa33 xSc2 ¥Sc22 zSc»
Sp33 xScan ¥Sc3 zS¢c32
Sca _20,428.4 22,6112 47,3045
Sp33 x5c23 ¥Sc23 2S¢

Table A3. The coordinates of the vertices A,'j, Bjj, Cij, Dj (fori, j=1,2,3) of the eaves edge net By;.

Point x-Coordinate [mm]  y-Coordinate [mm] z-Coordinate [mm]
An 4,400.0 —4,706.4 53,794.5
B11 4,600.0 4,880.7 55,786.9
Cn —4,400.0 4,706.4 53,794.5
D1y —4,600.0 —4,880.7 55,786.9
A1y -4,390.0 —4,697.7 53,694.9
By —4,610.0 4,889.4 55,886.5
Ci2 -13,517.1 4,697.9 51,869.0
Do -13,852.6 —4,889.4 53,967.0
A1z —13,148.2 —4,688.1 51,764.1
Bi3 -13,886.1 4,899.0 54,0719
Ci3 -21,136.3 4,688.1 48,252.2
D3 —22,338.0 —4,899.0 50,356.2
Apq 4,390.0 4,697.7 53,694.9
Byq 4,610.0 13,726.6 54,407.7
Co ~4,390.0 13,194.4 52,273.0

Doy xB1p yB12 zB1p




Symmetry 2020, 12, 763 32 of 37

Table A3. Cont.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
As 4,379.0 13,167.7 52,166.3
B3 4,621.0 22,430.3 51611.1
Cs1 —4,379.0 21,484.7 49,383.5
D31 -4,621.0 13,753.2 54,514.4
A xCqq yCny zCyq
B xD3; yD3 zD3;
Co —13,367.3 13,360.7 51,326.4
Dy xB13 yBi3 zBy3
A xCr2 yC12 zCyp
Bys —13,983.9 13,850.0 53,213.9
Cos —21,549.5 13,391.0 48,108.1
Dys ~22,338.0 4,899.0 50,356.2
Az xCy yCo zCx
B3y -4,621.0 22,430.3 51,611.1
Cso —13,352.3 21,8274 48,778.9
Dj; xBy3 YBas zBa3
Azz xCo yCo z2Cp
B33 -14,032.4 22,700.2 50,762.6
Cs3 -21,916.7 22,208.4 46,465.1
D33 —22,658.4 13,930.9 50,015.0

Table A4. The coordinates of the vertices WagijL, Wcpij, Wapij, Wacijr (for i, j = 1, 2, 3) of the
polyhedral reference network I'y; shown in Figure 28.

Vertex x-Coordinate [mm)] y-Coordinate [mm] z-Coordinate [mm]
Wag1aL —xWep12 -yWep12 zWep12
Wep1ar, xWap11 yWap11 zZWaB11
Wap12r —xWpc12 -yWac12 zWpc12
Wgc1ar -xWap12 -yWap12 zWap12
WaB13L -xWep13 -yWep1s zWep13
WepisL, xWapi2 1, YWaB12L ZWaB12 1L
Wap13L —xWgc13 —yWpac13 zWpgc13
Whgc1aL —xWap13 —yWap13 zWap13
Wapo1rL —xWepa1 —yWepoi zWepai
Wepoir —xWap21 —yWap21 zZWap21
Wapa1L —xWpgc21 —yWpgc21 zWpgca1
Wpgca1L —xWap21 —yWap21 zWap21
Waps1L —xWep31 -yWeps1 zWeps1
WepsiL —xWag31 —yWags1 zZWaB31
WapsiL —xWpgcs1 —yWpcs1 zWpc31
Whgesir —xWap31 —yWap31 zWaps1
Wapoor —xWcp2s —yWep2o zWep22
Wep2ar, —xWyap22 —yWag22 zZWap22
Wap2ar —xWpgc22 —yWgc22 zWpgc22
Wpgeoor —xWap2 —yWap2 zZWap22
Wap2sL —xWcp23 -yWep2s zWepos
Wepast, —xWag23 —yWag23 zWap23
WapasL —xWpc23 —yWhc23 zWpc23
Wpgeosr —xWap23 -yWap23 zZWap23
WagsaL —xWcp32 —yWep32 zWeps2
Wepsar —xWag32 —yWags2 zWap32
Wap3ar —xWpc32 —yWpca2 zZWpe32
Wpgcaar —xWap32 —yWap32 zZWap32
WagssL —xWeps3 -yWeps3 zWepss
WepssL —xWag3 —yWags zWaB3
WapssL —xWpc33 —yWhcs3 zWpc33
Whgc3ar —xWap33 —yWaps3 zZWap33
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Table A5. The coordinates of the points S i1, Spijr, Scij, SpijL (for i, j = 1, 2, 3) of the reference surface w;-

