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Abstract: The aim of this paper is to give some fixed point results in generalized metric spaces in
Perov’s sense. The generalized metric considered here is the w-distance with a symmetry condition.
The operators satisfy a contractive weakly condition of Hardy–Rogers type. The second part of
the paper is devoted to the study of the data dependence, the well-posedness, and the Ulam–Hyers
stability of the fixed point problem. An example is also given to sustain the presented results.
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1. Introduction and Preliminaries

The well-known Banach contraction principle was extended by Perov in 1964 to the case of spaces
endowed with vector-valued metrics. In [1], Perov introduced the concept of vector-valued metric
as follows.

Let X be a nonempty set. A mapping d̃ : X× X → Rm where d̃ =

 d1(x, y)
· · ·

dm(x, y)

 for every m ∈ N

is called vector-valued metric on X if the following properties are satisfied.

(1) d̃(x, y) ≥ 0 for all x, y ∈ X, and d̃(x, y) = 0 implies x = y;
(2) d̃(x, y) = d̃(y, x);
(3) d̃(x, y) ≤ d̃(x, z) + d̃(z, y) for all x, y, z ∈ X.

In this case, the pair (X, d̃) is called a generalized metric space in Perov’s sense. Some examples of
fixed points on the sense of vector-valued metric are given in [2–6]. Throughout this paperMm,m(R+)

will denote the set of all m×m matrices with positive elements. We also denote by Θ the zero m×m

matrix and 01×m =

 0
· · ·
0

, by I the identity m×m matrix and I1×m =

 1
· · ·
0

 and by U the unity

m×m matrix and U1×m =

 1
· · ·
1

. If A ∈ Mm,m(R+), then the symbol Aτ stands for the transpose

matrix of A.
Recall that a matrix A is said to be convergent to zero if and only if An → Θ as n→ ∞.
Let us recall the following theorem, which is useful for the proof of the main result, see [7].

Symmetry 2020, 12, 856; doi:10.3390/sym12050856 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-8304-1574
https://orcid.org/0000-0002-5513-0801
http://dx.doi.org/10.3390/sym12050856
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/5/856?type=check_update&version=2


Symmetry 2020, 12, 856 2 of 13

Theorem 1. Let A ∈ Mm,m(R+). The following assertions are equivalent.

(i) A is a matrix convergent to zero;
(ii) An → Θ as n→ ∞;

(iii) The eigenvalues of A are in the open unit disc, i.e., |λ| < 1, for each λ ∈ C with det(A− λI) = 0;
(iv) The matrix I − A is non-singular and

(I − A)−1 = I + A + ... + An + ...;

(v) The matrix I − A is non-singular and the matrix (I − A)−1 has nonnenegative elements.

In [8], one can find that the notion of K-metric, which is an extension of the Perov’s metric. Huang
and Zhang reconsidered in [9] the notion of K-metric under the name cone metric.

Hardy and Rogers [10] proved in 1973 a generalization of Reich fixed point theorem. Having this
as a starting point, many authors obtained fixed point results for Hardy–Rogers type operators.

Let (X, d) be a metric space. Throughout this paper we use the following notations.
P(X): the set of all nonempty subsets of X;
Pcl(X): the set of all nonempty closed subsets of X;
Pcp(X): the set of all nonempty compact subsets of X;
Fix(F) := {x ∈ X | x ∈ F(x)}: the set of the fixed points of F;
SFix(F) := {x ∈ X | {x} = F(x)}: the set of the strict fixed points of F.
We denote by N the set of all natural numbers. We also denote by N∗ := N− {0} the set of all

natural numbers without 0.
Let (X, d̃) be a generalized metric space in the sense of Perov. Here, if v, r ∈ Rm have the form

v := (v1, v2, · · · , vm) and r := (r1, r2, · · · , rm), then by the inequality v ≤ r we mean vi ≤ ri, for
each i ∈ {1, 2, · · · , m}, whereas by the inequality v < r, we mean vi < ri, for each i ∈ {1, 2, · · · , m}.
Moreover, |v| := (|v1|, |v2|, · · · , |vm|) and, if c ∈ R then v ≤ c means vi ≤ c, for each i ∈ {1, 2, · · · , m}.

We can notice that, in a generalized metric space, some concepts are similar to those given for
metric space. Some of these concepts are Cauchy sequence, convergent sequence, completeness,
and open and closed subsets.

In [11], Kada et al. introduced the concept of w-distance and improved several results replacing
the involved metric by a generalized distance. On the other hand, the notions of single-valued
and multivalued weakly contractive maps with respect to w-distance was introduced by Suzuki
and Takahashi in [12]. Some recent fixed point results involving the w-distance can be found in [12–19].

Definition 1. A mapping w : X× X → [0, ∞) is a w-distance on X if it satisfies the following conditions for
any x, y, z ∈ X.

