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Abstract: Because Herglotz’s variational problem achieves the variational representation of
non-conservative dynamic processes, its research has attracted wide attention. The aim of this paper
is to explore Herglotz’s variational problem for a non-conservative system with delayed arguments
under Lagrangian framework and its Noether’s theorem. Firstly, we derive the non-isochronous
variation formulas of Hamilton–Herglotz action containing delayed arguments. Secondly, for the
Hamilton–Herglotz action case, we define the Noether symmetry and give the criterion of symmetry.
Thirdly, we prove Herglotz type Noether’s theorem for non-conservative system with delayed arguments.
As a generalization, Birkhoff’s version and Hamilton’s version for Herglotz type Noether’s theorems
are presented. To illustrate the application of our Noether’s theorems, we give two examples of
damped oscillators.

Keywords: non-conservative system with delayed arguments; Noether’s theorem; Herglotz generalized
variational principle; Lagrangian framework

1. Introduction

Time delay is a common phenomenon in nature and engineering. Although time delays have
often been ignored in the past and many problems have been solved, with the increasingly precise
requirements for the dynamical behavior and control of complex systems, the effects of time delays on
the system need to be considered. It has been shown that even millisecond delay can lead to complex
dynamical behavior of the system. In addition, for many delayed systems, if the time delay is ignored,
it will lead to a completely wrong conclusion. Therefore, the study of the dynamical characteristics
of time-delayed systems is not only extremely important to the understanding of these systems
themselves, but also to the research of biology, ecology, neural network, physics, electronics and
information science, mechanical engineering, and other research fields [1–4]. For the variational
problem in the case of delay, El’sgol’c first mentioned its extremum characteristic in [5]. Hughes derived
the necessary conditions for a time-delayed variational problem in 1968 [6], which is similar to
the classical one. Frederico and Torres [7] were the first to propose and prove the extension of
Noether’s theorem to time-delay variational problems and optimal control. In 2013, in reference [8],
we extended the results of [7] in three aspects: from Lagrange system to general non-conservative
system; from a group of point transformations corresponding to generalized coordinates and time to a
group of transformations that depend on generalized velocities; from Noether symmetry to Noether
quasi-symmetry. In recent years, Noether’s theorems with time delay have been extended to high-order
variational problems [9], fractional systems [10], Hamilton systems [11], nonholonomic systems [12],
Birkhoff systems [13,14], and dynamics on time scales [15,16], etc. Although some important results
have been obtained in the dynamics modeling of time-delay systems and its Noether’s theorems,
in general, the research in this field is still in the preliminary stage and is still an open topic.
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Recently, the Herglotz generalized variational principle (HGVP) with time delay was studied
in [17]. Noether’s theorem for Herglotz’s problem with time delay was proved, in which Noether
symmetry is defined by the invariant transformation of Lagrangian function in a one-parameter
point transformation group. Refs. [18,19] extended the results of [17] to a high-order variational
problem. HGVP refers to a kind of generalized variational principle proposed by Herglotz when he
studied Hamilton system, contact transformation, and Poisson brackets, as shown in Herglotz [20,21]
and Guenther et al. [22]. Different from the classical variational principle (CVP), the advantages of
HGVP are as follows. First, it achieves a variational representation of the process of non-conservative
dynamics. However, the CVP cannot represent a non-conservative system as an extremum of a
functional. Second, the CVP can be used as its special case. Thus, HGVP may not only describe
the physical processes described by CVP, but also some problems that CVP has difficultly applying.
Third, HGVP unifies conservative and non-conservative processes into the same dynamics model,
and thus can systematically deal with the actual dynamical problems. Noether’s theorems [23,24]
based on HGVP were extended to fractional order models [25–29], non-conservative Hamilton
systems [30–32], non-holonomic systems [33], Birkhoff systems [34–37], non-conservative classical
and quantum systems [38–40], and adiabatic invariants [41,42], etc. Although some advances have
been made in the study of HGVP and Noether’s theorems, but little work has been done on the HGVP
with time delay and its symmetry and conservation laws.

Based on the two aspects as stated above, our motivation is to apply HGVP to the time-delay
mechanical system and study Herglotz’s variational problem for a non-conservative system with
delayed arguments under Lagrangian framework and its Noether’s theorem. The structure of this
paper is arranged as follows. The HGVP with delayed arguments and its Euler–Lagrange equations
are given in Section 2. In Section 3, the non-isochronous variation formulas of Hamilton–Herglotz
action with time-delayed arguments are derived. In Section 4, the Noether symmetry is defined,
and the criterion of symmetry is given for the Hamilton–Herglotz action case. The infinitesimal
transformations we discussed depend on the generalized velocity. Herglotz type Noether’s theorem
for non-conservative systems with delayed arguments is proved. In Sections 5 and 6, Birkhoff and
Hamilton generalization of Lagrange systems of Herglotz type with delayed arguments is given.
To illustrate the application of our Noether’s theorems, we give two examples of damped oscillators in
Section 7. The conclusion of the paper is in Section 8.

