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Abstract: Smartphones and mobile tablets play significant roles in daily life and have led to an increase
in the number of users of this technology. The rising number of mobile device end-users has
resulted in the generation of malware by hackers. Thus, mobile devices are becoming vulnerable to
malware. Machine learning plays an important role in the detection of mobile malware applications.
In this study, we focus on static analysis for Android malware detection. The ultimate goal of this
research is to find out the symmetric features across the malware Android application to easily
detect them. Many state-of-the-art methods focus on extracting asymmetric patterns of the category
of features, e.g., application permissions to distinguish the malware application from the benign
application. In this work, we propose a compromise by considering different types of static features
and select the most important features that affect the detection process. These features represent
the symmetric pattern to be used for the classification task. Inspired by TF-IDF, we propose a
novel method of feature selection. Moreover, we propose a new method for merging the Android
application URLs into a single feature called the URL_score. Several linear machine learning classifiers
are utilized to evaluate the proposed method. The proposed methods significantly reduce the feature
space, i.e., the symmetric pattern, of the Android application dataset and the memory size of the final
model. In addition, the proposed model achieves the highest reported accuracy for the Drebin dataset
to date. Based on the evaluation results, the linear support vector machine achieves an accuracy
of 99%.

Keywords: malware detection; Android malware; classifier; SVM; feature selection; TF-IDF

1. Introduction

Smart phones play a vital role in our daily life and are widely used for many purposes,
e.g., web browsing, online banking, online learning, social networking, etc. Due to the recent enormous
growth rate in the use of smartphones, smartphones have become targets and are vulnerable to malware
attacks. A mobile malware could be any code that is added, changed or removed from any application
to harm or damage the intended system function.

Among all platforms, Android is one of the most popular platforms today and is gaining
popularity. Thus, most of the discovered malwares are targeting the Android OS. According to
the smartphone market share, there are 2.3 billion Android smartphones in use [1]. Due to the very
high growth in the use of Android smartphones and the openness of the Android platform, Android
smartphones are increasingly targeted by attackers and infected with malicious software [2,3].
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Machine learning (ML) plays an important role in the detection of malware. In [4], the authors
presented a ML model using permissions and application program interface (API)-based approaches
for the detection of Android malware using two feature sets: binary and numerical sets.

There are three different approaches for analyzing Android malware applications, including static,
dynamic, and hybrid analysis [5]. Static analysis is a fast and inexpensive approach for the detection
of mobile malware. This approach examines an application without executing any code and detects
malware before the execution of the application under inspection. Dynamic analysis detects malware
after or during the execution of the application under inspection. Hybrid analysis is the combination
of static and dynamic analysis. In this research, we focus on the static analysis of mobile applications.

There are hundreds of thousands of potential Android application features. For instance,
the Drebin dataset [6] includes 545,356 features. This massive number of features is considered to be the
main obstacle for building a machine learning-based classifier to detect Android malware applications.
The literature includes several ways to reduce the large number of possible features [7–9].

In the proposed work, we used the full Drebin dataset [6], which is an extensive malware data
sample for mobile devices, while most state-of-the-art methods use either a subset of the Drebin dataset
or smaller datasets. The Drebin dataset includes 129,013 mobile applications. The objective of this
work is to design a lightweight model by reducing the number of features while considering all the
feature categories. Thus, we select the most important Drebin feature sets that affect the detection
operation and ignore the low-frequency features in each feature set.

In this paper, we present a comprehensive static analysis to evaluate the effectiveness of ML
classifiers in the detection of Android malware. The contributions of this study are as follows.

1. We utilize several methods of feature selection to reduce the feature space size of any Android
application dataset. These methods significantly reduced the size of the utilized dataset feature
vector space. Then, we compare these methods in terms of accuracy, model memory size,
and training time.

2. We conduct a set of experiments using five different ML classifiers (a support vector machine
(SVM), logistic regression, AdaBoost, stochastic gradient descent (SGD), and latent Drichlet
allocation (LDA)) based on the Drebin dataset.

3. To the best of the authors’ knowledge, this is the first work to utilize the feature frequency as
a feature selection factor in the field of Android malware detection. The proposed feature selection
method results in a model with the highest reported accuracy to date for the full Drebin dataset
at 99%. In addition, we propose the first ML model for Android malware detection using a single
feature, the URL_score feature, with an accuracy rate of 80%.