(1) w(x, z) ≤ w(x, y) + w(y, z);
(2) the function w(x, .) : X → [0, ∞) is lower semicontinuous;
(3) for any ε > 0, there exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ imply d(x, y) ≤ ε.

In [20], we find the definition of w0-distance as follows.

Definition 2. Let (X, d) be a metric space. A mapping w : X × X → [0, ∞) is called w0-distance if it is
w-distance on X with w(x, x) = 0 for every x ∈ R.

Remark 1. Each metric is a w̃0-distance, but the reverse is not true.

For the following notations see I.A. Rus [21,22], I.A. Rus, A. Petruşel, A. Sîntămărian [23],
and A. Petruşel [24].
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Definition 3. Let (X,d) be a metric space and f : X → X be a single-valued operator. f is a weakly Picard
operator (briefly WPO) if the sequence of successive approximations for f starting from x ∈ X, ( f n(x))n∈N,
converges, for all x ∈ X and its limit is a fixed point for f .

If f is a WPO, then we consider the operator

f ∞ : X → X defined by f ∞(x) := lim
n→∞

f n(x).

Notice that f ∞(X) = Fix( f ).

Definition 4. Let (X,d) be a metric space, f : X → X be a WPO and c > 0 be a real number. By definition,
the single-valued operator f is c-weakly Picard operator (briefly c-WPO) if and only if the following inequality holds,

d(x, f ∞(x)) ≤ cd(x, f (x)), for all x ∈ X.

For the theory of weakly Picard operators, for single-valued operators, see [21].
I.A. Rus gave in [22] the definition of Ulam–Hyers stability as follows.

Definition 5. Let (X,d) be a metric space and f : X → X be a single-valued operator. By definition, the fixed
point equation

x = f (x) (1)

is Ulam–Hyers stable if there exists a real number c f > 0 such that for each ε > 0 and each solution y∗ of
the inequation

d(y, f (y)) ≤ ε (2)

there exists a solution x∗ of Equation (1) such that

d(y∗, x∗) ≤ c f ε.

Remark 2. If f is a c-weakly Picard operator, then the fixed point Equation (1) is Ulam–Hyers stable.

The Ulam stability of different functional type equations have been investigated by many authors
(see [25–35]).

We present in the first part of this paper some fixed point results in generalized metric spaces
in Perov’s sense. The operator satisfies a contractive condition of Hardy–Rogers type. In the second
part of the paper, we study the data dependence of the fixed point set. The well-posedness of the fixed
point problem and the Ulam–Hyers stability are also studied.

2. Fixed Point Results

First, let us we recall the notion of generalized w-distance defined in [36] by L. Guran.

Definition 6. Let (X, d̃) be a generalized metric space. The mapping w̃ : X× X → Rm
+ is called generalized

w-distance on X if it satisfies the following conditions.

(1) w̃(x, y) ≤ w̃(x, z) + w̃(z, y), for every x, y, z ∈ X;
(2) w̃ is lower semicontinuous with respect to the second variable.;

(3) For any ε :=

 ε1

· · ·
εm

 > 0, there exists δ :=

 δ1

· · ·
δm

 > 0, such that w̃(z, x) ≤ δ and w̃(z, y) ≤ δ

implies d̃(x, y) ≤ ε.
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Examples of generalized w-distance and some of its useful properties are also given in [36]
and [37]. In the same framework, let us give the definition of generalized w0-distance.

Definition 7. Let (X, d̃) be a generalized metric space. A mapping w̃ : X× X → [0, ∞) is called generalized
w̃0-distance if it is generalized w-distance on X with w̃(x, x) = 01×m for every x ∈ R.

Let us recall the following useful result.

Lemma 1. Let (X, d̃) be a generalized metric space, and let w̃ : X × X → Rm
+ be a generalized w-distance

on X. Let (xn) and (yn) be two sequences in X, let αn :=

 αn1
· · ·
αnm

 ∈ Rm
+ and βn =

 βn1
· · ·
βnm

 ∈ Rm
+

be two sequences such that αn(i) and βn(i) converge to zero for each i ∈ {1, 2, . . . , m}. Let x, y, z ∈ X. Then,
the following assertions hold, for every x, y, z ∈ X.

(1) If w̃(xn, y) ≤ αn and w̃(xn, z) ≤ βn for any n ∈ N, then y = z.
(2) If w̃(xn, yn) ≤ αn and w̃(xn, z) ≤ βn for any n ∈ N, then (yn) converges to z.
(3) If w̃(xn, xm) ≤ αn for any n, m ∈ N with m > n, then (xn) is a Cauchy sequence.
(4) If w̃(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

Next, let us give the definition of single-valued weakly Hardy–Rogers type operator on generalized
metric space in Perov’s sense.

