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Abstract: We show that quasiparticles in Weyl semimetals may decay with emission of a single
photon. We study the spectrum of emitted photons and estimate the decay rates.
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1. Introduction

Many modern materials provide condensed matter realizations of the Dirac equation, thus hinting
to the possibility of a quantum field theory description. Among these materials, a special place belongs
to Weyl semimetals (see [1] for a recent review). Most of the Weyl semimetals have a constant axial
vector field in the bulk, which leads to various exciting phenomena: the presence of Fermi arc states
on the boundary and the chiral magnetic effect [2] as a manifestation of the chiral anomaly.

Stretching too wide the analogies to relativistic field theory may, however, be misleading.
The Lorentz invariance in Weyl semimetals is violated by the presence of the axial vector and by the
difference between characteristic propagation speeds for photons and quasiparticles. Thus, processes
that are strictly forbidden in a relativistic physics may become possible in Weyl semimetals. We study
one such process: emission of a single photon by a quasiparticle.

The purpose of this short note is to show that the effect exists and to estimates its magnitude.
To achieve this purpose, we use a lot of simplifying assumptions, which include a small mass
approximation and a particular initial state. As we show below, the effect is not negligible.

This paper is organized as follows. The solutions of Dirac equation are analyzed in the next
section. The kinematic regions for the decay are found in Section 3, while the decay probability is
calculated in Section 4.

2. Spectrum of Quasiparticles

The Dirac Lagrangian that governs free propagation of quasiparticles in Weyl semimetals can be
written as [1]

L = ψ̄
(
iγµ∂′µ −m− bµγµγ5)ψ . (1)
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Here and in what follows, the prime near any vector V means the rescaling of all spatial
components with the Fermi velocity vF,

V′0 = V0, V′a = vFVa, a = 1, 2, 3.

The axial vector bµ is assumed to be space-like. By a suitable choice of the coordinate system,
it can be directed along the positive x3 axis

bµ ≡ δµ3b, b > 0. (2)

The γ-matrices satisfy γµγν + γνγµ = 2gµν with g = diag (+1,−1,−1,−1).
By passing to the Fourier modes ψ ∼ e−ipµxµ

, the Dirac equation is transformed into the
following form (

γµ p′µ −m− bγ3γ5)ψ = 0 (3)

To solve this equation, we introduce the projectors P± = 1
2 (1± γ0γ3γ5) and corresponding

spinors u± = P±ψ. The Dirac equation then reads

(p0 + p′3γ5 −mγ0 + b)u+ + p′jγ0γju− = 0 (4)

(p0 − p′3γ5 −mγ0 − b)u− + p′jγ0γju+ = 0 (5)

where j = 1, 2. This yields(
p2

0 − (~p′)2 −m2 − b2 − 2b(p′3γ5 ∓mγ0)
)
u± = 0 . (6)

Further splitting is done with the help of the following projectors

Q+
+ =

1
2

1 +
p′3γ5 − γ0m√
(p′3)

2 + m2

 (7)

Q−+ =
1
2

1−
p′3γ5 − γ0m√
(p′3)

2 + m2

 (8)

Q+
− =

1
2

1 +
p′3γ5 + γ0m√
(p′3)

2 + m2

 (9)

Q−− =
1
2

1−
p′3γ5 + γ0m√
(p′3)

2 + m2

 (10)

The square roots in the formulas above are all positive.
Let us define

u+
+ = Q+

+u+, u−+ = Q−+u+, u+
− = Q+

−u−, u−− = Q−−u− (11)

Then, for u+
+ and u+

−, the dispersion relation reads

p2
0 − (~p′)2 −m2 − b2 − 2b

√
(p′3)

2 + m2 = 0 . (12)

For u−+ and u−−, we have

p2
0 − (~p′)2 −m2 − b2 + 2b

√
(p′3)

2 + m2 = 0 . (13)
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(See [3] for a comprehensive analysis of dispersion relations in Weyl semimetals.)
One can easily see that u±± are linearly independent and thus form a basis.
In this paper, we analyze the decays of quasiparticles with the emission of a photon. Let us

assume that the initial and final quasiparticles obey the same dispersion law. Let us take Equation (12)
to be more specific. Let us denote the momentum of initial quasiparticle by p and of the final by q.
The momentum of emitted photon is then p− q. We have for the 0th components of momenta√

p′2⊥ + (b +
√

p′23 + m2)2 −
√

q′2⊥ + (b +
√

q′23 + m2)2 = |~p−~q| (14)

Let us use the inequality
|A− B| ≥ ||A| − |B|| (15)

valid for any vectors A and B for A = (p′⊥, b +
√

p′23 + m2) and B = (q′⊥, b +
√

q′23 + m2).√
p′2⊥ + (b +

√
p′23 + m2)2 −

√
q′2⊥ + (b +

√
q′23 + m2)2

≤
√
(p′⊥ − q′⊥)

2 + (
√

p′23 + m2 −
√

q′23 + m2)2

≤
√
(p′⊥ − q′⊥)

2 + (p′3 − q′3)
2

< |~p−~q|.

To pass from the second line to the third, we use the same inequality applied to 2-vectors
A = (p′3, m) and B = (q′3, m). The last line follows from vF < 1. Thus, Equation (14) cannot be satisfied.
Consequently, initial and final quasiparticles have to satisfy different dispersion relations.