The remainder of this research is organized as follows. Section 2 addresses the related work on
the topic of Android malware detection from three different perspectives. In Section 3, we thoroughly
present the proposed framework. Section 4 gives the experimental results. Finally, we draw and discuss
our conclusions and indicate potential future work in Section 5.

2. Background and Related Work

In this section, we discuss state-of-the-art methods based on the analysis type. Then, we detail
the existing methods based on the feature category used. Next, we explore the different approaches to
Android malware feature selection. Finally, we discuss how URLs are treated as features in the existing
malware detection methods.

2.1. Types of Android Malware Detection Analysis

There are three main types of Android malware detection, namely, static, dynamic, and hybrid
analysis. The static analysis task includes extracting the static features from the the source code and
manifest file of the application. These features that discriminate the malicious Android application
do not change. Thus, it is called static analysis. For instance, the Android application that can
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send expensive messages without the user’s interaction is suspected as a malicious application [10].
The static features includes API calls, permissions, intent filters, activities, etc. One example of static
analysis includes mining the patterns of the Android permission of both the benign and malicious
applications. Then, a classifier can distinguishes the permission patterns of these two applications
classes [11]. The static analysis has two advantages. First, the analysis can be performed in a short
time relative to the other analysis types (i.e., dynamic and hybrid). Second, the static analysis can
be preformed without running the mobile application. Thus, the static analysis can be performed on
a computer or a mobile phone.

The second type of Android malware detection is the dynamic analysis. This type of analysis
captures the features of the Android application during in the run time. Thus, dynamic analysis
should run the application on an emulator or a physical mobile and then test the actions of the
application, e.g., API calls captured in runtime and network traffic [12]. Another approach of dynamic
analysis is to detect the malicious applications based on monitoring the dynamic domain name system
(DNS) requests [13] during the runtime. As the mobile device has a limited power capabilities, one
approach to perform the dynamic analysis is to use a lightweight client as the mobile side. This client
collects data of the running applications and then send the collected to the server. Finally, the server
perform the dynamic analysis to cluster the applications into two classes, benign and malware [14].
The advantage of dynamic analysis that can capture a new set of features which static analysis cannot
capture. The main disadvantage of the dynamic analysis is the cost of time and resources. In addition,
some malicious applications can behave normally if they detect that they are running on an emulator.

The third type of Android malware detection is the hybrid analysis. Hybrid analysis combines
both the static and dynamic features to distinguish benign applications from malicious ones [15].
In [16], the authors proposed combining the dynamic features (i.e., system calling data) extracted
from applications’ execution data with the static features extracted from the application source files.
Then, permission patterns and the used API calls from the static features and the system calls from the
dynamic features. Then, a classification method is used to classify an unknown application as malware
or benign application, based on the extracted patter of this unknown application.

2.2. Android Malware Detection Based on Static Feature Categories

The classification task is an important part of the machine learning field [17]. The static features of
Android applications can be classified into four categories extracted from the manifest file: hardware
components, requested permissions, application components (activities, services, broadcast receivers,
and providers), and filtered intents [18,19].

In [20,21], the authors used hardware components as a static feature. The application permissions
is utilized as one of the static features in the systems proposed in [4,7,8,22]. Android services are
important features for malware identification problem so their names are also collected in a feature set,
as the names may help to identify well-known malware components. For example, several variants of
the DroidKungFu family share the name of particular services [20]. Intents are used for inter-process
and intra-process communication in Android. They are passive data structures that exchanged as
asynchronous messages and also allowing information about events to be shared between different
applications and different application components. The methods proposed in [23,24] used intents as
static features for the detection of malware.

API stands for Application Programming Interface which is a particular set of rules and
specifications that programs can follow to communicate with each other. There are restricted API
calls which is a series of critical API calls that the permission system of Android restricts access
to them. Malware uses these APIs which do not require a permission request for surpassing the
Android platform limitations. Several attempts considered detecting malware applications based on
API features [25–27].

Attackers instructs malware in order to contact them and report their status or sending users
personal data over the network. Researchers look for the IP address or URL of the Command and
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Control server in the code of android installation files. In [28,29], the detection of malware is based on
network addresses features.

Activity is one of the fundamental building blocks of Android applications. An activity represents
the entry point for the user interaction. It represents a single screen with a user interface. We see that
activity group is useless in malware detection as it describes only the screen names. Thus, we ignored
this feature category from the feature space of the utilized dataset.