Definition 8. Let (X, d̃) be a generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a generalized

w-distance, and f : X → X be a single-valued operator. We say that f is a weakly Hardy–Rogers type operator
if the following inequality is satisfied,

w̃( f (x), f (y)) ≤ Aw̃(x, y) + B[w̃(x, f (x)) + w̃(y, f (y))] + C[w̃(x, f (y)) + w̃(y, f (x))],

for all x, y ∈ R and A, B, C ∈ Mm,m(R+).

The first fixed point result of this paper is the following.

Theorem 2. Let (X, d̃) be a complete generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a

generalized w0-distance. Let f : X → X be a single-valued weakly Hardy–Rogers type operator such that

(a) f is continuous;
(b) there exist matrices A, B, C ∈ Mm,m(R+) such that

(i) M = (I − (B + C))−1(A + B + C) converges to Θ;
(ii) I − (B + C) is nonsingular and (I − (B + C))−1 ∈ Mm,m(R+);

(iii) I − (A + 2B + 2C) is nonsingular and [I − (A + 2B + 2C)]−1 ∈ Mm,m(R+).

Then, Fix( f ) 6= ∅. Moreover, if x∗ = f (x∗), then w(x∗, x∗) = 0.

Proof. Fix x0 ∈ X. Let x1 = f (x0) and x2 = f (x1). Then, we have

w̃(x1, x2) = w̃( f (x0), f (x1))Aw̃(x0, x1) + B[w̃(x0, f (x0)) + w̃(x1, f (x1))] + C[w̃(x0, f (x1))

+w̃(x1, f (x0))] = Aw̃(x0, x1) + B[w̃(x0, x1) + w̃(x1, x2)] + C[w̃(x0, x2) + w̃(x1, x1)]

= (A + B)w̃(x0, x1) + B(w̃(x1, x2)) + C[w̃(x0, x1) + w̃(x1, x2)]

= (A + B + C)w̃(x0, x1) + (B + C)w̃(x1, x2).

Then, we have [I − (B + C)]w̃(x1, x2) ≤ (A + B + C)w̃(x0, x1).
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We get the inequality

w̃(x1, x2) ≤ [I − (B + C)]−1(A + B + C)w̃(x0, x1) = Mw̃(x0, x1). (3)

For the next step, we have

w̃(x2, x3) = w̃( f (x1), f (x2))Aw̃(x1, x2) + B[w̃(x1, f (x1)) + w̃(x2, f (x2))] + C[w̃(x1, f (x2))

+w̃(x2, f (x1))] = Aw̃(x1, x2) + B[w̃(x1, x2) + w̃(x2, x3)] + C[w̃(x1, x3) + w̃(x2, x2)]

= (A + B)w̃(x1, x2) + B(w̃(x2, x3)) + C[w̃(x1, x2) + w̃(x2, x3)]

= (A + B + C)w̃(x1, x2) + (B + C)w̃(x2, x3).

Then, we have [I − (B + C)]w̃(x2, x3) ≤ (A + B + C)w̃(x1, x2).
Using (3) we obtain the inequality

w̃(x2, x3) ≤ [I − (B + C)]−1(A + B + C)w̃(x1, x2) = Mw̃(x1, x2) ≤ M2w̃(x0, x1). (4)

By induction we obtain a sequence (x)n∈N ∈ X, with xn = f (xn−1) such that

w̃(xn, xn+1) ≤ Mnw̃(x0, x1), (5)

with M ∈ Mm,m(R+) and n ∈ N.
We will prove next that (xn)n∈N is a Cauchy sequence, by estimating w̃(xn, xm), for every m, n ∈ N

with m > n.
w̃(xn, xm) ≤ w̃(xn, xn+1) + w̃(xn+1, xn+2) + ... + w̃(xm−1, xm)

≤ Mn(w̃(x0, x1)) + Mn+1(w̃(x0, x1)) + ... + Mm−1(w̃(x0, x1))

≤ Mn(I + M + M2 + ... + Mm−n−1)(w̃(x0, x1)) ≤ Mn(I −M)−1w̃(x0, x1)).

Note that (I −M) is nonsingular since M is convergent to zero. This implies

lim
n→∞

w(xn, xm) ≤ lim
n→∞

Mn(I −M)−1w̃(x0, x1))
d→ 01×m.

By Lemma 1 (3) the sequence (xn)n∈N is a Cauchy sequence.

By (a) we have w̃( f (xn−1), f (x∗)) d→ 01×m, as n→ ∞. As (X, d) is complete, there exists x∗ ∈ X

such that lim
n→∞

xn
d→ x∗ as n → ∞. From the continuity of f , it follows that xn+1 = f (xn)

d→ f (x∗)

as n → ∞. By the uniqueness of the limit, we get x∗ = f (x∗), that is, x∗ is a fixed point of f .
Then Fix( f ) 6= ∅.

