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Abstract: In this work, new approaches are proposed for the 3D decomposition of a cubical tensor
of size N × N × N for N = 2n through hierarchical deterministic orthogonal transforms with low
computational complexity, whose kernels are based on the Walsh-Hadamard Transform (WHT)
and the Complex Hadamard Transform (CHT). On the basis of the symmetrical properties of the
real and complex Walsh-Hadamard matrices are developed fast computational algorithms whose
computational complexity is compared with that of the famous deterministic transforms: the 3D
Fast Fourier Transform, the 3D Discrete Wavelet Transform and the statistical Hierarchical Tucker
decomposition. The comparison results show the lower computational complexity of the offered
algorithms. Additionally, they ensure the high energy concentration of the original tensor into a small
number of coefficients of the so calculated transformed spectrum tensor. The main advantage of the
proposed algorithms is the reduction of the needed calculations due to the low number of hierarchical
levels compared to the significant number of iterations needed to achieve the required decomposition
accuracy based on the statistical methods. The choice of the 3D hierarchical decomposition is defined
by the requirements and limitations related to the corresponding application area.

Keywords: decomposition of 3D cubical tensor; hierarchical 3D Fast Walsh-Hadamard Transform
(3D-FWHT); 3D Hierarchical Fast Complex Walsh-Hadamard Transform (3D-FCHT)

1. Introduction

The famous tensor decompositions—Canonical Polyadic Decomposition (CPD), Higher-Order
Singular Value Decomposition (HOSVD) [1–3], Tensor Trains Decomposition (TTD) [4], and Hierarchical
Tucker decomposition (H Tucker) [5] - and their modifications [6] are based on the calculation of
the eigen values and eigen vectors of the decomposed tensor. Their basic advantage is that they are
optimum with respect to the Mean Square Error (MSE) of the approximation in the case of the truncation
of the low-energy decomposition components. For the calculation of the retained components are used
various iterative methods (the power method [7], the Jacoby method [8], etc.), which require relatively
high numbers of calculations to achieve the needed approximation accuracy.

As an alternative, in this work are presented new hierarchical approaches for 3D tensor
decomposition, based on well-known deterministic orthogonal transforms: the Walsh-Hadamard
Transform (WHT) [9–12] and the Complex Hadamard Transform (CHT) [13]. The offered decompositions
are not optimum with respect to MSE minimization, but due to the lack of iterations, they have low
Computational Complexity (CC), and as a result, they are suitable for the fast processing of the 3D
tensors obtained, for example, from single or sequences of 2D correlated images. In the first case,
each single 2D image is divided into N2 blocks of size N × N for N = 2n, from which is obtained a
sequence of N cubical tensors, each of size N × N × N. In the second case, from each sequence of
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N 2D images of size N × N is obtained a single cubical tensor of size N × N × N. Examples for the
transformation of a single 2D image and of a sequence of 2D video frames into a cubical (3D) tensor are
shown on Figure 1.
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Figure 1. Transformation into a 3D cubical tensor for (a) a single 2D image and (b) a sequence of
2D frames.

The presented approach for fast hierarchical cubical tensor decomposition is applicable not only
for images but also for various kinds of multidimensional signals (medical, seismic, spectrometric, etc.)
and big data analysis. In the next sections, Sections 2–5, are presented the proposed algorithms for 1D
Hierarchical Fast Walsh-Hadamard Transform (1D-FWHT), 1D Hierarchical Fast Complex Hadamard
Transform (1D-FCHT), and the corresponding 3D Hierarchical Fast real and complex transforms
(3D-FWHT and 3D-FCHT). In Section 6 is shown a comparative analysis of the CC of the presented
algorithms for hierarchical orthogonal tensor transforms, with respect to the famous deterministic
and statistical transforms: the 3D Fast Fourier Transform (3D-FFT), 3D Discrete Wavelet Transform
(3D-DWT) and Hierarchical Tucker Decomposition (H-Tucker). The last section, Section 7, contains
the conclusions.

In Appendices A.1 and A.2 is given the factorization of the matrices for the n-level one-dimensional
fast hierarchical transforms 1D-FWHT and 1D-FCHT.

2. One-Dimensional Hierarchical Fast Walsh-Hadamard Transform

The following symbols are introduced for tensors, matrices and vectors, respectively: X for a
tensor, X for a matrix and

→
x for a vector.

The forward and inverse 1D Walsh-Hadamard Transform (1D-WHT) (frequency-ordered) is
represented in scalar form by the equations below [9–11]:

s(u) =
N−1∑
i=0

x(i) wal(i, u); x(i) = (1/N)
N−1∑
u=0

s(u) wal(i, u) for i, u = 0, 1, . . . , N− 1, (1)
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where N = 2n and x(i) and s(u) are, respectively, the N-dimensional discrete signal and its spectrum.
The discrete Wash functions are defined by the following relations [10,12]:

wal(i, u) = (−1)

n−1∑
r=0

qr(i)ur
; qr(i) = in−r ⊕ in−r−1 for r = 1, 2, . . . , n− 1; q0(i) = in−1; i =

n−1∑
r=0

ir2r, u =
n−1∑
r=0

ur2r. (2)

Here, the operation “exclusive OR” is represented by the symbol ⊕.
The algorithm for the one-dimensional hierarchical fast Walsh-Hadamard transform (1D-FWHT)

for the cubical tensor X of size N × N × N when N = 2n (a sequence of matrices Xk, each of size N × N
for k = 1, 2, . . . ,N) is presented for N = 8 (i.e., for n = 3 levels). The general case of the transform when
N = 2n and n >3, is given in Appendix A.1.

The execution of the direct and inverse 1D-WHT is grounded on the basic operation “butterfly”
for N = 2, in accordance with the following relations [9,11]:

y(1) = x(1) + x(2),
y(2) = x(1) − x(2),

x(1) = (1/2)[y(1) + y(2)],
x(2) = (1/2)[y(1) − y(2)].