Based on the existing methods, we can conclude that all static feature categories can be utilized for
malware detection except the activity category. Thus, static features belonging to the activity category
will be excluded from the proposed feature space of this work.

2.3. Feature Selection Methods of Android Static Features

The existing methods of Android malware detection can be classified based on the technique
utilized for the purpose of reducing the feature space size. One possible technique of reducing the
feature space size is to use small datasets, which resulted in a small feature space. A second technique
for reducing the feature space size is to consider a limited number of feature categories, e.g., Android
permissions only. A third technique is to use feature ranking and feature selection methods,
e.g., univariate statistical tests (chi-square), correlation-based feature evaluation, the information gain,
the gain ratio method, community-based detection, and recursive feature elimination. These feature
ranking and feature selection methods measure the strength of the relationship between an individual
feature and the response variable. Thus, each feature receives a single score reflecting this relation.
Then, all the features in the feature space are ranked according to these scores, and the top k
features are reported.

Feature ranking and feature selection methods can be classified into three classes, namely,
filter, wrapper, and embedded methods. A filter method is considered a preprocessing step before
the ML model starts the training process. Thus, these methods are not time-consuming methods.
In contrast, wrapper methods use a subset of features, and models are trained with these features.
Then, based on the trained model results, the wrapper method adds or removes features from the
existing feature subset. Wrapper methods are computationally intensive, and a model must be
trained several times. Finally, the embedded methods of feature selection combine the filter and
wrapper methods.

Following the first technique of reducing the feature space size, the authors presented an Android
malware detection approach based on examining permission requests by Android applications [7].
The model was able to achieve a classification accuracy rate of 80% based on the studied dataset.
The dataset was obtained from [30] and contained 2444 benign and 870 malicious applications.
Thus, this approach used only 3314 mobile applications, which is relatively few in comparison to the
129,013 applications in the Drebin dataset [6].

Following the second technique of reducing the feature space size, a deep learning-based, Android
malware detection engine called DroidDetector was proposed [8]; deep learning is known for its high
performance in the classification tasks [31,32]. In [8], the authors limited the static features to only
two categories: required permissions and sensitive APIs. Then, the authors extracted 192 binary
features. Experiments were conducted on three public datasets. The first was a benign application
set that was searched in a random way from the Google Play store. The other two malware datasets
were collected from MalGenome [29] and the ContagioCommunity. This research achieved a 96.76%
detection accuracy.

Following the third technique of reducing the feature space size, the authors proposed a random
forest model for malware detection [9,33]. They used a dataset with 19,722 Android applications.
The feature space of their model included 179 APIs, the permissions, the intent filters, and four
statistical features from the application components. The feature space size was 4000. Then, the number
of features was reduced to 3000, 2000, and 1000 using a feature selection method based on the MDI.
The model accuracy was 92.5%.



Symmetry 2020, 12, 858 5 of 16

These three techniques of reducing the feature space size can be combined into one method,
as proposed in [34]; the authors combined three approaches by using a small data set of 10,000 Android
applications, extracted features from the op code only, and applied an information gain method to
obtain the top k features.

2.4. URLs as Features in Android Malware Detection Methods

In [6], the authors proposed using the extracted URLs from the Drebin dataset as unique binary
features. A feature value of zero indicated that an application did not include the specific URL being
investigated; otherwise, the feature value was one. This treatment drastically increases the feature space
of the dataset. Some methods treat URLs as redundant features and ignore this feature category [35].

In [36], the author proposed a method for analyzing Android application URLs and traffic.
They collected and stored the traffic data for each URL from a set of benign and malware Android
applications. Then, they analyzed the traffic to find any possible discriminative features of malware
and benign applications. The proposed method achieved approximately 98.7% accuracy using the
application URLs and network traffic only. The main issue with this method was that a considerable
amount of traffic data must be collected before determining whether the application is benign or
malware. Thus, some important information might be transferred or received during traffic collection.
In addition, the tool ignored other important features, such as Android permissions, which may
negatively affect the accuracy of the approach.

3. Methodology

The proposed system is composed of three phases: the feature extraction, feature engineering
and selection, and ML model construction phases. The system block diagram is illustrated in Figure 1.
In this section, we cover only the first two phases of selecting the most informative features, as we use
the ML model (third phase) as it is.