Let x∗ ∈ X such that x∗ = f (x∗). Then, we have

w̃(x∗, x∗) = w̃( f (x∗), f (x∗)) ≤ Aw̃(x∗, x∗)

+B[w̃(x∗, f (x∗)) + w̃(x∗, f (x∗))] + C[d̃(x∗, f (x∗)) + d̃(x∗, f (x∗))]

= Aw̃(x∗, x∗) + 2Bw̃(x∗, x∗) + 2Cw̃(x∗, x∗). (6)

This implies [I − (A + 2B + 2C)]w̃(x∗, x∗) ≤ 01×m. By hypothesis (iii) we get w̃(x∗, x∗) = 01×m.

We can replace the continuity condition on the operator f and we obtain the following fixed
point theorem.
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Theorem 3. Let (X, d̃) be a complete generalized metric space in Perov’s sense and w̃ : X × X → Rm
+ be a

generalized w0-distance. Let f : X → X be a single-valued weakly Hardy–Rogers type operator such that
the following conditions are satisfied,

(a) in f {w̃(x, y) + w̃(x, f (x)) : x ∈ X} > 0;
(b) there exist matrices A, B, C ∈ Mm,m(R+) such that:

(i) M = (I − (B + C))−1(A + B + C) converges to Θ;
(ii) I − (B + C) is nonsingular and (I − (B + C))−1 ∈ Mm,m(R+);

(iii) I − (A + 2B + 2C) is nonsingular and [I − (A + 2B + 2C)]−1 ∈ Mm,m(R+).

Then Fix( f ) 6= ∅. Moreover, if x∗ = f (x∗), then w(x∗, x∗) = 0.

Proof. Following the same steps as in the previous theorem, Theorem 2, we have the estimation

w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1) (7)

with M ∈ Mm,m(R+) and n ∈ N.
By Lemma 1 (3), the sequence (xn)n∈N is a Cauchy sequence. As (X, d̃) is complete, there exists x∗ ∈ X

such that xn
d→ x∗. Let n ∈ N be fixed. Then, as (xm)m∈N

d→ x∗ and w̃(xn, ·) is lower semicontinuous,
we have

w̃(xn, x∗) ≤ lim inf
m→∞

w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1). (8)

Assume that x∗ 6= f (x∗). Then, for every x ∈ X, by hypothesis (a) we have

0 < inf{w̃(x, x∗) + w̃(x, f (x)) : x ∈ X} ≤ inf{w̃(xn, x∗) + w̃(xn, xn+1) : n ∈ N}

≤ inf{Mn(I −M)−1w̃(x0, x1) + Mnw̃(x0, x1)} = 0.

This is a contradiction. Therefore x∗ = f (x∗), so Fix( f ) 6= ∅. For the proof of the last part of this
theorem we use the same steps as is the previous theorem, Theorem 2.

Further we give a more general fixed point result concerning this new type of operators.

Theorem 4. Let (X, d̃) be a complete generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a

generalized w0-distance, and f : X → X be a single-valued weakly Hardy–Rogers type operator. There exist
matrices A, B, C ∈ Mm,m(R+) such that

(i) M = (I − (B + C))−1(A + B + C) converges to Θ;
(ii) I − (B + C) is nonsingular and (I − (B + C))−1 ∈ Mm,m(R+);

(iii) I − (A + 2B + 2C) is nonsingular and [I − (A + 2B + 2C)]−1 ∈ Mm,m(R+).

Then Fix( f ) 6= ∅. Moreover, if x∗ = f (x∗), then w(x∗, x∗) = 0.

Proof. Following the same steps as in Theorem 2, we get the estimation

w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1) (9)

with M ∈ Mm,m(R+) and n ∈ N.
By Lemma 1 (3) the sequence (xn)n∈N is a Cauchy sequence; since (X, d̃) is complete there exists

x∗ ∈ X such that xn
d→ x∗.

Let n ∈ N be fixed. Then, as (xm)m∈N
d→ x∗, w̃(xn, ·) is lower semicontinuous and letting n→ ∞

we have
w̃(xn, x∗) ≤ lim inf

m→∞
w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1)

d→ 01×m. (10)
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Let f (x∗) ∈ X. By triangle inequality and using (6) we obtain

w̃(xn, f (x∗)) = w̃(xn, x∗) + w̃(x∗, f (x∗)) ≤ w̃(xn, x∗) + w̃( f (x∗), f (x∗))

≤ Mn(I −M)−1w̃(x0, x1) + [I − (A + 2B + 2C)]w̃(x∗, x∗) d→ 01×m. (11)

Using Lemma 1(1), by Equations (10) and (11), we get x∗ = f (x∗). Then, Fix( f ) 6= ∅.
For the last part of the proof we use the same steps as in Theorem 2.