(3)

The application of the operation “butterfly” to the elements of the couples of matrices in each
hierarchical level is represented by the equations below.

In Level 1 of the 1D-FWHT:
Y = G1(8)X. (4)

The matrix G1(8) of size 8 × 8 is used to execute the direct 1D-WHT when N = 2 for each couple
of neighbor matrices in the sequence Xk for k = 1,2, . . . ,8. These matrices are the components of the
matrix-column X = [X1, X2, X3, X4, X5, X6, X7, X8]

T. From Equation (3), it follows that the matrix G1 (8)
could be represented in the following way:

G1(8) = I(4) ⊗H(2) =


H(2) 0 0 0

0 H(2) 0 0
0 0 H(2) 0
0 0 0 H(2)

, H(2) =
[

1 1
1 −1

]
−Hadamard matrix of size 2 × 2. (5)

Here, I(4) is the identity matrix of size 4 × 4, the symbol ⊗ stands for the Kroneker product of the
matrices [3], and Y = [Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8]

T corresponds to the transformed matrix-column
whose components are the matrices Yk, for k = 1,2, . . . ,8.

After the rearrangement 1 is obtained:

Y′ = P1(8)Y, (6)

where

P1(8) = L1(4) ⊗ I(2) =
[

L1(4) 0
0 L1(4)

]
; L1(4) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 − permutation sub−matrix of size 4× 4; (7)

P1(8)—permutation matrix of size 8 × 8; Y′ = [Y′1, Y′2, Y′3, Y′4, Y′5, Y′6, Y′7, Y′8]
T- rearranged

matrix-column with components Y′1 = Y1, Y′2 = Y3, Y′3 = Y2, Y′4 = Y4, Y′5 = Y5, Y′6 = Y7,
Y′7 = Y6, Y′8 = Y8.

In the Level 2 of the 1D-FWHT is obtained:

Z = G2(8)Y′, (8)
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where G2(8) = G1(8) and Z = [Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8]
T. The components of the matrix Z are:

Z1 = Y1 + Y3; Z2 = Y1 −Y3; Z3 = Y2 + Y4; Z4 = Y2 −Y4;
Z5 = Y5 + Y7; Z6 = Y5 −Y7; Z7 = Y6 + Y8; Z8 = Y6 −Y8.

After the rearrangement 2 is obtained:

Z′ = P2(8)Z, (9)

where

P2(8) = L2(4) ⊗ I(2) =
[

L2(4) 0
0 L2(4)

]
; L2(4) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 − permutation sub−matrix of size 4× 4; (10)

P2(8)—permutation matrix of size 8 × 8; Z′ = [Z′1, Z′2, Z′3, Z′4, Z′5, Z′6, Z′7, Z′8]
T- rearranged

matrix-column with components Z′1 = Z1, Z′2 = Z2, Z′3 = Z4, Z′4 = Z3, Z′5 = Z5, Z′6 = Z6,
Z′7 = Z8, Z′8 = Z7.

In the Level 3 of the 1D-FWHT is obtained:

D = G3(8)Z′, (11)

where

G3(8) = H(2) ⊗ I(4) =
[

I(4) I(4)
I(4) −I(4)

]
for I(4) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 − identity matrix of size4× 4; (12)

D = [D1, D2, D3, D4, D5, D6, D7, D8]
T- transformed matrix-column with components D1 = Z1 +

Z5; D2 = Z1 − Z5; D3 = Z2 + Z6; D4 = Z2 − Y6;D5 = Z4 + Z8; D6 = Z4 − Z8; D7 = Z3 + Z7;
D7 = Z3 −Z7.

After the rearrangement 3 is obtained:

E = P3(8)D, (13)

where P3(8) = P2(8); E = [E1, E2, E3, E4, E5, E6, E7, E8]
T- output matrix-column with components

E1 = D1, E2 = D2, E3 = D4, E4 = D3, E5 = D5, E6 = D6, E7 = D8, Z′8 = D7.
The relation between the input and output matrix-column X and E, correspondingly, defined by

the relations in Equations (4)–(13), is:

E = P3(8)G3(8)P2(8)G2(8)P1(8)G1(8)X = Hw(8)X, (14)

where Hw(8) is a frequency-ordered Hadamard matrix, defined as follows:

HW(8) = P3(8)G3(8)P2(8)G2(8)P1(8)G1(8) =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


(15)
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The rearrangement of the intermediate matrix components in each consecutive transform level
must satisfy the requirement for the frequency-ordering of the output matrices [9,14]. The chosen
method for matrix Hw(8) factorization permits the operation “butterfly” in the first two levels to be
applied to the elements of the neighbor couples of matrices Xk and Xk+1 (for k = 1,2, . . . ,8) from the
sequence, which builds the cubical tensor X of size 8 × 8 × 8. In this way, the decorrelation efficiency
for the elements of each couple of transformed matrices is enhanced, which results in higher energy
concentration in the low-frequency components of the output matrix-column, E. In the result of the
1D-FWHT is obtained the cubical tensor E of size 8 × 8 × 8, represented by the sequence of matrices El,
each of size 8 × 8, when l = 1,2, . . . ,8.

The graph of the 3-level 1D-FWHT algorithm for the tensor X of size 8 × 8 × 8 is shown in Figure 2.
Here, the basic operation “butterfly” in the first two levels is framed in red.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 17 
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Figure 2. Hierarchical 1D fast real Walsh-Hadamard transform for a sequence of matrices, Xk.