Android
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Figure 1. The proposed system block-diagram.

3.1. Feature Extraction

We extracted the static features from the manifest and the disassembled dex code of the Android
application. This information can be obtained by reading these two files. Then, we represent each
Android application as a text file with one feature per line. The extracted features are similar to the
extracted features described in [6], except we excluded those in the activity category.

3.2. Feature Engineering

To construct the feature vector, we extract six categories of Android application features
from the Android manifest file and source code. These feature types are Android permissions,
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used permissions application components, intent filters, and APIs (restricted and suspicious).
We ignored features belonging to the activity category because many types of malware applications
repack benign applications. Thus, the numbers of activity features considered malware and benign are
almost the same.

Then, we merge all the application features belonging to the URL category into a single feature;
this feature reflects the degree of maliciousness of all the URLs found in one application, and we call
it the URL maliciousness score, or URL_score for short. Thus, we finally add the final feature to the
feature vector.

URL Feature Merging

The URLs are extracted from the manifest file of the Android applications. The features in the
URL category can be redundant. For instance, if an application includes ten URLs from the same
domain, the state-of-the-art methods generate ten different features for all the applications of the
dataset, using one-hot encoding as in [6,37]. It is assumed that these ten features belong to the same
domain. Thus, if the domain is classified as a malicious domain, then the ten features have the same
meaning. In this case, one feature can represent the other nine features. In addition, if a URL exists in
one application, it will be included as a feature in the feature vector of each application. The value
of this feature is zero if the URL appears in the application and one if it does not. There is a high
probability that a URL that appears in one application will not appear in other applications in a dataset.
Thus, the feature vector may include many zeros for the features that belong to the URL category,
resulting in sparseness. Thus, in this study, all the application URLs are represented as a single value
of the application maliciousness score.

The block diagram of the URL score calculation for an Android application is depicted in Figure 2.
The procedure starts by extracting all the URLs from the application files. Then, these URLs are
converted to the domain format using a regular expression.

 
Cached scores 

 

Previously 
checked URL 

Extract all URLs 
from an 
Android 

application 

Apply regular 
expression to 

convert URL strings 
to domain strings 

Prev 

Send new URLs to 
“VirusTotal” for 

scanning 

Combine scores and 

report App URLs 
score as a scalar 

Figure 2. Block-diagram of the URLs score calculation procedure

Considering this URL https://www.youtube.com/abc, it is converted to www.youtube.com.
Different webpages from the same domain should receive the same maliciousness score.
Next, the procedure searches for the extracted domain in the cached database of domain scores.
If the domain exists among the cached scores, then it receives a score. Otherwise, the domain is sent
to VirusTotal [38] for scanning. VirusTotal scans the submitted URL with 67 different URL scanner
engines. Then, for each URL, each application receives a score based on the number of malicious
findings reported. The score varies from 1 to 67, and the higher the score is, the more malicious the
application. Finally, the application takes the highest reported score between the cached score, if one
exists, and VirusTotal score as the value of the URL_score feature.

3.3. Feature Selection Based on the Feature Frequency

Inspired by the term frequency (TF) and inverse document frequency (IDF) techniques [39],
we propose a frequency-based feature selection method called the feature frequency-application frequency
(FF− AF) method. The core concept FF− AF is that seldom used and highly frequent features are

https://www.youtube.com/abc
www.youtube.com
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non-informative for the Android malware detection task or negatively affect the global performance
of the task.

The TF-IDF technique measures two scores. First, the TF score is the number of occurrences
of a word/term in a certain document divided by the total number of words in this document.
Second, the IDF score is the number of documents containing a certain term, where N is the number
of documents. The higher the IDF score is, the less the word is repeated in the N documents and the
more important the word. Thus, this metric is called the IDF. In TF-IDF, words that are exclusive to
a certain document can be used to recognize the document. Then, the TF-IDF weight is calculated as
shown in Equation (1), where ni,j represents the number of occurrences of word i in document j, Mj
represents the total number of words in document j, N represents the number of documents, and d fi is
the number of documents that contains term i.

wi,j =
ni,j

Mj
× lg

(
N
d fi

)
(1)