Another fixed point result concerning the single-valued weakly Hardy–Rogers operators in
generalized metric space is the following.

Theorem 5. Let (X, d̃) be a complete generalized metric space in Perov’ sense, w̃ : X × X → Rm
+ be a

generalized w0-distance and f : X → X be a single-valued Hardy–Rogers type operator. Suppose that all
the hypothesis of Theorem 2 hold. Then, we have

(1) Fix( f ) 6= ∅.
(2) There exists a sequence (xn)n∈N ∈ X such that xn+1 = f (xn), for all n ∈ N and converge to a fixed point

of f .
(3) d̃(xn, x∗) ≤ Mnd̃(x0, x1), where x∗ ∈ Fix( f ).

Example 1. Let X = R2 be a normed linear space endowed with the generalized norm d̃ defined by

d̃(x, y)(=

(
||x1 − y1||
||x2 − y2||

)
and w̃ a generalized w0-distance defined by w̃(x, y)(=

(
||y1||
||y2||

)
, for each

x = (x1, x2), y = (y1, y2) ∈ R2. Let f : R2 → R2 be an operator given by

f (x, y) =

{
4x
5 + 6y

5 − 1, 6y
5 − 1, for (x, y) ∈ R2, with x ≤ 5;

x
5 + y

3 − 1, y
5 , for (x, y) ∈ R2, with x > 5.

We take f (x, y) = ( f1(x, y), f2(x, y)) where f1(x, y) =

{
4x
5 + 6y

5 − 1, for (x, y) ∈ R2, with x ≤ 5;
x
5 + y

3 − 1, for (x, y) ∈ R2, with x > 5.

and f2(x, y) =

{
6y
5 − 1, for (x, y) ∈ R2, with x ≤ 5;

y
5 , for (x, y) ∈ R2, with x > 5.

Next, we show that weakly Hardy–Rogers type condition takes place.

Let A =

(
4
5

6
5

0 6
5

)
.

Case 1. If 1 ≤ x1, x2, y1, y2 ≤ 5 we have

w̃( f (x), f (y)) =

(
|| f1(y1, y2)||
|| f2(y1, y2)||

)
=

(
|| 45 y1 +

6
5 y2 − 1||

||0 · y1 +
6
5 y2 − 1||

)
≤
(

4
5 ||y1||+ 6

5 ||y2|| − 1
0 · ||y1||+ 6

5 ||y2|| − 1

)

≤
(

4
5

6
5

0 6
5

)(
||y1||
||y2||

)
= Aw̃(x, y).

Case 2. If x1, x2, y1, y2 > 5 we have

w̃( f (x), f (y)) =

(
|| f1(y1, y2)||
|| f2(y1, y2)||

)
=

(
|| 15 y1 +

1
3 y2 − 1||

||0 · y1 +
1
5 y2||

)
≤
(

1
5 ||y1||+ 1

3 ||y2|| − 1
0 · ||y1||+ 1

5 ||y2||

)

≤
(

1
5

1
3

0 1
5

)(
||y1||
||y2||

)
<

(
4
5

6
5

0 6
5

)(
||y1||
||y2||

)
= Aw̃(x, y).
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Case 3. For other choices of x1, x2, y1, y2 we have

w̃( f (x), f (y)) =

(
0
0

)
≤
(

4
5

6
5

0 6
5

)(
||y1||
||y2||

)
= Aw̃(x, y).

Thus, the weakly Hardy–Rogers type condition is satisfied for A =

(
4
5

6
5

0 6
5

)
and B = C = Θ or

B + C = Θ.
As all the hypothesis of Theorem 3 hold, f has a fixed point and it is easy to check that x = f (x) = ( f1(x), f2(x)),

where x = (1, 1).

Next, let us give some common fixed point results.

Theorem 6. Let (X, d̃) be a complete generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a

generalized w-distance, and f , g : X → X be two continuous single-valued weakly Hardy–Rogers type
operators. There exist matrices A, B, C ∈ Mm,m(R+) such that

(i) I − (B + C) is nonsingular and (I − (B + C))−1 ∈ Mm,m(R+);
(ii) M = (I − (B + C))−1(A + B + C) converges to Θ.

Then, f and g have a common fixed point x∗ ∈ X.

Proof. (1) Let x0 ∈ X. We consider (xn)n∈N the sequence of successive approximations for f and g,
defined by

x2n+1 = f (x2n), n = 0, 1, ...

x2n+2 = g(x2n+1), n = 0, 1, ...