An example 1D-FWHT is given below for the processing of a sequence of matrices Xk for k = 1, 2,
. . . , 8, in a particular case: the transform of one element x(i, m, k) of the same spatial position (i,m) in
each matrix, k:

Let:
x(i, m, 1) = 1; x(i, m, 2) = 2; x(i, m, 3) = 2; x(i, m, 4) = 3;
x(i, m, 5) = 4; x(i, m, 6) = 1; x(i, m, 7) = 6; x(i, m, 8) = 5;

Then, in Level 1 of the 1D-HFWHT:

y(i, m, 1) = 3; y(i, m, 2) = −1; y(i, m, 3) = 5; y(i, m, 4) = −1;
y(i, m, 5) = 5; y(i, m, 6) = 3; y(i, m, 7) = 11; y(i, m, 8) = 1;

After the rearrangement 1:

y(i, m, 1) = 3; y(i, m, 3) = 5; y(i, m, 2) = −1; y(i, m, 4) = −1;
y(i, m, 5) = 5; y(i, m, 7) = 11; y(i, m, 6) = 3; y(i, m, 8) = 1;
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In Level 2 of the 1D-HFWHT:

z(i, m, 1) = 8; z(i, m, 2) = −2; z(i, m, 3) = −2; z(i, m, 4) = 0;
z(i, m, 5) = 16; z(i, m, 6) = −6; z(i, m, 7 ) = 4; z(i, m, 8) = 2;

After the rearrangement 2:

z(i, m, 1) = 8; z(i, m, 2) = −2; z(i, m, 4) = 0; z(i, m, 3) = −2;
z(i, m, 5) = 16; z(i, m, 6) = −6; z(i, m, 8) = 2; z(i, m, 7) = 4;

In Level 3 of the 1D-HFWHT:

d(i, m, 1) = 24; d(i, m, 2) = −8; d(i, m, 3) = −8; d(i, m, 4) = 4;
d(i, m, 5) = 2; d(i, m, 6) = −2; d(i, m, 7) = 2; d(i, m, 8) = −6;

After the rearrangement 3:

e(i, m, 1) = 24; e(i, m, 2) = −8; e(i, m, 3) = 4; e(i, m, 4) = −8;
e(i, m, 5) = 2; e(i, m, 6) = −2; e(i, m, 7) = −6; e(i, m, 8) = 2.

Here, y(i, m, k), z(i, m, k), d(i, m, k) and e(i, m, k) are, correspondingly, the elements of the
sequences of matrices Yk, Zk, Dk and Ek for k = 1,2, . . . ,8, calculated in levels 1, 2 and 3, and for the
graph output.

In accordance with the generalized equation of Parseval [15] is obtained:

N∑
i=1

N∑
m=1

N∑
k=1

x(i, m, k)2 = (1/N3)
N∑

u=1

N∑
v=1

N∑
l=1

e(u, v, l)2. (16)

Here, x(i.m, k) and e(u, v, l) are, respectively, the elements of the input tensor X and of
the spectral tensor, E. Then, for the example above, for N = 8, from Equation (16) is obtained

8∑
k=1

x(i, j, k)2 = (1/8)
8∑

n=1
e(u, v, l)2 =96.

In Appendix A.1 is given, in detail, the frequency-ordered hierarchical n-level 1D-FWHT.

3. One-Dimensional Hierarchical Fast Complex Hadamard Transform

The direct and inverse 1D Complex Hadamard Transform (1D-CHT) (frequency-ordered) is
represented in a scalar form by the equations below [14]:

s(u) =
N−1∑
i=0

x(i) c(i, u) = sRe(u) + jsIm(u); x(i) = (1/N)
N−1∑
u=0

s(u) c∗(i, u) for i, u = 0, 1, . . . , N− 1, (17)

where N = 2n
≥4 (the minimum possible value is n = 2); x(i) and s(u) are, correspondingly,

the N-dimensional discrete signal and its complex spectrum; j =
√
−1; and sRe(u), and sIm(u)

are the real and the imaginary parts of the spectrum s(u). The coefficients of the 1D-CHT matrix C(N)
of size N × N are represented by the equation:

c(i, u) = jiuh(i, u); c∗(i, u) = j−iuh(i, u), (18)

where i, u = 0,1, . . . ,2n
−1. The sign function h(i,u) is:

h(i, u) =


1 for n = 2,

n∏
r=3

(−1)bi/2i−r
c bu/2i−r

c for n = 3, 4, . . . (19)
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Here, b◦c is an operator, which represents the integer part of the result, obtained after the division.
The even coefficients of the 1D-CHT are real, and the odd ones are complex-conjugated.

For N = 4 (respectively, n = 2), Equations (17)–(19) for i, u = 0,1,2,3 are transformed into:
s(0)
s(1)
s(2)
s(3)

 =


1 1 1 1
1 −1 j −j
1 1 −1 −1
1 −1 −j j




x(0)
x(2)
x(1)
x(3)

;


x(0)
x(1)
x(2)
x(3)

 =
1
4


1 1 1 1
1 −1 −j j
1 1 −1 −1
1 −1 j −j




s(0)
s(2)
s(1)
s(3)

. (20)

In this case, in accordance with Equation (20), for the calculation of the direct/inverse 1D-CHT are
needed four basic “butterfly” operations, whose weight coefficients are, respectively, (+1,−1) for three
of the “butterflies” and (+j,−j) for the fourth.

In Figure 3 is shown the calculation graph of the direct 3-level fast hierarchical 1D-CHT (n = 3) for
N = 8, built in accordance with Figure 2.Symmetry 2020, 12, x FOR PEER REVIEW 7 of 17 
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The graph for the 1D-FCHT when N = 8 is created on the basis of Equation (20), to which are
added four “butterfly” operations with weight coefficients (+1,−1) in the last, third level. In the result
of the use of the frequency-ordered 1D-FCHT [14] is obtained the following system of equations, which
represent the relations between the sequences of the input and output matrices, respectively Xk and Ek,
for k = 1, 2, . . . , 8 and N = 8:

E1 = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8;
E2 = X1 + X2 + X3 + X4 −X5 −X6 −X7 −X8;

E3 = X1 −X3 −X5 + X7 + j(X2 −X4 −X6 + X8);
E4 = X1 −X3 + X5 −X7 + j(X2 −X4 + X6 −X8);

E5 = X1 −X3 + X5 −X7 − j(X2 −X4 + X6 −X8);
E6 = X1 −X3 −X5 + X7 − j(X2 −X4 −X6 + X8);
E7 = X1 −X2 + X3 −X4 −X5 + X6 −X7 + X8;
E8 = X1 −X2 + X3 −X4 + X5 −X6 + X7 −X8.