2. HGVP for Non-Conservative Dynamics with Delayed Arguments

Considering a non-conservative mechanical system with delayed arguments, we assume that its
configuration is described by qs (s = 1, 2, · · · , n). We now define Herglotz’s variational problem of the
non-conservative system with delayed arguments as:

Suppose that functional z is determined by a first order differential equation

dz
dt

= L (t, qs (t) , q̇s (t) , qs (t− τ) , q̇s (t− τ) , z (t)) (1)

Determine the trajectory qs (t) that satisfy the boundary conditions

qs (t1) = qs1, qs (t) = fs (t) t ∈ [t0 − τ, t0] (2)

and initial condition
z (t)|t=t0

= z0 (3)

so as to extremize the value z (t1) → extr. Here, L = L (t, qs, q̇s, qsτ , q̇sτ , z) is the Lagrangian in the
sense of Herglotz. fs (t) is a given function on [t0 − τ, t0] , which is piecewise smooth. τ is the delay
quantity, and τ < t1 − t0 , which is a given positive real number. Here, qs1 and z0 are constants.
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We call a functional z Hamilton–Herglotz action with delayed arguments. The Herglotz’s
variational problem above can be called the HGVP for non-conservative system with
delayed arguments.

For a non-conservative system with delayed arguments, it is easy from the above principle to
obtain the Euler–Lagrange equations of Herglotz type, and we get

λ (t)
(

∂L
∂qs
− d

dt
∂L
∂q̇s

+ ∂L
∂z

∂L
∂q̇s

)
(t)

+λ (t + τ)
(

∂L
∂qsτ
− d

dt
∂L

∂q̇sτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(t + τ) = 0, t ∈ [t0, t1 − τ] ,

λ (t)
(

∂L
∂qs
− d

dt
∂L
∂q̇s

+ ∂L
∂z

∂L
∂q̇s

)
(t) = 0, t ∈ (t1 − τ, t1] ,

(4)

where λ (t) = exp
[
−
∫ t

t0
∂L
∂z (θ) dθ

]
.

3. Non-Isochronous Variation of Hamilton–Herglotz Action with Delayed Arguments

Consider the infinitesimal transformations that depend not only on generalized coordinates,
and time, but also on generalized velocities, that is,

t̄ = t + ∆t, q̄s (t̄) = qs (t) + ∆qs (5)

or their expansion

t̄ = t + εσξσ
0 (t, qk, q̇k, z) , q̄s (t̄) = qs (t) + εσξσ

s (t, qk, q̇k, z) (6)

where ξσ
0 and ξσ

s are the generators, and εσ (σ = 1, 2, · · · , r) are the infinitesimal parameters.
The function z (t) is transformed by the infinitesimal transformation (5) into z̄ (t̄), and the

relationship between them is as follows:

z̄ (t̄) = z (t) + ∆z (t) (7)

where ∆z is the non-isochronous variation. By calculating the non-isochronous variation of Equation (1),
we have

∆ż =
∂L
∂t

∆t +
∂L
∂qs

∆qs +
∂L
∂q̇s

∆q̇s +
∂L

∂qsτ
∆qsτ +

∂L
∂q̇sτ

∆q̇sτ +
∂L
∂z

∆z (8)

Note that, for any differentiable function F, the following formulae hold [43]:

∆F = δF + Ḟ∆t,
d
dt

δF = δḞ, ∆Ḟ =
d
dt

∆F− Ḟ
d
dt

∆t (9)

Thus, we have

d
dt

∆z =
∂L
∂t

∆t +
∂L
∂qs

∆qs +
∂L
∂q̇s

∆q̇s +
∂L

∂qsτ
∆qsτ +

∂L
∂q̇sτ

∆q̇sτ + L
d
dt

∆t +
∂L
∂z

∆z (10)

From Equation (10), we get

∆z (t) λ (t)− ∆z (t0)

=
∫ t

t0
λ (t)

(
∂L
∂t ∆t + ∂L

∂qs
∆qs +

∂L
∂q̇s

∆q̇s +
∂L

∂qsτ
∆qsτ +

∂L
∂q̇sτ

∆q̇sτ + L d
dt ∆t

)
dt

(11)

where ∆z (t0) = 0 . By performing variable substitution operations t = θ + τ for the fourth and fifth
items in Equation (11), and noting the boundary condition (2), we have
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∫ t
t0

λ (t)
(

∂L
∂qsτ

(t)∆qsτ +
∂L

∂q̇sτ
(t)∆q̇sτ

)
dt

=
∫ t−τ

t0−τ λ (θ + τ)
{

∂L
∂qsτ

(θ + τ) [δqsτ (θ + τ) + q̇sτ (θ + τ)∆θ]

+ ∂L
∂q̇sτ

(θ + τ) [δq̇sτ (θ + τ) + q̈sτ (θ + τ)∆θ]
}

dθ

=
∫ t−τ

t0
λ (θ + τ)