Then, we have

w̃(x2n, x2n+1) = w̃(g(x2n−1), f (x2n)) ≤ Aw̃(x2n−1, f (x2n)

+B[w̃(x2n, f (x2n)) + w̃(x2n−1, g(x2n−1))] + C[w̃(x2n, g(x2n−1)) + w̃(x2n−1, f (x2n))]

= Aw̃(x2n−1, x2n) + B[w̃(x2n, x2n+1) + w̃(x2n−1, x2n)] + Cw̃(x2n−1, x2n+1)

≤ Aw̃(x2n−1, x2n) + B[w̃(x2n, x2n+1) + w̃(x2n−1, x2n)] + C[w̃(x2n−1, x2n) + w̃(x2n, x2n+1)].

Then, we have w̃(x2n, x2n+1) ≤ (I − (B + C))−1(A + B + C)w̃(x2n−1, x2n) = Mw̃(x2n−1, x2n).
By the same argument as above, we get

w̃(x2n+1, x2n+2) = w̃( f (x2n), g(x2n+1)) ≤ Ad̃(x2n, f (x2n+1)

+B[w̃(x2n, f (x2n)) + w̃(x2n+1, g(x2n+1))] + C[w̃(x2n, g(x2n+1)) + w̃(x2n+1, f (x2n))]

= Aw̃(x2n, x2n+1) + B[w̃(x2n, x2n+1) + w̃(x2n+1, x2n+2)] + Cw̃(x2n, x2n+2)

≤ Aw̃(x2n, x2n+1) + B[w̃(x2n, x2n+1) + w̃(x2n+1, x2n+2)] + C[w̃(x2n, x2n+1) + w̃(x2n+1, x2n+2)].

Then, we have w̃(x2n+1, x2n+2) ≤ (I − (B + C))−1(A + B + C)w̃(x2n, x2n+1) = Mw̃(x2n, x2n+1).
Further, we obtain w̃(xn, xn+1) ≤ Mnw̃(x0, x1) for each n ∈ N.
Following the same steps as in the proof of Theorem 2 we estimate w̃(xn, xm), for every m, n ∈ N

with m > n.
w̃(xn, xm) ≤ w̃(xn, xn+1) + w̃(xn+1, xn+2) + ... + w̃(xm−1, xm)

≤ Mn(w̃(x0, x1)) + Mn+1(w̃(x0, x1)) + ... + Mm−1(w̃(x0, x1))

≤ Mn(I + M + M2 + ... + Mm−n−1)(w̃(x0, x1)) ≤ Mn(I −M)−1w̃(x0, x1)).
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Note that (I −M) is nonsingular since M is convergent to Θ. Using Lemma 1 (3) the sequence
(xn)n∈N is a Cauchy sequence.

Using the lower semicontinuity of the generalized w-distance, by relation (8) we have w̃(xn, x∗) d→
01×m as n → ∞. Then, we have w̃(x2n, x∗) d→ 01×m as n → ∞. By the continuity of f it follows

x2n+1 = f (x2n)
d→ f (x∗) as n→ ∞. By the uniqueness of the limit we get x∗ = f (x∗).

By w̃(xn, x∗) d→ 01×m as n→ ∞ we have that w̃(x2n+1, x∗) d→ 01×m as n→ ∞. By the continuity

of g it follows x2n+2 = g(x2n+1)
d→ g(x∗) as n→ ∞. By the uniqueness of the limit we get x∗ = g(x∗).

Then, x∗ is a common fixed point for f and g.

By replacing the continuity condition for the mappings f and g, we can state the following result.

Theorem 7. Let (X, d̃) be a complete generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a

generalized w-distance, and f , g : X → X be two single-valued Hardy–Rogers type operators. There exist
matrices A, B, C ∈ Mm,m(R+) such that

(i) I − (B + C) is nonsingular and (I − (B + C))−1 ∈ Mm,m(R+);
(ii) I − (A + 2B + 2C) is nonsingular and [I − (A + 2B + 2C)]−1 ∈ Mm,m(R+);

(iii) M = (I − (B + C))−1(A + B + C) converges to Θ.

Then f and g have a common fixed point x∗ ∈ X.

Proof. (1) As in the proof of the previous theorem, Theorem 6, for x0 ∈ X we consider (xn)n∈N
the sequence of successive approximations for f and g, defined by

x2n+1 = f (x2n), n = 0, 1, ...

x2n+2 = g(x2n+1), n = 0, 1, ...

We define the sequence (xn)nN ∈ X such that

w̃(x2n+1, x2n+2) ≤ (I − (B + C))−1(A + B + C)w̃(x2n, x2n+1) = Mw̃(x2n, x2n+1).

Further, we obtain w̃(xn, xn+1) ≤ Mnd̃(x0, x1) for each n ∈ N.
Following the same steps as in the proof of Theorem 6 we estimate w̃(xn, xm), for every m, n ∈ N

with m > n and we get w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1)).
Note that (I −M) is nonsingular since M is convergent to Θ. By Lemma 1 (3), the sequence (xn)n∈N

is a Cauchy sequence. Using the lower semicontinuity of the generalized w-distance, by relation (8),

we have w̃(xn, x∗) d→ 01×m, as n → ∞. By (11) we have w̃(xn, f (x∗)) d→ 01×m, as n → ∞. Then, using
Lemma 1 (2), we get x∗ = f (x∗).