(21)

Unlike Equation (14), part of the equations in the system above contain the complex variable
j =
√
−1, and they represent complex matrices (i.e., these are relations E3, E4, E5 and E6). The remaining

four equations (E1, E2, E7 and E8) represent real matrices. The components of each complex matrix
Ek = Ak + jBk (k = 3,4,5,6) are Ak =

∑
p=1,3,5,7

αpXp and Bk =
∑

p=2,4,6,8
βpXp; αp and βp are sign functions

with values of +1 or −1, defined by Equation (21). The elements e(i,m.k) of the complex matrix Ek are
defined as follows:

e(i, m, k) = e(i, m, k)Re + je(i, m, k)Im = Mk(i, m)ejΦk(i,m), (22)
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where Mk(i, m) =

√
e(i,m,k)2

Re + e(i,m,k)2
Im is a module; and Φk(i, m) = arctg[e(i,m,k)Im/e(i,m,k)Re],

a phase of the element e(i,m,k).
The matrix Φk permits the phase modification of its elements, which could be used (for example)

for the resistant digital watermarking of multidimensional signals and images [14].
In Appendix A.2 is presented in detail the factorization of the matrix for an n-level hierarchical

frequency-ordered 1D-FCHT, based on the “butterfly” operation (Equation (20)) used for the 1D-CHT
execution, if N = 4.

4. Hierarchical Cubical Tensor Decomposition through the 3D-FWHT

At first, here is described the decomposition of the cubical tensor X of size 8 × 8 × 8. In this case,
the decomposition could be represented in the simplified form shown in Figure 4.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 17 

 

 
Figure 4. The execution stages of the 3D Hierarchical Fast Walsh-Hadamard Transform (3D-FWHT) 
for the tensor X of size 8×8×8, based on the 1D Hierarchical Fast Walsh-Hadamard Transform 
(1D-FWHT). 

The decomposition based on the 3D-FWHT comprises three stages. In the first stage, the tensor 
is divided into horizontal slices (mode-1), after which, on each couple of matrices, is applied the 
1D-FWHT, and from the so obtained eight slices is restored the tensor E. In a similar way are 
executed the operations in the second and third stages. Unlike in the first, in the second stage, the 
input tensor E is divided into eight lateral slices (mode-2). After their transform through the 
1D-FWHT, from the obtained eight slices is restored the tensor F. In the third stage, the tensor F is 
divided into eight frontal slices (mode-3), from which, after the 1D-FWHT, is obtained the spectrum 
tensor S with elements )u,v,l(s . From this tensor, after the reverse execution of the three stages of 
the inverse 1D-FWHT, is restored the initial tensor X with elements x(i,j,k). In the result of the 
decomposition, it is represented as a sum of weighted “basic” tensors u,v,lW  of size 8×8×8 with 
elements wal(u,v,l), which are 3D Walsh functions: 

 ( ) ( ) ( ) .l)v,s(u,)8/1(]7,7,7s...1,0,0s0,0,0s)[512/1(
7

0u

7

0v

7

0l
u,v,l

3
7,7,71,0,00,0,0 

= = =
=+++= WWWWX  (23)

The 3D functions wal(u,v,l) are divisible [16,17], and they could be represented as the product 
of three 1D Walsh functions: wal(u).wal(v).wal(l). The coefficients s(u,v,l) for u=0,1, v=0,1 and l=0,1 
in the first layer correspond to the lowest spatial frequencies of the spectrum tensor, S. In Figure 5a is 
shown an example for a spectrum tensor S of size 4×4×4, and in Figure 5b, the 8 “basic” tensors, 
which correspond to coefficients s(u,v,l) from the initial layer of the tensor S [18]. 

Figure 4. The execution stages of the 3D Hierarchical Fast Walsh-Hadamard Transform (3D-FWHT)
for the tensor X of size 8 × 8 × 8, based on the 1D Hierarchical Fast Walsh-Hadamard Transform
(1D-FWHT).

The decomposition based on the 3D-FWHT comprises three stages. In the first stage, the tensor
is divided into horizontal slices (mode-1), after which, on each couple of matrices, is applied the
1D-FWHT, and from the so obtained eight slices is restored the tensor E. In a similar way are executed
the operations in the second and third stages. Unlike in the first, in the second stage, the input tensor E
is divided into eight lateral slices (mode-2). After their transform through the 1D-FWHT, from the
obtained eight slices is restored the tensor F. In the third stage, the tensor F is divided into eight frontal
slices (mode-3), from which, after the 1D-FWHT, is obtained the spectrum tensor S with elements
s(u, v, l). From this tensor, after the reverse execution of the three stages of the inverse 1D-FWHT,
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is restored the initial tensor X with elements x(i,j,k). In the result of the decomposition, it is represented
as a sum of weighted “basic” tensors Wu,v,l of size 8 × 8 × 8 with elements wal(u,v,l), which are 3D
Walsh functions:

X = (1/512)[s(0, 0, 0)W0,0,0 + s(1, 0, 0)W1,0,0 + . . .+ s(7, 7, 7)W7,7,7] = (1/83)
7∑

u=0

7∑
v=0

7∑
l=0

s(u, v, l)Wu,v,l . (23)

The 3D functions wal(u,v,l) are divisible [16,17], and they could be represented as the product of
three 1D Walsh functions: wal(u).wal(v).wal(l). The coefficients s(u,v,l) for u = 0,1, v = 0,1 and l = 0,1 in
the first layer correspond to the lowest spatial frequencies of the spectrum tensor, S. In Figure 5a is
shown an example for a spectrum tensor S of size 4 × 4 × 4, and in Figure 5b, the 8 “basic” tensors,
which correspond to coefficients s(u,v,l) from the initial layer of the tensor S [18].
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Figure 5. (a) The spectrum tensor S of size 4×4×4; (b) “Basic” tensors Wu,v,l, which correspond to the
first layer of S.