To realize the TF-IDF method in the context of Android applications, we can replace the document
with the Android application, and the words/terms with the extracted static features of this Android
application. Thus, an Android application can be seen as a text file, where the dictionary includes the
extracted feature names from the entire application dataset. Then, we use the binary TF approach.
The score TFi,j equals one if feature/term i belongs to application/document j, otherwise, the score
TFi,j equals zero. We denote the feature space as fi ∈ F, where F is the set of distinct features in
the feature space and fi represents a unique feature. The intuition of using binary TF is that it does
not matter how many times the application uses a certain feature, e.g., a touch screen permission,
but whether the Andoird application use this feature or not (0 or 1). In this context, we propose the
FF score, which corresponds to the TF score. The FF score is a binary value assigned to each distinct
feature within the feature space, as described in Equation (2). Thus, if the feature space size is |F| = S,
then each application receives as many as S FF scores.

FFi,j =

{
1, f eautre i appears in application j

0, otherwise
(2)

The IDF score is used to assign a high score for seldom-occurring words in a given document.
The ultimate goal of the TF-IDF method is to search for the document that best fits a set of keywords.
In contrast, the task of malware detection involves finding common features for each benign and
malware classes. We can assume that each class contains N/2 applications. Thus, if a feature appears in
only one Android application out of N/2 applications, then this feature does not distinguish the class
that contains that application. The goal of malware detection is to find the features that are common
among all applications within the same class. Moreover, if a feature appears in N applications, then it
is a useless feature because it appears in all feature sets within the two classes. Thus, if we have a new
application with a feature that appears in N applications, then we cannot determine whether this new
application belongs to the benign or malware class based on only this feature.

Thus, we replace the TF-IDF score with the proposed FF− AF score, as shown in Equaion (3),
where j represents the application number, i represents the feature number, and N represents
the number of applications. Each feature out of S total features should receive an FF − AF score.
The FF − AF score can be seen as the feature frequency, which is the number of applications
containing this feature divided by the number of applications N. Using the AF score, we do not need
to apply the inverse concept of IDF. Instead, we use the FF− AF( fi) score to reflect how informative
fi is. All fi features with FF− AF( fi) scores close to zero or 1 are considered non-informative and can
be excluded from the feature space.
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FF− AF( fi) =
∑N

j=1 FFi,j

N
(3)

Finally, we use the FF− AF scores for frequency threshold-based feature selection. The threshold
should be a range of FF− AF scores that excludes seldom and common features close to zero and
one. In other words, a set of features with FF− AF scores less than a minimum threshold and a set of
features with FF− AF scores higher than a maximum threshold should both be excluded.

In addition, we propose two new measurements to evaluate the FF − AF method.
First, we propose measuring the weight of a given frequency in the feature space. For instance,
this measurement can be used to determine how many features in the feature space have a frequency
equal to one. This measure can help in determining the range of FF− AF scores. The feature frequency
is the numerator in Equation (3). Relative to the feature space size, if there are many features with
a given frequency, then feature space will be greatly reduced if we exclude these features. We call this
metric the frequency weight (FW). The FW is calculated as shown in Equation (4), where f requency
represents a given frequency. This equation iterates over the entire feature space and counts only the
features equal to the given frequency value.

FW( f requency) =

∑
|s|
i=

{
1 , f requency = ∑N

j=1 FFi,j

0 , otherwise

|S| (4)

Second, we propose another measurement to evaluate the percentage of the feature space
reduction for a given range of FF− AF scores. We call this metric the frequency reduction percentage
(FRP). The FRP can be calculated using Equation (5), where min and max represent the minimum and
maximum FF− AF scores considered, respectively. The FRP considers the number of features to be
excluded from the feature space. Thus, Equation (5) iterates over all the |S| features of the feature space
and sums the total number of excluded features outside the FF− AF score range. Then, the number of
excluded features is divided by the total number of features.

FRP(min, max) =

∑
|s|
i=


1 , FF− AF( fi) > min

1 , FF− AF( fi) < max

0 , otherwise

|S| × 100 (5)

4. Experimental Results

4.1. Experimental Setup

The experiments are performed on a computer with an Intel Xeon 1.70 GHz CPU E5-2609 v4 with
8 cores. The utilized OS is 64-bit Linux. Implementations are written in the Python programming
language. We used the full Drebin dataset for training and testing the ML models. In all experiments,
we used 30% of the data for testing and 70% for training.