Let us show that g(x∗) = x∗. Then, by the definition of Hardy–Rogers type operators we have

w̃(x∗, g(x∗)) = d̃( f (x∗), g(x∗))

≤ Aw̃(x∗, x∗) + B[w̃(x∗, f (x∗)) + w̃(x∗, g(x∗)] + C[w̃(x∗, g(x∗)) + w̃(x∗, f (x∗))].

Then, we get
w̃(x∗, g(x∗)) ≤ (I − (B + C))−1(A + B + C)w̃(x∗, x∗). (12)

By (6) we get w̃(x∗, g(x∗)) = 01×m.
Let g(x∗) ∈ X. By triangle inequality and using (12) we obtain

w̃(xn, g(x∗)) = w̃(xn, x∗) + w̃(x∗, g(x∗)) ≤ Mn(I −M)−1w̃(x0, x1) + 01×m
d→ 01×m. (13)
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Using (8) and (13), by Lemma 1 (2), we obtain x∗ = g(x∗). Then x∗ is a common fixed point for f
and g.

Remark 3. In the case of common fixed points, the generalized w̃-distance must not necessarily be a generalized
w̃0-distance.

3. Ulam–Hyers Stability, Well-Posedness, and Data Dependence of Fixed Point Problem

We begin this section with the extension of Ulam–Hyers stability for fixed point equation for
the case of single-valued operators on generalized metric space in Perov’s sense. Then, let us recall
the definition of weakly Ulam–Hyers stability.

Definition 9. Let (X, d̃) be a metric space, w̃ : X× X → Rm
+ be a generalized w-distance, and f : X → X be

an operator. By definition, the fixed point equation

x = f (x) (14)

is weakly Ulam–Hyers stable if there exists a real positive matrix N ∈ Mm,m(R+) such that, for each ε > 0
and each solution y∗ of the inequation

w̃(y, f (y)) ≤ εI1×m (15)

there exists a solution x∗ of the Equation (14) such that

d̃(y∗, x∗) ≤ NεI1×m.

Theorem 8. Let (X, d̃) be a generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a generalized

w0-distance and f : X → X be a single-valued Hardy–Rogers type operator defined in (8). There exist matrices
A, B, C ∈ Mm,m(R+) such that

(i) N = Mn(I − M)−1 is nonsingular and N = Mn(I − M)−1 ∈ Mm,m(R+), where M = (I(B +

C))−1(A + B + C) converges to Θ;
(ii) I − (A + 2B + 2C) is nonsingular and [I − (A + 2B + 2C)]−1 ∈ Mm,m(R+);

(iii) I − P2 is nonsingular and I − P2 ∈ Mm,m(R+) where P = [I − (A + C)]−1C ∈ Mm,m(R+).

Then, the fixed point Equation (14) is weakly Ulam–Hyers stable.

Proof. Let δI1×m > 01×m such that w̃(x0, x1) ≤ δI1×m, for every x0, x1 ∈ X with x1 = f (x0). Let Fix( f ) =
{x∗} and u∗ ∈ X be a solution of Equation (14). Then, w̃(u∗, f (u∗)) ≤ εI1×m. By the definition of
the weakly Hardy–Rogers type operator we obtain

w̃(x∗, u∗) ≤ w̃( f (x∗), f (u∗)) ≤ Aw̃(x∗, u∗) + B[w̃(x∗, f (x∗)) + w̃(u∗, f (u∗))] + C[w̃(x∗, f (u∗)

+ w̃(u∗, f (x∗))] = Aw̃(x∗, u∗) + B[w̃(x∗, x∗) + w̃(u∗, u∗)] + C[w̃(x∗, u∗) + w̃(u∗, x∗)] (16)

= (A + C)w̃(x∗, u∗) + B[w̃(x∗, x∗) + w̃(u∗, u∗)] + Cw̃(u∗, x∗).

By (6) we get

w̃(x∗, x∗) = w̃( f (x∗), f (x∗)) ≤ (A + 2B + 2C)w̃(x∗, x∗) and (17)

w̃(u∗, u∗) = w̃( f (u∗), f (u∗)) ≤ (A + 2B + 2C)w̃(u∗, u∗).