The 3D-FWHT algorithm, shown in Figure 4, could be generalized for the case when N = 2n

by creating an extended n-level computational graph in correspondence with the transform matrix
factorization explained in Appendix A.1. The number of stages needed for the execution of the
1D-FWHT (in accordance with Figure 4) is three, not only for N = 8 but also for the higher values of
N = 16, 32, . . .

In the general case, the spectrum coefficients s(u,v,l) are calculated through the direct 3D-WHT,
in accordance with the relation [12,18]:

s(u, v, l) =
N−1∑
i=0

N−1∑
k=0

N−1∑
l=0

x(i, j, k )wal(i, u)wal(j, v)wal(k, l) for u, v, l = 0, 1, . . . , N− 1. (24)

The 3D inverse WHT (3D-IWHT) is defined by the relation:

x(i, m, k) =
1

N3

N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)wal(i, u)wal(m, v)wal(k, l) fori, m, k = 0, 1, . . . , N− 1. (25)

Here, the discrete one-dimensional Walsh-Hadamard (WH) functions of Nth order wal(i,u),
wal(m,v), wal(k,l) for i,m,k = 0,1, . . . ,N−1, are defined by the following relations:

wal(i, u) = (−1)

n−1∑
r=0

qr(i)ur
, wal(m, v) = (−1)

n−1∑
r=0

qr(m)vr
, wal(k, l) = (−1)

n−1∑
r=0

qr(k)lr
, (26)
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where qr(i), qr(m), qr(k) and ur, vr, lr are defined by analogy with Equation (2) after converting the

decimal numbers i, m, k and u, v, l into binary, respectively: i =
n−1∑
r=0

ir2r, m =
n−1∑
r=0

mr2r, k =
n−1∑
r=0

kr2r

and v =
n−1∑
r=0

vr2r, u =
n−1∑
r=0

ur2r, l =
n−1∑
r=0

lr2r for n = log2N.

Each 3d-order tensor X of size N ×N ×N could be calculated by using the weighted sum of the
N3 3D WH functions represented through tensors Wu,v,l, each of size N × N × N:

X = (1/N3)[s(0, 0, 0)W0,0,0 + s(1, 0, 0)W1,0,0 + . . .+ s(N− 1, N− 1, N− 1)WN−1,N−1,N−1] = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l ) Wu,v,l . (27)

Each “basic” tensor Wu,v,l with frequency (u,v,l) could be represented through the outer product
of the vectors

→
wu,

→
wv,

→
wl :

Wu,v,l =
→
wu ◦

→
wv ◦

→
wl, (28)

where the vectors, which represent the tensor Wu,v,l, are defined by the relations below:

→
wu = [(−1)

n−1∑
r=0

qr(0)ur
, (−1)

n−1∑
r=0

qr(1)ur
, . . . , (−1)

n−1∑
r=0

qr(N−1)ur
]

T

; (29)

→
wv = [(−1)

n−1∑
r=0

qr(0)vr
, (−1)

n−1∑
r=0

qr(1)vr
, . . . , (−1)

n−1∑
r=0

qr(N−1)vr
]

T

; (30)

→
wl = [(−1)

n−1∑
r=0

qr(0)lr
, (−1)

n−1∑
r=0

qr(1)lr
, . . . , (−1)

n−1∑
r=0

qr(N−1)lr
]

T

. (31)

Then, the tensor decomposition based on the 3D-WHT, is defined by the relation:

X = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)[
→
wu ◦

→
wv ◦

→
wl].. (32)

As follows from the relations in Equations (25) and (32), the 3D-WHT is reversible, i.e., X could be
restored from the tensor S through the 3D-IWTH. The decomposition in Equation (32) of the tensor X
of size N × N × N corresponds to the Tucker decomposition [1,3,5]:

X =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3
(
→
a r1 ◦

→

b r2 ◦
→
c r3 ). (33)

Here, gr1,r2,r3
are the entries of the core tensor G of size R1 × R2 × R3, and R1, R2, R3, the multilinear

rank of the tensor X. For the case, when it is a cube of size N × N × N, the tensor G is diagonal and of

size R×R×R; gr (for r = 1,2, . . . ,R) are its eigen values, and
→
a r1 ,

→

b r2 ,
→
c r3 , the eigen vectors. In this case,

the Tucker decomposition is transformed into CPD [1], and is represented by the relation below:

X =
R∑

r=1

gr (
→
a r ◦

→

b r ◦
→
c r). (34)

Here, R is the rank of the tensor X, whose value is limited in the range N ≤ R ≤ N2 [19].
The difference between the decompositions, represented by Equations (33) and (32), is in the numbers of
their components; in the first case, it is ≤N2, and in the second, it is ≤N3. This shows the higher energy
concentration in the first components of the H-Tucker decomposition (respectively, CPD) compared to
that of the 3D-WHT.
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5. Hierarchical Cubical Tensor Decomposition through the 3D-FCHT

The comparison of the relations in Equations (14), (15) and (21) shows that the 1D-FWHT and
1D-FCHT are executed in accordance with algorithms with similar structure (Figures 2 and 3). From this,
it follows that for the decomposition of the tensor X of size 8 × 8 × 8 through 3D-FCHT could be used
the three-stage scheme shown in Figure 4. The difference is that in the three decomposition stages,
the 1D-FWHT algorithm from Figure 2 must be replaced by this for the 1D-FCHT, shown in Figure 3.
After the triple execution of the algorithm is obtained the spectrum tensor S (shown on Figure 4) with
elements s(u, v, l), half of which are complex. The 3D-FCHT algorithm, shown in Figure 3, could
be generalized for the case when N = 2n by creating an extended computational graph of n levels.
The number of stages needed for the execution of the 1D-FCHT by analogy with the 3D-FWHT is also
three (not for N = 8 only but also for the next values of N = 16, 32, . . . ).