[
∂L

∂qsτ
(θ + τ)∆qsτ (θ + τ) + ∂L

∂q̇sτ
(θ + τ)∆q̇sτ (θ + τ)

]
dθ

+
∫ t0

t0−τ λ (θ + τ)
[

∂L
∂qsτ

(θ + τ) q̇sτ (θ + τ) + ∂L
∂q̇sτ

(θ + τ) q̈sτ (θ + τ)
]

∆θdθ

(12)

Substituting Equation (12) into Equation (11), we get

∆z (t) λ (t)
=
∫ t0

t0−τ λ (t + τ)
[

∂L
∂qsτ

(t + τ) q̇sτ (t + τ) + ∂L
∂q̇sτ

(t + τ) q̈sτ (t + τ)
]

∆tdt

+
∫ t−τ

t0

{
λ (t)

(
∂L
∂t (t)∆t + ∂L

∂qs
(t)∆qs (t) + ∂L

∂q̇s
(t)∆q̇s (t) + L (t) d

dt ∆t
)

+λ (t + τ)
[

∂L
∂qsτ

(t + τ)∆qsτ (t + τ) + ∂L
∂q̇sτ

(t + τ)∆q̇sτ (t + τ)
]}

dt

+
∫ t

t−τ λ (t)
(

∂L
∂t (t)∆t + ∂L

∂qs
(t)∆qs (t) + ∂L

∂q̇s
(t)∆q̇s (t) + L (t) d

dt ∆t
)

dt

(13)

Equation (11) can also be written as

∆z (t) λ (t)
=
∫ t

t0

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(∆qs − q̇s∆t) + ∂L
∂q̇sτ

(∆qsτ − q̇sτ∆t) + L∆t
)]

+λ (t)
(
− d

dt
∂L
∂q̇s

+ ∂L
∂qs

+ ∂L
∂z

∂L
∂q̇s

)
(∆qs − q̇s∆t)

+λ (t)
(
− d

dt
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(∆qsτ − q̇sτ∆t)

}
dt

(14)

By performing variable substitution operations t = θ + τ for the terms in Equation (14) with delay
τ, and using condition (2), we get∫ t

t0
d
dt

[
λ (t) ∂L

∂q̇sτ
(∆qsτ − q̇sτ∆t)

]
dt

=
∫ t

t0
d
dt

[
λ (t) ∂L

∂q̇sτ
δqsτ

]
dt

=
∫ t−τ

t0−τ
d
dθ

[
λ (θ + τ) ∂L

∂q̇sτ
(θ + τ) δqsτ (θ + τ)

]
dθ

=
∫ t−τ

t0
d
dθ

[
λ (θ + τ) ∂L

∂q̇sτ
(θ + τ) δqs (θ)

]
dθ

(15)

and ∫ t
t0

λ (t)
(
− d

dt
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(∆qsτ − q̇sτ∆t)dt

=
∫ t−τ

t0−τ λ (θ + τ)
(
− d

dθ
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(θ + τ) δqsτ (θ + τ)dθ

=
∫ t−τ

t0
λ (θ + τ)

(
− d

dθ
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(θ + τ) δqs (θ)dθ

(16)

From Equations (15) and (16), we can rewrite Equation (14) as

∆z (t) λ (t) =
∫ t−τ

t0

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t) (∆qs (t)− q̇s (t)∆t) + L (t)∆t
)

+λ (t + τ) ∂L
∂q̇sτ

(t + τ) (∆qs (t)− q̇s (t)∆t)
]

+λ (t)
(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
)
(∆qs (t)− q̇s (t)∆t)

+λ (t + τ)
(
− d

dt
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(t + τ) (∆qs (t)− q̇s (t)∆t)

}
dt

+
∫ t

t−τ

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t) (∆qs (t)− q̇s (t)∆t) + L (t)∆t
)]

+λ (t)
(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
)
(∆qs (t)− q̇s (t)∆t)

}
dt,

(17)
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Since
∆t = εσξσ

0 , ∆qs = εσξσ
s (s = 1, 2, · · · , n) (18)

Substituting Equation (18) into Equations (13) and (17), we get

∆z (t) λ (t)
=
∫ t0

t0−τ

{
λ (t + τ)

[
∂L

∂qsτ
(t + τ) q̇sτ (t + τ) ξσ

0 + ∂L
∂q̇sτ

(t + τ) q̈sτ (t + τ) ξσ
0

]}
εσdt

+
∫ t−τ

t0

{
λ (t)

[
∂L
∂t (t) ξσ

0 + ∂L
∂qs

(t) ξσ
s + ∂L

∂q̇s
(t)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)
+ L (t) ξ̇σ

0

]
+λ (t + τ)

[
∂L

∂qsτ
(t + τ) ξσ

s + ∂L
∂q̇sτ

(t + τ)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)]}

εσdt

+
∫ t

t−τ

{
λ (t)

[
∂L
∂t (t) ξσ

0 + ∂L
∂qs

(t) ξσ
s + ∂L

∂q̇s
(t)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)
+ L (t) ξ̇σ

0

]}
εσdt

(19)

and

∆z (t) λ (t) =
∫ t−τ

t0

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)
+λ (t + τ) ∂L

∂q̇sτ
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)]

+λ (t)
(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
) (

ξσ
s − q̇s (t) ξσ

0
)

+λ (t + τ)
(
− d

dt
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)}

εσdt

+
∫ t

t−τ

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)]
+λ (t)

(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
) (

ξσ
s − q̇s (t) ξσ

0
)}

εσdt

(20)

Equations (19) and (20) are the non-isochronous variation formulas of Hamilton–Herglotz action
with delayed arguments.