All the classifiers’ attributes are set to the default values of the Python Scikit-learn package with
the following exceptions. The SVM classifier’s kernel is set attribute is set to linear. The AdaBoost
classifier’s number of estimator attribute is set to 30. The SGD classifier’s solver attribute is set to
’svd’. The logistic regression classifier’s C attribute is set to 1.0, penalty attribute is set to 12, and solver
attribute is set to ’liblinear’. All the utilized classifiers class weight attribute is set to balanced, as the
the two classes (i.e., malware and benign) are imbalanced.
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4.2. Experimental Data

The Drebin dataset includes 123,453 benign and 5560 malware applications from 179 different
malware families [6]. The Drebin dataset contains a total of 545,356 features, resulting in a feature
vector with high sparsity. The number of applications in the Drebin dataset is 129,013. Thus, the Drebin
dataset can be presented as a matrix of size 129,013 × 545,356. For this reason, the performance
of nonlinear classifiers is not explored for the Drebin dataset because nonlinear classifiers are not
applicable when the number of features is in the range of hundreds of thousands.

4.3. Results

4.3.1. Comparison against the Existing Malware Detection Methods

In Table 1, we compare the proposed method with three other methods. The numbers in bold
in Table 1 indicates the best results. To the best of the authors’ knowledge, these methods are the
only methods that used the complete Drebin dataset. These methods are the Drebin method [6], the
CNN-based model proposed in [40], and an SVM model [41]. Information on the model disk size
and training time was not available for the methods used in the comparison. Thus, the comparison
included only the model accuracy and number of features. Intuitively, the greater the number of
features is, the larger the model size. The model size depends on the number of features. Thus, the
lower the number of features is, the smaller the model size. In Table 1, the 349 features are from the six
feature categories (i.e., Android permissions, used permissions application components, intent filters,
and APIs). Table 1 shows that the proposed method outperforms the existing methods in terms of
accuracy and the number of features.

Table 1. Detection accuracy comparison.

Method The Proposed Method Ours (URL_Score) Drebin [6] CNN [40] SVM [41]

Accuracy 99% 80% 94% 98% 98%
Num of features 349 1 545,356 545,356 545,356

4.3.2. Accuracy Evaluation

Table 2 lists the accuracy of the linear classifiers for different feature spaces, FS(min,max).
In addition, the feature space with a single feature, which is the URL_score, is denoted as
FSURL_score. The results show that non-informative features, with low or high frequencies, act as
noise, which degrades the classifier accuracy. Thus, the proposed method yields a lightweight size
classifier. The linear classifiers listed in Table 2 exhibit similar performance, but linear SVM slightly
outperforms the other linear classifiers.
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Table 2. The test accuracy of the classification models on different feature spaces.

Feature Space Linear SVM Log. Reg. AdaBoost SGD LDA

FS(1,1× 105) 95.61% 95.68% 95.41% 95.71% 95.72%
FS(3,1× 105) 95.71% 95.78% 95.81% 95.70% 95.75%
FS(5,1× 105) 95.77% 95.70% 95.73% 95.75% 95.73%
FS(7,1× 105) 98.94% 98.93% 97.95% 97.73% 98.83%
FS(9,1× 105) 99.03% 98.82% 97.88% 97.77% 98.78%
FS(11,1× 105) 98.89% 98.89% 97.90% 97.90% 98.73%
FS(13,1× 105) 98.80% 98.78% 97.97% 97.80% 98.64%
FS(15,1× 105) 98.77% 98.81% 97.98% 97.76% 98.54%
FS(25,1× 105) 98.68% 98.62% 97.88% 97.87% 98.26%
FS(50,1× 105) 98.44% 98.51% 97.86% 97.68% 98.18%
FS(75,1× 105) 98.37% 98.45% 97.75% 97.62% 98.10%
FS(100,1× 105) 98.47% 98.49% 97.85% 97.58% 98.18%
FS(125,1× 105) 98.44% 98.50% 97.95% 97.50% 98.09%
FS(150,1× 105) 98.04% 97.95% 97.73% 97.18% 97.78%
FS(250,1× 105) 98.16% 98.40% 97.85% 97.54% 97.78%
FSURLs_score 80.15% 79.92% 79.89% 80.11% 79.67%

Table 3 lists the average F1 scores of the two Android application classes. Again, the results reflect
similar performance for the utilized linear classifiers.

Table 3. Average F1-score of the classification models.