In the general case, the decomposition of the tensor X of size N × N × N in accordance with
Equation (27) is represented as the sum of the weighted “basic” tensors:

X = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)Cu,v,l = (1/N3)
N−1∑
u=0

N−1∑
v=0

N−1∑
l=0

s(u, v, l)[
→
c u ◦

→
c v ◦

→
c l], (35)

where Cu,v,l =
→
c u ◦

→
c v ◦

→
c l. The vectors which define the tensor Cu,v,l are defined by the relations below:

→
c u = [h(0, u), juh(1, u), . . . , jiuh(i, u), . . . , j(N−1)uh(N− 1, u)]

T
; (36)

→
c v = [h(0, v), jvh(1, v), . . . , jmvh(m, v), . . . , j(N−1)vh(N− 1, v)]

T
; (37)

→
c l = [h(0, l), jlh(1, l), . . . , jklh(k, l), . . . , j(N−1)lh(N− 1, l)]

T
. (38)

In the above relations, the sign functions h(i,u), h(m,v) and h(k,l) for i,m,k = 0, 1, . . . , N−1 are
defined by Equation (19). The spectrum coefficients s(u,v,l) in Equation (35) are calculated through the
direct 3D-CHT, in accordance with the relation:

s(u, v, l) =
N−1∑
i=0

N−1∑
k=0

N−1∑
l=0

x(i, m, k)j(iu+mv+kl)h(i, u)h(m, v)h(k, l) for u, v, l = 0, 1, . . . , N− 1. (39)

The 3D inverse CHT (3D-ICHT) is defined as follows:

x(i, m, k) = (1/N3)
N−1∑
i=0

N−1∑
k=0

N−1∑
l=0

s(u, v, l)j−(iu+mv+kl)h(i, u)h(m, v)h(k, l) for i, m, k = 0, 1, . . . , N− 1. (40)

6. Comparative CC Evaluation for the 3D-FWHT and 3D-FCWHT Algorithm

In this section is evaluated the CC of the decomposition algorithms for a tensor of size N ×N ×N,
when N = 2n.

6.1. CC of the Algorithm Based on the Real Orthogonal Transform, 3D-FWHT

The number of additions, AW(1), needed for the execution of the 1D-WHT based on the “butterfly”
operation for all N2 elements of a couple of matrices, both of size N × N, is:

A1H(1) = 2N2. (41)

For all N/2 couples of matrices in one stage of the hierarchical 3D-FWHT of n levels, this number is:

A1H(n) = (N/2)2N2lg2N = 23nn. (42)
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Then, for the three stages of the hierarchical 3D-FWHT is obtained:

A3H(n) = 3× 23nn. (43)

The needed number of multiplications for the execution of the direct 3D-FWHT is M3H(n) = 0.
Then, the CC of the 3D-FWHT evaluated through the total number of operations O3H(n) is defined by
the relation:

O3H(n) = A3H(n) + M3H(n) = 3× 23nn. (44)

6.2. CC of the Algorithm Based on the Complex Orthogonal Transform, 3D-FCHT

The number of additions for all N2 elements of N/2 couples of matrices of size N × N in one stage
of the hierarchical n-level 1D-FCHT is:

A1C(n) = N2{(3/2)N + (n− 2)[(N/4) + 2(3N/4)]
}
= 23n+1(0.875n− 1). (45)

In the relation above is taken into account that in the first level of the 1D-FCHT are added N real
numbers; in the second level, there are N/2 real numbers, and in the remaining (n-2) levels, N/4 real
and 3N/4 complex numbers. Additionally, the summarizing of two complex numbers is executed as a
sum of two couples of real numbers.

Then, for the three stages of the 3D Fast CHT (3D-FCHT), the number of needed additions is:

A3C(n) = 3× 23nn = 6× 23n(0.875n− 1). (46)

The number of complex multiplications needed for the direct 3D-FCHT is M3C(n) = 0 (the
multiplication of j by a real number is not an arithmetical operation but only needs larger memory in
which to save the so obtained complex number). Then, the CC of the 3D-FCHT, evaluated on the basis
of the global number of needed operations O3C(n), is defined by the relation:

O3C(n) = A3C(n) + M3C(n) = 6× 23n(0.875n− 1). (47)

6.3. CC of the Algorithm Based on the Complex Orthogonal Transform, 3D-DFT

The divisibility of the 3D fast Fourier transform (3D-DFT) permits the tensor decomposition to
be executed through applying the 1D-DFT on all fibers (vectors) obtained in the result of the tensor
transform, called vectorization [1,3]. The vectors are oriented in three directions: x (mode-1), y (mode-2)
and z (mode-3). The calculation of the 1D-DFT is based on the Cooley-Tukey algorithm for Fast Fourier
Transform (FFT) [15]. In the result of the calculation of the radix-2 FFT for an N-dimensional vector,
the number of operations (respectively, CC) is reduced from N2 to Nlog2N = Nn. Then, the CC of the
3D-FFT is O(Nclog2Nc), where Nc = N1 × N2 × N3. In the case that N1 = N2 = N3 = N = 2n, for a
tensor of N3 voxels, the number of the complex additions is A3F(n) = N3 log2 N3 = 3N3n, and that of
the complex multiplications, M3F(n) = (N/2)3 log2 N3 = (3/8)N3n [20]. The multiplication of two
complex numbers is equivalent to four multiplications of real numbers, and one complex addition,
to two additions of real numbers. Then, for the CC of the 3D-FFT is obtained:

O3F(n) = A3F(n) + M3F(n) = 6.75N3n + 0.75N3n = 7.5× 23nn. (48)
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6.4. CC of the Algorithm Based on the 3D Discrete Wavelet Transform, 3D-DWT and H-Tucker

The global number of additions and multiplications needed to calculate the cubical tensor of size
N ×N ×N through the 3D Discrete Wavelet Transform (3D-DWT) of n levels with orthogonal filters
(3, 5), are correspondingly [20]:

A3WT(n) = 18N3
∑n−1

p=0
8−p = 20.57(23n

− 1) and M3WT(n) = 24N3
∑n−1

p=0
8−p = 27.43(23n

− 1). (49)

Then, the CC of the 3D-DWT is:

O3WT(n) = A3WT(n) + M3WT(n) ≈ 48× 23nn. (50)

The H-Tucker decomposition [5] of the cubical tensor of minimum rank R = 2n (as defined in [19]),
size N = 2n and order d = 3 requires OHT (3 × 23n + 2 × 24n) operations. For the TT-decomposition [4],
the CC for the same tensor is OTT (3 × 24n), i.e., it is approximately 1.5 times higher than that for the
H-Tucker. This is why the H-Tucker transform was selected for the CC comparison with the analyzed
3D deterministic orthogonal transforms.

6.5. CC of 3D-FWHT and 3D-FCHT, Compared to 3D-FFT, 3D-DWT and H-Tucker

The relative acceleration ψ(n) of the calculations needed for the execution of the 3D-FWHT,
3D-FCHT and 3D-FFT compared to that of the 3D-DWT and H-Tucker is given in detail below:

3D-FWHT, 3D-FCHT and 3D-FFT compared to 3D-DWT:

ψ1(n) = O3WT(n)/O3H(n) = (48× 23n)/(3× 23nn) ≈ 16/n; (51)

ψ3(n) = O3WT(n)/O3C(n) = (48 × 23n)/[6× 23n(0.875n− 1)] ≈ 8/(0.87n− 1); (52)

ψ5(n) = O3WT(n)/O3F(n) = (48× 23n)/(7.5× 23nn) ≈ 6.4/n. (53)

3D-FWHT, 3D-FCHT and 3D-FFT compared to H-Tucker:

ψ2(n) = OHT(n)/O3H(n) = 23n(2n+1 + 3)/(3× 23nn) ≈ 0.66× (2n/n); (54)

ψ4(n) = OHT(n)/O3C(n) = 23n(2n+1 + 3)/[6× 23n(0.875n− 1)] ≈ (0.33× 2n + 1)/(0.87n− 1); (55)

ψ6(n) = OHT(n)/O3F(n) = 23n(2n+1 + 3)/(7.5× 23nn) ≈ 0.26× (2n/n). (56)

In Figure 6a are shown the graphics of functions ψi(n) for i = 1,3,5, which define the relative CC
of the 3D-FWHT, 3D-FCHT and 3D-FFT towards the 3D-DWT, and in Figure 6b, the functions ψi(n)
for i = 2,4,6, which define the relative CC for same transforms towards the H-Tucker. The graphics in
Figure 6a show that, together with the growth of the hierarchical levels n = log2N, the relative CC of
the 3D-FWHT, 3D-FCHT and 3D-FFT decreases inversely proportionally to n towards the 3D-DWT,
while towards H-Tucker, it grows proportionally to 2n/n. As follows from the graphics on Figure 6b,
the CC of the 3D-FCHT is the lowest compared to that of the 3D-FWHT, H-Tucker and 3D-FFT only
for levels n = 2,3, while for the next levels (n = 4, 5, . . . , 10), the CC of the 3D-FWHT is the lowest.
For the same range of n (from 4 to 10), the value of the functionψ2(n) changes form 2.6 to 67.5, and that
of ψ4(n), from 2.5 to 44. The comparison results permit the choosing of the number of hierarchical
decomposition levels n for which the developed new algorithms 3D-FWHT and 3D-FCHT are more
efficient than 3D-FFT, 3D-DWT and H-Tucker.
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7. Conclusions

In this work is presented one new approach for the decomposition of the 3D tensors of size N
×N ×N, based on the deterministic orthogonal transforms 3D-FWHT and 3D-FCHT. The results of
the comparative analysis for the CC of these decompositions outline their advantages over 3D-FFT,
3D-DWT and H-Tucker. Another advantage is that no iterative calculations are needed, and instead are
used hierarchical calculations only, of low CC. The comparison results show that after the 1D-transform
of the couples of tensor slices (matrices) in three mutually orthogonal directions, the energy is
concentrated into a small number of low-frequency spectrum coefficients. The disadvantage of the
method is that unlike the famous 3D decompositions, which are based on the tensor eigen vectors,
the offered deterministic orthogonal transforms do not ensure minimum MSE, due to low-energy
decomposition component truncation. The choice of the most suitable 3D deterministic hierarchical
tensor decomposition depends on the corresponding application area.

The method could be also used for parallelepiped tensors. In such a case, the original tensor
is divided into cubical sub-tensors, and on each should be applied the presented decomposition.
The incomplete sub-tensors at the main tensor boundaries should be supplemented through 3D
interpolation based on the closest boundary data. Besides, instead of WHT or CHT could be used
orthogonal transforms whose matrices are of size different from 2n.