4. Herglotz Type Noether’s Theorem for Non-Conservative Systems with Delayed Arguments

If Hamilton–Herglotz action remains unchanged through the infinitesimal transformation of the
group, namely ∆z (t1) = 0, it is known as Noether symmetry for non-conservative mechanical system
with delayed arguments.

According to Equation (19), we can obtain the criterion of Noether symmetry for the
non-conservative system. That is,

Criterion 1. If the generators ξσ
0 and ξσ

s of infinitesimal transformation (5) make the following conditions true,
when t ∈ [t0 − τ, t0), there is

λ (t + τ)

[
∂L

∂qsτ
(t + τ) q̇sτ (t + τ) ξσ

0 +
∂L

∂q̇sτ
(t + τ) q̈sτ (t + τ) ξσ

0

]
= 0 (21)

when t ∈ [t0, t1 − τ], there is

λ (t)
[

∂L
∂t (t) ξσ

0 + ∂L
∂qs

(t) ξσ
s + ∂L

∂q̇s
(t)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)
+ L (t) ξ̇σ

0

]
+λ (t + τ)

[
∂L

∂qsτ
(t + τ) ξσ

s + ∂L
∂q̇sτ

(t + τ)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)]

= 0
(22)

when t ∈ (t1 − τ, t1], there is

λ (t)
[

∂L
∂t

(t) ξσ
0 +

∂L
∂qs

(t) ξσ
s +

∂L
∂q̇s

(t)
(
ξ̇σ

s − q̇s (t) ξ̇σ
0
)
+ L (t) ξ̇σ

0

]
= 0 (23)

where s = 1, 2, · · · , n and σ = 1, 2, · · · , r, then the transformation corresponds to the Noether symmetry of
non-conservative system with delayed arguments.

By Noether symmetry, we can find the conserved quantity, and we have the following results.
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Theorem 1. For non-conservative system (4) with delayed arguments, if the infinitesimal transformation (5)
corresponds to its Noether symmetry, then r linearly independent conserved quantities of Herglotz type exist,
such as

Iσ = λ (t)
[

∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

]
+λ (t + τ) ∂L

∂q̇sτ
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)

, t ∈ [t0, t1 − τ]
(24)

and

Iσ = λ (t)
[

∂L
∂q̇s

(t) (ξσ
s − q̇s (t) ξσ

0 ) + L (t) ξσ
0

]
, t ∈ (t1 − τ, t1] (25)

where σ = 1, 2, · · · , r and λ (t) = exp
[
−
∫ t

t0
∂L
∂z (θ) dθ

]
.

Proof. Considering that the transformation (5) is Noether symmetric, then ∆z (t1) = 0, and from
Formula (20), we have∫ t1−τ

t0

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)
+ λ (t + τ) ∂L

∂q̇sτ
(t + τ)

×
(
ξσ

s − q̇s (t) ξσ
0
)]

+ λ (t)
(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
) (

ξσ
s − q̇s (t) ξσ

0
)

+λ (t + τ)
(
− d

dt
∂L

∂q̇sτ
+ ∂L

∂qsτ
+ ∂L

∂z
∂L

∂q̇sτ

)
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)}

εσdt

+
∫ t1

t1−τ

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)]
+λ (t)

(
− d

dt
∂L
∂q̇s

(t) + ∂L
∂qs

(t) + ∂L
∂z (t) ∂L

∂q̇s
(t)
) (

ξσ
s − q̇s (t) ξσ

0
)}

εσdt = 0

(26)

Substituting the Euler–Lagrange Equation (4) into Equation (26), we get∫ t1−τ
t0

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)
+λ (t + τ) ∂L

∂q̇sτ
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)]}

εσdt

+
∫ t1

t1−τ

{
d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)]}
εσdt = 0

(27)

Since the infinitesimal parameters εσ (σ = 1, 2, · · · , r) are independent and the interval [t0, t1] is
arbitrary, we get

d
dt

[
λ (t)

(
∂L
∂q̇s

(t)
(
ξσ

s − q̇s (t) ξσ
0
)
+ L (t) ξσ

0

)
+λ (t + τ) ∂L

∂q̇sτ
(t + τ)

(
ξσ

s − q̇s (t) ξσ
0
)]

= 0, t ∈ [t0, t1 − τ]
(28)

and
d
dt

[
λ (t)

(
∂L
∂q̇s

(t) (ξσ
s − q̇s (t) ξσ

0 ) + L (t) ξσ
0

)]
= 0, t ∈ (t1 − τ, t1] . (29)

Thus, the theorem holds.