Feature space Linear SVM Log Reg. AdaBoost SGD LDA

FS(3,1× 105) 94% 94% 94% 94% 94%
FS(5,1× 105) 94% 94% 94% 94% 94%
FS(7,1× 105) 99% 99% 98% 98% 99%
FS(9,1× 105) 99% 99% 98% 98% 99%

FSURLs_score 85% 85% 84% 85% 85%

Finally, we evaluated the receiver operating characteristic (ROC) curve for the proposed logistic
regression classifier on the FS(100,1× 105), as shown in Figure 3. The ROC area under curve (AUC) of
Figure 3 is 97.1%. In addition, the precision-recall curve for the proposed logistic regression classifier
on the FS(100,1× 105) is depicted in Figure 4. The AUC value of Figure 4 is 99.8%. The other proposed
classifiers show a similar behavior to Figures 3 and 4.

Figure 3. The receiver operating characteristic (ROC) curve for the logistic regression model of feature
space FS(100,1× 105).
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Figure 4. The precision-recall curve for the logistic regression model of FS(100,1× 105).

In addition, we performed a cross-validation test using a 10-fold cross-validation approach [42].
This approach is computationally expensive but guarantees no waste of data. We performed the
cross-validation test with the linear SVM only for FS(9,1×105). The average reported accuracy for the
ten tests was 97.82%. The lowest accuracy score was 96.93%, and the highest was 98.11%. The test
results show that the model avoids the problem of overfitting.

4.3.3. Model’S Disk Size and Running Times

Table 4 shows the size of the final classifier models in bytes to be stored in the external memory.
This value reflects the complexity of the final model. The larger the model size is, the more complex
the model and higher the classification time, and vice versa. For instance, the memory size of the
linear SVM model is 20KB while the non-linear SVM model memory size is about 196MB. This result
emphasizes the more complex the model is the more the memory size of the model.

Table 4. The size of the classification models in bytes of FS9 .

Model Name Linear SVM (URL) * Linear SVM Log_Reg AdaBoost SGD LDA Non Linear SVM

Model size 1 19,854 19,853 19,277 20,130 19,700 196,225,074

* The model utilized a feature vector of one feature, the proposed “URL_score”.

The linear SVM training time is much shorter than that for the nonlinear SVM. For instance, linear
SVM completed the training based on FS(9,1×105) in 33 s and achieved an accuracy of 99%, and the
nonlinear SVM completed the training based on the same feature vector in 4182 s, with an accuracy
of 98%. For the same feature vector FS(9,1×105), the fastest linear classifier to finish the training task
were SGD at 11 seconds, and the slowest linear classifier was LDA, which needed 45 s to finish the
training task.

4.3.4. Comparison against the Existing Feature Selection Methods

The proposed method was compared to the other feature selection methods. We selected
the chi-square test for comparison. The chi-square test is a statistical test performed to measure
the dependency of two variables. The chi-square test is applicable to categorical or nominal data.
Chi-square reports a score for every feature, highlighting the relationship, if existent, between a certain
feature and the target variable. Based on these scores, we use only the top k features to train the
ML model.

The selection of the k values in the proposed work was based on Table 5. For instance,
using FS(9,1×105) in the proposed method, we selected all features with frequencies equal to or greater
than 9. The resultant feature space size was 19,724. To compare the chi-square and information gain
methods with the proposed method, we set k = 19, 724 in all the methods. Thus, all the methods
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consider the same number of features, but the selection criterion differs among methods. For the
chi-square-based model, the best result for different feature spaces was FS(100,1× 105); utilizing this
feature space, the best obtained accuracy and F1 score were 95.7% and 94%, respectively.

4.3.5. Evaluation of Feature Space Reduction

Table 6 lists all the categories in the Drebin dataset and the number of features. Of note, the
first two categories contain the largest numbers of features. The total feature space size of the Drebin
dataset is 545,356, and we call this feature space the “original feature space”.

First, we studied the effect of URL merging into one feature, the URL_score, based on the Drebin
dataset [6]. Table 6 shows that the URL feature category contains approximately 57% of all features.
Thus, using the URL merging procedure reduced the 310,511 URL features to only one feature.

Table 5. The Drebin dataset features by frequency.