Future investigations will be aimed at the modeling of the offered algorithms, to permit the full
evaluation of their characteristics. Additionally, the algorithm for tensor decomposition will be further
developed to process tensors of any size (not cubical only). As a result, the most efficient applications
will be detected for various areas such as data compression and filtration; the analysis, recognition and
searching of visual information; deep learning, digital image watermarking, etc.
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Appendix A. Multi-Level Representation of One-Dimensional Hierarchical
Hadamard Transforms

The mathematical descriptions of the n-level 1D-FWHT and 1D-FCHT are given below in
correspondence with the transformation graphs from Figures 2 and 3, for N = 8. The factorization
of the matrices used for the n-level transforms permits their execution based on matrix processors,
which will additionally accelerate all calculations.
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Appendix A.1. Multi-Level Representation of Hierarchical 1D-FWHT

The n-level hierarchical frequency-ordered Walsh-Hadamard matrix HW(N) of size N × N for
N = 2n and n≥3 can be represented as the matrix product of the following 2n sparse matrices:

HW(2n) =
n∏

r=1

Pr(2n)Gr(2n), (A1)

where

P1(2n) = L1(22) ⊗ I(2n−2) =


L1(4) 0 − 0

0 L1(4) − 0
− − − −

0 0 − L1(4)

, L1(4) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, I(2n−2) =


1 0 − 0
0 1 − 0
− − − −

0 0 − 1

; (A2)

Pr(2n) = L2(22) ⊗ I(2n−2) =


L2(4) 0 − 0

0 L2(4) − 0
− − − −

0 0 − L2(4)

, for r = 2, 3, . . . , n, L2(4) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

; (A3)

Pr(2n) are permutation matrices of size 2n
× 2n for level r = 1,2, . . . ,n; I(2n−2) is the identity matrix,

2n−2
× 2n−2;

Gr=1,2(2n) = I(2n−1) ⊗H(2) =


H(2) 0 − 0

0 H(2) − −

− − − −

0 0 − H(2)

, Gr(2n) =


A(2r) 0 − 0

0 A(2r) − −

− − − −

0 0 − A(2r)

for r = 3, 4, . . . , n; (A4)

A(2r) = H(2) ⊗ I(2r−1) =

[
I(2r−1) I(2r−1)

I(2r−1) −I(2r−1)

]
. (A5)

Gr(2n) are the sparse transform matrices of size 2n
× 2n for the levels r = 1, 2, . . . , n, respectively;

The algorithm 1D-FWHT is executed in n consecutive levels:

Y1 = P1(2n)G1(2n)X;
Yr = Pr(2n)Gr(2n)Yr−1 for r = 2, 3, . . . , n−1;

E = Pn(2n)Gn(2n)Yn−1.
(A6)

Here, X and E are the input and the output matrix-columns, respectively, and the matrices Yr for r
= 2, 3, . . . , n−1 are the corresponding intermediate results. The input matrix X is obtained through
slice transform mode −1 of the tensor X. In the result of the 1D-FWHT execution, the so calculated
components of the matrix E build the output tensor E. The matrix representation of the 1D-FWHT is
consecutively applied in all three stages of the 3D transform, in accordance with the algorithm shown
on Figure 4.

Appendix A.2. Multi-Level Representation of Hierarchical 1D-FCHT

The hierarchical n-level frequency-ordered complex Hadamard matrix C(N) of size N × N for N
= 2n and n≥3 could be represented as the product of the following 2n−1 sparse matrices of order N,
in accordance with [14]:

C(2n) = [
n∏

r=3

Pr(2n)Gr(2n)]P1(2n)CJ(2
n)G1(2n), (A7)
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where

G1(2n) =

[
I(2) I(2)
I(2) −I(2)

]
⊗ I(2n−2) =



I(2) I(2) 0 0 0 − 0
I(2) −I(2) 0 0 0 − 0

0 0 I(2) I(2) 0 − −

0 0 I(2) −I(2) 0 − −

0 0 0 0 − 0 0
− − − − 0 I(2) I(2)
− − − − 0 I(2) −I(2)


for I(2) =

[
1 0
0 1

]
; (A8)

CJ(2n) = CJ(4) ⊗ I(2n−2) =


CJ(4) 0 − 0

0 CJ(4) − −

− − − 0
− − 0 CJ(4)

 for CJ(4) =


1 1 0 0
0 0 1 j
1 −1 0 0
0 0 1 −j

. (A9)

I(2n−2) is the identity matrix of size 2n−2
× 2n−2; the sparse matrices Gr(2n) of size 2n

× 2n for
levels r = 2,3, . . . ,n are defined by the relation (A4); the permutation matrix P1(2n), by the relation
(A2); and the permutation matrix Pr(2n) for r = 3,4, . . . ,n−1, by (A3). The permutation matrix Pn(2n) is
used to rearrange the output matrix-column components in ascending order from the lowest to highest
frequencies. For the case when 2n = 8, the matrix Pn(2n) = P2(23) is:

P2(8) =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0


. (A10)

In the general case, for the rearrangement of the components in the n-th level should be inversely
followed the binary code en−1, en−2, . . . , e0 of the sequential number 0, 1, . . . , 2n

−1 of the output
component (i.e., gi = en−i−1 for 0 ≤ i ≤ n−1). Then, the obtained values gn−1, gn−2, . . . , g0 are
transformed from Gray code into binary bn−1, bn−2, . . . , b0, in accordance with the rule [9]:

bn−1 = gn−1, bi = bi−1 ⊕ gi for 0 ≤ i ≤ n− 2. (A11)

The algorithm 1D-FCHT is executed in n consecutive levels:

Y1 = P1(2n)CJ(2n)G1(2
n)X − for levels 1 and 2;

Yr−1 = Pr−1(2n)Gr−1(2n)Yr−2 for n > 3 and r = 3, 4, . . . , n;
E = Pn(2n)Gn(2n)Yn−1− for level n.

(A12)
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