Theorem 1 is Herglotz type Noether’s theorem for non-conservative system with delayed
arguments, and the conserved quantity (24) given by the theorem can be called Herglotz type Noether
conserved quantity.

5. Birkhoff Generalization of Herglotz Type Noether’s Theorem

For the Birkhoff system with delayed arguments, the functional z can be defined by the differential
Equation [35]:

dz
dt = Rµ (t, aν (t) , z (t)) ȧµ (t) + Rµ (t, aν (t− τ) , z (t)) ȧµ (t− τ)

−B (t, aν (t) , aν (t− τ) , z (t))
(30)
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The corresponding Birkhoff’s equations with delayed arguments of Herglotz type are

−λ (t)
[(

∂Rν
∂aµ − ∂Rµ

∂aν

)
ȧν − ∂B

∂aµ − ∂Rµ

∂t +
(

Rµ
∂Rν
∂z −

∂Rµ

∂z Rν

)
ȧν

+
(

Rµ
∂Rντ

∂z −
∂Rµ

∂z Rντ

)
ȧν

τ +
∂Rµ

∂z B− Rµ
∂B
∂z

]
(t)

−λ (t + τ)
[(

∂Rντ

∂aµ
τ
− ∂Rµτ

∂aν
τ

)
ȧν

τ − ∂B
∂aµ

τ
− ∂Rµτ

∂t +
(

Rµτ
∂Rν
∂z −

∂Rµτ

∂z Rν

)
ȧν

+
(

Rµτ
∂Rντ

∂z −
∂Rµτ

∂z Rντ

)
ȧν

τ +
∂Rµτ

∂z B− Rµτ
∂B
∂z

]
(t + τ) = 0, t ∈ [t0, t1 − τ] ,

−λ (t)
[(

∂Rν
∂aµ − ∂Rµ

∂aν

)
ȧν − ∂B

∂aµ − ∂Rµ

∂t +
(

Rµ
∂Rν
∂z −

∂Rµ

∂z Rν

)
ȧν

+
(

Rµ
∂Rντ

∂z −
∂Rµ

∂z Rντ

)
ȧν

τ +
∂Rµ

∂z B− Rµ
∂B
∂z

]
(t) = 0, t ∈ (t1 − τ, t1]

(31)

We take the infinitesimal transformation of the group as follows:

t̄ = t + εσξσ
0 (t, aν, z) , āµ (t̄) = aµ (t) + εσξσ

µ (t, aν, z) (µ = 1, 2, · · · , 2n) . (32)

Then, the criterion of Noether symmetry for the Birkhoff system (31) can be expressed as

Criterion 2. If the generators ξσ
0 and ξσ

µ of infinitesimal transformation (32) make the following conditions
true, when t ∈ [t0 − τ, t0), there is

λ (t + τ)
[

Rµτ (t + τ) äµ
τ (t + τ) ξσ

0 + Rµτ (t + τ) ȧµ
τ (t + τ) ξ̇σ

0

+
∂Rµτ

∂t (t + τ) ȧµ
τ (t + τ) ξσ

0

+
∂Rµτ

∂aν
τ
(t + τ) ȧν

τ (t + τ) ȧµ
τ (t + τ) ξσ

0 −
∂B
∂aν

τ
(t + τ) ȧν

τ (t + τ) ξσ
0

]
= 0

(33)

When t ∈ [t0, t1 − τ] , there is

λ (t)
[(

∂Rµ

∂t (t) ξσ
0 +

∂Rµ

∂aν (t) ξσ
ν

)
ȧµ (t) + Rµ (t) ξ̇σ

µ − B (t) ξ̇σ
0

− ∂B
∂aν (t) ξσ

ν − ∂B
∂t (t) ξσ

0

]
+ λ (t + τ)

[(
∂Rµτ

∂t (t + τ) ξσ
0

+
∂Rµτ

∂aν
τ
(t + τ) ξσ

ν

)
ȧµ

τ (t + τ) + Rµτ (t + τ) ξ̇σ
µ − ∂B

∂aν
τ
(t + τ) ξσ

ν

]
= 0

(34)

When t ∈ (t1 − τ, t1] , there is

λ (t)
[(

∂Rµ

∂t (t) ξσ
0 +

∂Rµ

∂aν (t) ξσ
ν

)
ȧµ (t) + Rµ (t) ξ̇σ

µ − B (t) ξ̇σ
0

− ∂B
∂aν (t) ξσ

ν − ∂B
∂t (t) ξσ

0

]
= 0

(35)

Then, the transformation corresponds to the Noether symmetry of Birkhoff system with delayed arguments.