Point x-Coordinate [mm]  y-Coordinate [mm] z-Coordinate [mm]
Satar —xSc12 ~ySc12 zSc12
Sp12L -xSp12 -y¥Sp12 z5p12
Sciar -xSA12 -YSa12 z5412
Sp1aL —-xSB12 —YSB12 z5p12
Sa13L —-xSc12 -ySc13 z5c13
SB13L -x5p13 -Y¥Sp13 z5p13
Sc1aL -x5413 -ySA13 z5413
SpisL -x5B13 -ySp13 z5p13
Sanr ~xSca1 ~YScan z8co
SpoiL —xSpo1 —ySp21 zSpo1
Scoir -x5421 ~ySa21 z8 421
SpaiL —xSpa1 —YSp21 2521
SA31L —-x5¢31 —Y¥Sc31 z8¢31
Sp3iL —xSp31 ~YSp31 z5p31
Scair —xS431 —YSa31 z5431
SpaiL —xSp31 —YSB31 z5p31
Sa2r —xSc2 -ySc2 z5¢»
Sp2oL —xSpx» -ySp» zSp2»
Scar —xSa2 ~YySA22 25422
Spar —xSp2n —YySp» z5p»
Sao3L —xSco3 -y5c23 z5¢co3
Sp23L —-xSp23 ~YSp23 z8p23
Scast —x5423 —YSA23 25423
SpasL —x5p23 —YSB23 z5p23
Sazor —xSc3 —YSc32 zSc3
SpaorL -xSp3 ~YSpa2 zS8p32
ScaaL —x5432 -ySa32 z5432
Spaar —xSp3p —YSB32 z5p3
SazsL —-x5c33 -ySc33 z5¢33
Sp33L —xSp33 ~YSp33 z5p33
Scaar —x5433 Y5433 z5433
SpaaL —-x5p33 —YSB33 z5g33

Table A6. The coordinates of the vertices A;ir, Bjjr, Cijr, Dy, (for i, j =1, 2, 3) of the eaves edge net Byyy.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
A -xCqp -yC12 zCqp
Bior —xD1p —yD12 zD1p
Ciar —xA1p —yA12 zA1p
Dypt —xB1p -yB12 zB1o
Aqp —xC13 -yCi3 zCy3
Bisr —xD13 -yD13 zD13
CiaL —xA13 —YyA13 zAq3
Dy3 —xBy3 —yB13 zB13
At —xCoy —-yCn1 zCyy
Bt —xDy1 -yDn zD2
Co1r —xAp —yAn zAn
Dy1p, —xBy —-yBn zBy
AziL —xCsq -yCs1 zC31
Bair —xD3; —-yD31 zD3;
Csir —xAsz1 ~yAz zA31
D311 —xB31 -yB31 zB31
Apr —xCp -yCa2 zCo
By, —xDy —-yD2 zDy
Coor —xAz —yAx zAp

Doyr, —xBo) —yBx zBy




Symmetry 2020, 12, 763 34 of 37

Table Aé6. Cont.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
AL —xCp3 YCo3 zCo3
Basr —xDp3 —yDo3 zDo3
Cor —xAn3 YAz zA
Dosp. —xB3 —yBa3 zBy3
Asr —xCsp -yCs2 zCsp
Bsor. —xD3p ) zD3p
Caor —xAszp —yAsz2 zA3
D3y, —xB3p —YB32 zB3;
Az —xCs3 -yCs3 zCs3
BssL —xD33 —-yD33 zDs3
CaaL —xAz3 —yAs3 zA33
D33 —xB330 —YBs3 zB33

Table A7. The coordinates of the vertices Wagijy, Wepijp, Wabijp, Wacijp (for i, j = 1, 2, 3) of the
polyhedral reference network I's, shown in Figure 29.

Vertex x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Wap22p xWap22 —yWapz z2Wap22
Wep2op xWepaz —yWepz zZWep22
Wap2zp xWpge ~yWpgc22 zWpc22
Wac2ap xWap22 ~yWap22 zZWap2
Wag23p xWap23 —yWap2s zWaB23
Wepasp xWep2s —yWepas zWep23
Wap23p xWpgc23 —yWacas zWpc23
Whcasp xWap23 ~yWap23 zWap23
Wagszp *Wap32 —yWags2 zZWaga2
Wepazp xWepsz -yWepas zWeps2
Wapszp *Wpcaz —yWhcs2 zWpgca2
Whcazp xWaps2 —yWap32 zWap32
Wag3sp xWap33 —YyWag33 zWaB33
Wepsap xWepss -yWepss zZWepss
Waps3p xWpgcas —yWhgcss zWpcs33
Whpcasp xWap33 —yWap33 zZWaps3