Using hypothesis (ii) we get w̃(x∗, x∗) = w̃(u∗, u∗) = 01×m.
By (16) we obtain

w̃(x∗, u∗) ≤ [I − (A + C)]−1Cw̃(u∗, x∗). (18)
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By the definition of the weakly Hardy–Rogers type operator we get

w̃(u∗, x∗) ≤ [I − (A + C)]−1Cw̃(x∗, u∗)

and using (18) we obtain

w̃(x∗, u∗) ≤ ([I − (A + C)]−1C)2w̃(x∗, u∗) = P2w̃(x∗, u∗). (19)

Then, (I − P2)w̃(x∗, u∗) ≤ 01×m. By hypothesis (iii) we get w̃(x∗, u∗) = 01×m.
Let xn ∈ X such that, by Equations (8) and (19) we have

w̃(xn, x∗) ≤ Mn(I −M)−1w̃(x0, x1) ≤ NδI1×m and (20)

w̃(xn, u∗) ≤ w̃(xn, x∗) + w̃(x∗, u∗) ≤ Mn(I −M)−1w̃(x0, x1) + 01×m ≤ NδI1×m.

Then, using the definition of generalized w-distance, there exists εI1×m > 01×m such that

d̃(x∗, u∗) ≤ εI1×m ≤ NεI1×m.

Then, the fixed point Equation (14) is weakly Ulam–Hyers stable.

The following result assures the well-posedness of the fixed point problem with respect to
the generalized w0-distance w̃.

Theorem 9. Let (X, d̃) be a generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a generalized

w0-distance, and f : X → X be a single-valued Hardy–Rogers type operator defined in Equation (8).
If all the hypothesis of Theorem 2 (respectively, 3 and 4) are satisfied, the fixed point Equation (14) is well-posed
with respect to the generalized w0-distance w̃, i.e., if Fix( f ) = {x∗} and xn ∈ N, with n ∈ N, such that
w̃(xn, f (xn))→ 01×m as n→ ∞, then xn → x∗ as n→ ∞.

Proof. Let x∗ ∈ Fix( f ) and let (x)n∈N ∈ X such that w̃(xn, f (xn))
d→ 01×m as n → ∞. That means

w̃(xn−1, xn)
d→ 01×m as n→ ∞.

By the lower semicontinuity of the generalized w-distance, using (8) we have

w̃(xn−1, x∗) ≤ lim inf
m→∞

w̃(xn, xm) ≤ Mn(I −M)−1w̃(x0, x1)
d→ 01×m.

Then, using Lemma 1 (3) we get xn
d→ x∗ as n→ ∞.

The next theorem presents a data dependence result.

Theorem 10. Let (X, d̃) be a generalized metric space in Perov’s sense, w̃ : X × X → Rm
+ be a generalized

w0-distance, and f1, f2 : X → X be single-valued operators, which satisfy the following conditions,

(i) for A, B, C, M ∈ Mm,m(R+) with M = [I − (B + C)]−1(A + B + C) a matrix convergent to Θ such
that, for every x, y ∈ X and i ∈ {1, 2}, we have:
w̃( fi(x), fi(y)) ≤ Aw̃(x, y) + B[w̃(x, fi(x)) + w̃(y, fi(y))] + C[w̃(x, fi(y)) + w̃(y, fi(x))];

(ii) there exists η > 0 such that w̃( f1(x), f2(x)) ≤ η I, for all x ∈ X.

Then, for x∗1 = f1(x∗1) there exists x∗2 = f2(x∗2) such that d̃(x∗1 , x∗2) ≤ (I −M)−1η I1×m; (respectively,
for x∗2 = f2(x∗2) there exists x∗1 = f1(x∗1) such that w̃(x∗2 , x∗1) ≤ (I −M)−1η I1×m).
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Proof. As in the proof of Theorem 2 (respectively, Theorem 3) we construct the sequence of successive
approximations (xn)n∈N ∈ X of f2 with x0 := x∗1 and x1 = f2(x∗1) having the property w̃(xn, xn+1) ≤
Mnw̃(x0, x1), where M = [I − (B + C)]−1(A + B + C).

If we consider the sequence (xn)n∈N ∈ X converges to x∗2 , we have x∗2 = f (x∗2). Moreover,
for each n, p ∈ N we have w̃(xn, xn+p) ≤ Mn(I −M)−1w̃(x0, x1).

Letting p→ 0 we get w̃(xn, x∗2) ≤ I(I −M)−1w̃(x0, x1).
Choosing n = 0 we get w̃(x0, x∗2) ≤ I(I −M)−1w̃(x0, x1) and using above the notations we get

our conclusion w̃(x∗1 , x∗2) ≤ (I −M)−1η I1×m.

4. Conclusions

The purpose of this paper is to establish some fixed point results in generalized metric spaces in Perov’s
sense. The generalized metric considered here is the w-distance, for which the symmetry condition is not
satisfied. The operators satisfy a contractive weakly condition of Hardy–Rogers type. The second part of
the paper is devoted to the study of the data dependence, as well as the well-posedness and the Ulam–Hyers
stability of the fixed point problem. In order to prove our main results we had to impose a symmetry
condition for the w-distance. The results presented in this paper generalize some recent ones.
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