Theorem 2. For Birkhoff system (31) with delayed arguments, if the infinitesimal transformation (32)
corresponds to its Noether symmetry, then r linearly independent conserved quantities of Herglotz type exist,
such as

Iσ = λ (t + τ) Rµτ (t + τ) ȧµ
τ (t + τ) ξσ

0 , t ∈ [t0 − τ, t0) (36)

and
Iσ = λ (t)

(
Rµ (t) ξσ

µ − B (t) ξσ
0

)
+ λ (t + τ) Rµτ (t + τ) ξσ

µ, t ∈ [t0, t1 − τ] (37)

and
Iσ = λ (t)

(
Rµ (t) ξσ

µ − B (t) ξσ
0

)
, t ∈ (t1 − τ, t1] (38)

where σ = 1, 2, · · · , r and λ (t) = exp
[
−
∫ t

t0

(
∂Rµ

∂z ȧµ +
∂Rµτ

∂z ȧµ
τ − ∂B

∂z

)
(θ) dθ

]
.
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In Reference [35], Herglotz type Noether’s theorem for Birkhoff systems with delayed arguments
was studied. However, the above Equations (33) and (36) were not obtained in [35] due to an error in
calculating the non-isochronous variation in the interval t ∈ [t0 − τ, t0].

6. Hamilton Generalization of Herglotz Type Noether’s Theorem

For the Hamilton system with delayed arguments, the functional z can be defined by the
differential equation [30]

dz
dt = ps (t) q̇s (t) + ps (t− τ) q̇s (t− τ)

−H (t, qs (t) , ps (t) , qs (t− τ) , ps (t− τ) , z (t))
(39)

The corresponding Hamilton’s equations with delayed arguments of Herglotz type are

λ (t)
[

ṗs (t) + ∂H
∂qs

(t) + ps (t) ∂H
∂z (t)

]
+λ (t + τ)

[
ṗsτ (t + τ) + ∂H

∂qsτ
(t + τ) + psτ (t + τ) ∂H

∂z (t + τ)
]
= 0

λ (t)
[
−q̇s (t) + ∂H

∂ps
(t)
]
+ λ (t + τ)

[
−q̇sτ (t + τ) + ∂H

∂psτ
(t + τ)

]
= 0,

t ∈ [t0, t1 − τ] ,

λ (t)
[

ṗs (t) + ∂H
∂qs

(t) + ps (t) ∂H
∂z (t)

]
= 0,

λ (t)
[
−q̇s (t) + ∂H

∂ps
(t)
]
= 0, t ∈ (t1 − τ, t1]

(40)

Let the infinitesimal transformation be

t̄ = t + εσξσ
0 (t, qk, pk, z) ,

q̄s (t̄) = qs (t) + εσξσ
s (t, qk, pk, z) ,

p̄s (t̄) = ps (t) + εσησ
s (t, qk, pk, z) , (s = 1, 2, · · · , n) .

(41)

Then, the criterion of Noether symmetry for the Hamilton system (40) can be expressed as

Criterion 3. If the generators ξσ
0 , ξσ

s and ησ
s of infinitesimal transformation (41) make the following conditions

true, when t ∈ [t0 − τ, t0), there is

λ (t + τ)
[
psτ (t + τ) q̈sτ (t + τ) ξσ

0 + psτ (t + τ) q̇sτ (t + τ) ξ̇σ
0 + q̇sτ (t + τ)×

× ṗsτ (t + τ) ξσ
0 −

∂H
∂qsτ

(t + τ) q̇sτ (t + τ) ξσ
0 −

∂H
∂psτ

(t + τ) ṗsτ (t + τ) ξσ
0

]
= 0.

(42)

When t ∈ [t0, t1 − τ], there is

λ (t)
[
q̇s (t) ησ

s + ps (t) ξ̇σ
s − H (t) ξ̇σ

0 −
∂H
∂t (t) ξσ

0

− ∂H
∂qs

(t) ξσ
s − ∂H

∂ps
(t) ησ

s

]
+ λ (t + τ)

[
q̇sτ (t + τ) ησ

s + psτ (t + τ) ξ̇σ
s

− ∂H
∂qsτ

(t + τ) ξσ
s − ∂H

∂psτ
(t + τ) ησ

s

]
= 0

(43)

When t ∈ (t1 − τ, t1], there is

λ (t)
[
q̇s (t) ησ

s + ps (t) ξ̇σ
s − H (t) ξ̇σ

0 −
∂H
∂t (t) ξσ

0

− ∂H
∂qs

(t) ξσ
s − ∂H

∂ps
(t) ησ

s

]
= 0

(44)

Then, the transformation corresponds to the Noether symmetry of Hamilton system with delayed arguments.
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Theorem 3. For the Hamilton system (40) with delayed arguments, if the infinitesimal transformation (41)
corresponds to its Noether symmetry, then r linearly independent conserved quantities of Herglotz type exist,
such as

Iσ = λ (t + τ) psτ (t + τ) q̇sτ (t + τ) ξσ
0 , t ∈ [t0 − τ, t0) (45)

and
Iσ = λ (t) (ps (t) ξσ

s − H (t) ξσ
0 ) + λ (t + τ) psτ (t + τ) ξσ

s , t ∈ [t0, t1 − τ] (46)

and
Iσ = λ (t) (ps (t) ξσ

s − H (t) ξσ
0 ) , t ∈ (t1 − τ, t1] (47)

where σ = 1, 2, · · · , r and λ (t) = exp
[∫ t

t0
∂H
∂z (θ) dθ

]
.