Feature Space Drebin Original Feature Space Drebin Modified Feature Space

No. of Features No. of features FRP

FS(1,1.3× 105) 545,356 49,117 –
FS(3,1.3× 105) 95,621 9838 20.0%
FS(5,1.3× 105) 44,613 4890 9.9%
FS(7,1.3× 105) 26,862 3253 6.6%
FS(9,1.3× 105) 19,724 2411 4.9%
FS(11,1.3× 105) 15,775 1888 3.8%
FS(13,1.3× 105) 12,920 1544 3.1%
FS(15,1.3× 105) 10,997 1380 2.8%
FS(25,1.3× 105) 7223 865 1.8%
FS(50,1.3× 105) 4269 517 1.1%
FS(75,1.3× 105) 3112 352 0.7%
FS(100,1.3× 105) 2422 349 0.7%
FS(200,1.3× 105) 1313 172 0.4%

Table 6. Number of features of the Drebin dataset by category.

Category URLs Activity Service Receiver Intent Provider Permis. Call API Call HW Real Permis.

No. of features 310,511 185,729 33,222 6379 4513 3812 733 315 72 70

In addition, as discussed in Section 3.2, the features of the activity category can be excluded from
the dataset without affecting the recognition of malware. Thus, 185,729 features are excluded from
the 545,356 features in the Drebin dataset. Overall, 496,240 features (URL and activity features) were
merged or excluded, and one feature was added. We call this feature space the “modified feature
space”, and its size is (545,356− 496,240) + 1 = 49,117.

Second, we studied the effect of feature reduction using the proposed FF-AF score. Figure 5 depicts
the feature frequencies with the corresponding FW values of the modified feature space. For instance,
the feature space of the Drebin dataset includes 63.29% of features with a frequency equal to one.
Figure 5 shows the FW values for frequencies 1 to 10. The FW scores are summed for frequencies from
11 to 100, 101 to 200 and so on due to space limits. For instance, if we exclude features with frequencies
less than 3 and greater than 100,000, then the FF-AF minimum score is 3/129,013 and the maximum
score is 100, 000/129, 013. Thus, the feature space reduction equals 63.29 + 15.17 + 0.01 = 78.47%.
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Figure 5. Frequency weight (FW) scores for different features frequencies.

Table 5 lists the number of features filtered by frequency. The first column is the Drebin dataset
feature space filtered by the frequency number, FS(min,max), where min and max represent the
range boundaries of the feature frequencies. For instance, FS(3,200) is a feature space containing
features with frequencies greater than two and less than 201. The dataset includes 129,013 samples;
thus, the maximum frequency is the number of samples. Using an upper bound equal to 1.3× 105,
the resulting feature space includes all the features with frequencies higher than the lower bound of
the range. The second and third columns of Table 5 list the size of the reduced feature space for the
original and modified Drebin datasets, respectively. The features used in the classification belong to
the intent provider, service, receiver, permission, API call, hardware, and real permission. In addition,
all of the URL features are merged in one URL_score feature.

The last column of Table 5 represent the FRP of the modified feature space. For instance, the FRP
of FS(3,1.3×105) is calculated by dividing the number of features with frequencies within the range

of
[
3, 1.3× 105] by the number of all features of the modified feature space, FRP = 9,838

49,117 ' 20%.
Thus, the feature space size of FS(3,1.3×105) is about 20% of the full modified feature space. We did
not list the FRP of the original feature space, as the used feature space in all the experiments is the
modified feature space.

5. Conclusions

This research presented an evaluation of the detection of Android malware using ML classifiers
based on the symmetric features of malware Android applications. The proposed approach aimed
to produce a lightweight classifier model. To achieve this goal, we proposed reducing the number
of features based on two methods. The first method includes removing the features with low and
high frequencies and adding a new feature representing the URL maliciousness degree using URL
scanning engines. The second method uses the chi-square method to select the most important k
features, where k is the number of reduced features using the first proposed method. Using the Drebin
dataset, the first method based on a linear SVM classifier achieves an accuracy of 99%, which is the
highest reported accuracy to date for the full Drebin dataset, and the second method yields an accuracy
of 95.74%. In addition, the proposed method yields a lightweight classifier with a size of 20KB in
comparison to the 196MB required by the nonlinear SVM model. Thus, the proposed methods for
reducing the feature space of the Android malware detection tasks significantly improve the accuracy,
model memory size, and training time. The future work includes applying the proposed methods on
the dynamic features of the Android applications. Thus, the proposed method can be used with any
other static method to reduce the feature space and in turn, to reduce the feature extraction, training,
and classification times.
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