Table A8. The coordinates of the points Sajjy, Spijp, Scijp, Spijp for (i, j = 1, 2, 3) of the reference surface wy.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Sa22p xSp2 ~YSp22 z5p2
Sp22p xSa2 —YSa2 z542
Scazp xSp22 ~YSp22 z8p»
Sp2zy xSc —YSc22 zSc»
Sa2p xSp23 ~YSB23 z5p23
Spasp x5423 ~YSA23 25423
Scasp xSp23 ~YSp23 z5p23
Spasp xSc23 —YSc23 z5¢23
Sa32p xSp32 ~YSp32 z5p3»
SB32p xSa32 ~YSa32 z5432
Sc3zp xSpa32 —YSp32 zSp32
Sp3zp xSc32 ~YSca2 zSc32
SA33p x5p33 ~YSp33 z5B33
SB33p xSA33 ~YSa33 25433
Scasp xSp33 ~YSp33 z5p33

Sp33p xSc33 -¥Sc33 zS¢33




Symmetry 2020, 12, 763 35 of 37

Table A9. The coordinates of the vertices A,']'p, Bijp, Cijp, Djjp, (fori, j =1, 2, 3) of the eaves edge net By3p.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Anzp xAzp —yAz zA3)
Baoyp xB12 —yB12 zB1p
Caop xCq2 -yCa2 zCy2
Doy xD3) —yDs3) zD3
Anzp xAsz3 —YyAsz3 zAsz3
B3y xB13 -yBi3 zB13
Cosp xCy3 -yCi3 zCy3
D3y xDs3 —yDs3 zD33
Aszp xC31 —-yCsn1 zCs1
B3y xBo —yB» 2By
Cazp xCop —yCx zCp
D3y xBs3 —yBs3 zB33
Aszp xCs —yCs2 2C3
Bggyp xBa3 —yBxs zBy3
Cs3p xCa3 —yCa3 z2Cx3
D33, ~22,940.0 23,014.0 48,143.90

Table A10. The coordinates of the vertices Wagij;, Wepijr, Wapijr, Wacijr (for i, j =1, 2, 3) of the
polyhedral reference network I'y, shown in Figure 21.

Vertex x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Wapaor -xWep2 yWep2o zWep2
Wep2or —xWap2 YWap2 zZWap22
Wapaar —xWap22 YWap22 zWap22
Whgc2or —xWpca2 yWae2 zWpc22
Waposr -xWcp2s yWep2s zWepas
Wep2sr —xWap23 YWag23 zWaB23
Wapasr —xWap23 YWap23 zWap23
Whc23r —xWpc23 YWhcas3 zWpc23
Wapsor -xWeps2 yWeps2 zWeps2
Wepszr —xWaps2 YWapa2 zWap32
Wap32r —xWap32 YWapa2 ZWap32
Whcaar —xWpcaz YWhc32 zWpca2
Wapssr -xWcpss yWepss zWepss
Wepssr —xWap3s3 YWapss zWap33
Wap3sr —xWap33 YWap33 zWap33
Whc3sr —xWhca3 YWaess zWpc3s

Table A11. The coordinates of the points Sajjr, Spijr, Scijr, Spijr for (i, j = 1, 2, 3) of the reference surface wy.

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Sa2r —xSp22 YSp2 zSp2»
Spoor —xSc22 YSc2 z5¢c2
Sc2or —xSp2n YSp22 z5p2
Sp22r —xS5422 YSan 2842
Sa2r -x5p23 YSp23 z5p23
Spo3r —xSc23 YSc23 z5¢23
Sc2sr —xS5p23 YSB23 z5p23
Sp23r —x5423 YSA23 z5423
Saz2r —-xSp32 YSpa2 z5p32
Sp32r —xSc32 YSca2 z5¢c32
Scazr —xSp32 ySp32 z5g32
Spazr —xS432 YSA32 z5432
Saz3r —xSp33 YSp33 z5p33
SB33r —xSc33 YSc33 z5¢33
Scaar —xS5B33 YSB33 25833

Spasr —x5433 YSA33 z5433
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Table A12. The coordinates of the vertices Ajj, Bjjr, Cijr, Djjr (for i, j = 1, 2, 3) of the eaves edge net Byy,-

Point x-Coordinate [mm]  y-Coordinate [mm]  z-Coordinate [mm]
Anar —xAp3 YA zAp3
Boyy —xB3 YB3 zBy3
Cooy —xCpy yCo1 z2Cx
Doy —xDy yDn zDy
Ay —xCy3 yCis zCy3
Bos, —xD33 YDs3 zD33
Cosr —xCop yCa2 zCp
Do3, —xDp) YD zD2
Azor —xAs3 YAs3 zA33
B3y, —xBs3 YyB33 zB33
Caor —xCs1 yCa zCs1
D3y —xD3 yD3 zD3
Az, —xCo3 yCa3 2Co3
Bs3, —xD33, L) zD33)
Ca3r —xCzp yCsy 2Cs
D33, —xD3; YDz zD3
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