In Reference [30], Herglotz type Noether’s theorem for the Hamilton system with delayed
arguments was studied. However, the above Equations (42) and (45) were not obtained in [30]
due to an error in calculating the non-isochronous variation in the interval t ∈ [t0 − τ, t0] .

7. Examples

Example 1. Study the Noether symmetry and conserved quantity of a non-conservative system with delayed
arguments. The Lagrangian of the system in the sense of Herglotz is

L =
1
2

[
q̇2 (t) + q̇2 (t− τ)

]
− 1

2
q2 (t)− z (t) (48)

Functional z satisfies the equation

dz
dt

(t) =
1
2

[
q̇2 (t) + q̇2 (t− τ)

]
− 1

2
q2 (t)− z (t) (49)

Equation (4) gives

et [q (t) + q̈ (t) + q̇ (t)] + et+τ [q̈τ (t + τ) + q̇τ (t + τ)] = 0, t ∈ [t0, t1 − τ] ,
et [q (t) + q̈ (t) + q̇ (t)] = 0, t ∈ (t1 − τ, t1]

(50)

According to Criterion 1, when t ∈ [t0, t1 − τ] , the criterion equation is

et
[
−q (t) ξ1 + q̇ (t)

(
ξ̇1 − q̇ (t) ξ̇0

)
+ 1

2
(
q̇2 (t) + q̇2

τ (t)
)

ξ̇0

− 1
2 q2 (t) ξ̇0 − z (t) ξ̇0

]
+ et+τ q̇τ (t + τ)

(
ξ̇1 − q̇ (t) ξ̇0

)
= 0

(51)

There is a solution to Equation (51), which is

ξ0 = 0, ξ1 = q (t) + q̇ (t) +
q2 (t)

(1 + eτ) q̇ (t)
(52)

when t ∈ (t1 − τ, t1] , the criterion equation is

et
[
−q (t) ξ1 + q̇ (t)

(
ξ̇1 − q̇ (t) ξ̇0

)
+ 1

2 q̇2 (t) ξ̇0

+ 1
2 q̇2

τ (t) ξ̇0 − 1
2 q2 (t) ξ̇0 − z (t) ξ̇0

]
= 0

(53)

There is a solution to Equation (53), which is

ξ0 = 0, ξ1 = q (t) + q̇ (t) +
q2 (t)
q̇ (t)

(54)
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when t ∈ [t0 − τ, t0), from Equation (21), we have

et+τ q̇τ (t + τ) q̈τ (t + τ) ξ0 = 0 (55)

Obviously, ξ0 = 0 satisfies Equation (55). The generators (52) and (54) are associated with the
Noether symmetry of the current system. According to Theorem 1, when t ∈ [t0, t1 − τ] , we have

I = et
[
q2 (t) + (1 + eτ)

(
q (t) q̇ (t) + q̇2 (t)

)]
(56)

when t ∈ (t1 − τ, t1] , we have

I = et
[
q2 (t) + q (t) q̇ (t) + q̇2 (t)

]
(57)

Equations (56) and (57) are the conserved quantities of the system.

Example 2. Consider a damped two-degree-of-freedom oscillator with time delay. The Lagrangian of Herglotz
type is

L = 1
2 m
{
[q̇1 (t) + q̇1 (t− τ)]2 + [q̇2 (t) + q̇2 (t− τ)]2

}
− 1

2 k
{
[q1 (t) + q1 (t− τ)]2 + [q2 (t) + q2 (t− τ)]2

}
− c

m z (t)
(58)

where m is the mass of the particle, k is the stiffness coefficient, and c the damping coefficient, and m, k, c
are constants.

The differential equations of motion of the system are

ect/m {−k [q1 (t) + q1 (t− τ)]−m [q̈1 (t) + q̈1 (t− τ)]− c [q̇1 (t) + q̇1 (t− τ)]}
+ec(t+τ)/m {−k [q1 (t + τ) + q1 (t)]−m [q̈1 (t + τ) + q̈1 (t)]− c [q̇1 (t + τ) + q̇1 (t)]} = 0,
ect/m {−k [q2 (t) + q2 (t− τ)]−m [q̈2 (t) + q̈2 (t− τ)]− c [q̇2 (t) + q̇2 (t− τ)]}
+ec(t+τ)/m {−k [q2 (t + τ) + q2 (t)]−m [q̈2 (t + τ) + q̈2 (t)]− c [q̇2 (t + τ) + q̇2 (t)]} = 0

(59)

for t ∈ [t0, t1 − τ] , and

ect/m {−k [q1 (t) + q1 (t− τ)]−m [q̈1 (t) + q̈1 (t− τ)]− c [q̇1 (t) + q̇1 (t− τ)]} = 0,
ect/m {−k [q2 (t) + q2 (t− τ)]−m [q̈2 (t) + q̈2 (t− τ)]− c [q̇2 (t) + q̇2 (t− τ)]} = 0

(60)

for t ∈ (t1 − τ, t1] . According to Criterion 1, the criterion equation of the system is

ect/m {
−k [q1 (t) + q1 (t− τ)] ξ1 −m [q̇1 (t) + q̇1 (t− τ)]

(
ξ̇1 − q̇1 (t) ξ̇0

)}
+ect/m {

−k [q2 (t) + q2 (t− τ)] ξ2 −m [q̇2 (t) + q̇2 (t− τ)]
(
ξ̇2 − q̇2 (t) ξ̇0

)
+ L (t) ξ̇0

}
+ec(t+τ)/m {

−k [q1 (t + τ) + q1 (t)] ξ1 −m [q̇1 (t + τ) + q̇1 (t)]
(
ξ̇1 − q̇1 (t) ξ̇0

)}
+ec(t+τ)/m {

−k [q2 (t + τ) + q2 (t)] ξ2 −m [q̇2 (t + τ) + q̇2 (t)]
(
ξ̇2 − q̇2 (t) ξ̇0

)}
= 0

(61)

for t ∈ [t0, t1 − τ] . Equation (61) has a solution

ξ0 = 0, ξ1 = Q̇1 +
kQ2

1
mQ̇1

+
c
m

Q1, ξ2 = Q̇2 +
kQ2

2
mQ̇2

+
c
m

Q2 (62)

where Qs = qs (t− τ) +
(

1 + ecτ/m
)

qs (t) + ecτ/m qs (t + τ), s = 1, 2. The generator (62) is associated
with the Noether symmetry of the current system. By Theorem 1, we obtain the conserved quantity
as follows:

I = ect/m
(

mQ̇2
1 + kQ2

1 + cQ1Q̇1 + mQ̇2
2 + kQ2

2 + cQ2Q̇2

)
= const. (63)
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When t ∈ (t1 − τ, t1] , the criterion equation of the system is

ect/m {
−k [q1 (t) + q1 (t− τ)] ξ1 −m [q̇1 (t) + q̇1 (t− τ)]

(
ξ̇1 − q̇1 (t) ξ̇0

)}
+ect/m {

−k [q2 (t) + q2 (t− τ)] ξ2 −m [q̇2 (t) + q̇2 (t− τ)]
(
ξ̇2 − q̇2 (t) ξ̇0

)
+ L (t) ξ̇0

}
= 0

(64)

Equation (64) has a solution

ξ0 = 0, ξ1 = q̇1 (t) + q̇1 (t− τ) +
k[q1(t)+q1(t−τ)]2

m[q̇1(t)+q̇1(t−τ)]
+ c

m [q1 (t) + q1 (t− τ)] ,

ξ2 = q̇2 (t) + q̇2 (t− τ) +
k[q2(t)+q2(t−τ)]2

m[q̇2(t)+q̇2(t−τ)]
+ c

m [q2 (t) + q2 (t− τ)]
(65)

According to Theorem 1, we obtain the conserved quantity as follows:

I = mect/m
{
[q̇1 (t) + q̇1 (t− τ)]2 + [q̇2 (t) + q̇2 (t− τ)]2

}
+kect/m

{
[q1 (t) + q1 (t− τ)]2 + [q2 (t) + q2 (t− τ)]2

}
+cect/m {[q1 (t) + q1 (t− τ)] [q̇1 (t) + q̇1 (t− τ)]}
+cect/m {[q2 (t) + q2 (t− τ)] [q̇2 (t) + q̇2 (t− τ)]} = const.

(66)

When t ∈ [t0 − τ, t0), from Equation (21), we have ξ0 = 0. Therefore, Formulas (63) and (66) are
conserved quantities led by Noether symmetry of the system.

8. Conclusions

Based on the HGVP, we studied the Noether symmetry and conserved quantities in the dynamics of
non-conservative systems with delayed arguments. The Euler–Lagrange equations for the time-delayed
non-conservative systems were presented. Non-isochronous variation Formulas (19) and (20) for
Hamilton–Herglotz action with delayed arguments were derived. The infinitesimal transformation
(6) depends not only on the generalized coordinates and time, but also on the generalized velocity. Based
on the non-isochronous variational formulas, the Noether symmetry criteria for non-conservative systems
with delayed arguments were established. Noether’s theorem of Herglotz type for non-conservative
systems with delayed arguments was proved, and was extended to the Birkhoff system and to the
Hamilton system.

Recently, in Reference [44], we summarized some advances in the study of HGVP and its
Noether’s theorems, and put forward some views on future research. In addition, the spontaneous
symmetry breaking is an important field concerned by physicists [45,46]. How can we apply Herglotz’s
generalized variational principle to non-conservative quantum systems and study the simultaneous
symmetry breaking? This is also a topic worthy of further research. In short, there are still many
problems worth exploring in the study of HGVP and its symmetry of time-delay non-conservative
systems, etc.
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