Let us suppose that the mass gap parameter m is much smaller than the third components, p′3 and
q′3, of rescaled momenta of the fermions involved in the decay process (starting with the next section,
we assume that m is much smaller than other dimensional parameters as well, while no relations
between the components of momenta and b are imposed). In this approximation, we write

Q+
+ =

1
2

(
1 + γ5 − γ0

m
p′3

)
(16)

Q−+ =
1
2

(
1− γ5 + γ0

m
p′3

)
(17)

Q+
− =

1
2

(
1 + γ5 + γ0

m
p′3

)
(18)

Q−− =
1
2

(
1− γ5 − γ0

m
p′3

)
(19)

Let us take a particular representation of the γ-matrices:

γ0 = τ1 ⊗ 12, γ1 = iτ2 ⊗ σ2, γ2 = −iτ2 ⊗ σ1, γ3 = −iτ3 ⊗ 12,

where {τ} and {σ} are two sets of Pauli matrices. Then,

γ5 = iγ0γ1γ2γ3 = −τ2 ⊗ σ3.
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Up to normalization factors,

u+
+(p) =

[(
1
−i

)
− m

2p′3

(
−i
1

)]
⊗
(

1
0

)
(20)

u−+(p) =

[(
1
i

)
+

m
2p′3

(
i
1

)]
⊗
(

1
0

)
(21)

u+
−(p) =

[(
1
i

)
+

m
2p′3

(
i
1

)]
⊗
(

0
1

)
(22)

u−−(p) =

[(
1
−i

)
− m

2p′3

(
−i
1

)]
⊗
(

0
1

)
(23)

The coupling to electromagnetic field is done by replacing ∂µ → ∂µ − ieAµ. Thus, to compute the
decay amplitudes, we have to evaluate the matrix elements ūγµu′ where u is u+

+ or u+
− and u′ is u−+ or

u−−. Non-zero matrix elements read

(
u+
+

)†
(p)u−+(q) =

im
q′3
− im

p′3
,

(
u+
−
)†
(p)u−−(q) =

im
q′3
− im

p′3
(24)(

u+
+

)†
(p)α1u−−(q) = − m

q′3
+ m

p′3
,

(
u+
−
)†
(p)α1u−+(q) =

m
q′3
− m

p′3
(25)(

u+
+

)†
(p)α2u−−(q) =

im
q′3
− im

p′3
,

(
u+
−
)†
(p)α2u−+(q) =

im
q′3
− im

p′3
(26)(

u+
+

)†
(p)α3u−+(q) =

im
q′3

+ im
p′3

,
(
u+
−
)†
(p)α3u−−(q) = − im

q′3
− im

p′3
, (27)

where~α ≡ γ0~γ. It is important to note that all matrix elements in the equations above are linear in m.
Thus, if one is interested in the leading order of the small mass expansion only, one can compute all
other quantities at m = 0.

The reason behind vanishing of the matrix elements in Equations (24)–(27) at m = 0 is the chiral
symmetry of massless theory. At m = 0, the projectors in Equations (7)–(10) become the chirality
projectors. Consequently, the matrix elements in Equations (24)–(27) become the matrix elements of
electromagnetic field between the states of different chiralities. They have to vanish. Another way to
arrive at the same conclusion is observe that when m = 0 the axial vector field b can be removed by
a chiral gauge transformation. For b = 0, the decays of spinors with emission of a single photon are
forbidden. Note that, since we do not consider any loop diagrams, the axial anomaly does not destroy
the symmetry.

The modes corresponding to u±± are not independent but rather related through the Dirac equation
that has two independent solutions

v+(p) = (p′2 + ip′1)u
+
+ − (p0 + p′3 + b)u+

− (28)

v−(p) = (p′2 + ip′1)u
−
+ − (p0 − p′3 + b)u−− (29)

for m = 0.

3. Kinematic Regions for the Decays

Let us remind that the states with dispersion relation in Equation (12) can decay into the states
with the dispersion relation in Equation (13), and vice versa. Final and initial states cannot have
the same dispersion relation. It is clear that with the sign convention in Equation (2) the states in
Equation (12) allow for higher values of p0 than the states in Equation (13) for the same values of spatial
momenta. This energy surplus is used to create a photon. Based on these qualitative arguments (which
can be confirmed by direct calculations), we conclude that the decays we are looking for is of the initial
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states of the type in Equation (12) with the spinors in Equation (28) to the states in Equation (13) with
the spinors in Equation (29).

Let us make a simplifying assumption that, in the initial state,

p⊥ = 0. (30)

To further simplify the notations, we fix p3 > 0. This does not affect the kinematic analysis since
Equations (12) and (13) are not sensitive to the sign of p3. We do not impose any restrictions on the
momenta q of the final quasiparticle. As explained in the previous section, in our approximation, we
may take m = 0 in analyzing the kinematics. The energy conservation condition yields

p′3 + b =

√
q′⊥

2 +
(
b− |q′3|

)2
+
√
(p3 − q3)2 + q2

⊥. (31)

The momentum q⊥ appears under both square roots on the right hand side of the equation above.
Under the first square root, q2

⊥ is multiplied by v2
F (which is a very small quantity) and thus may be

neglected as compared to q2
⊥ under the second square root (by using twice the obvious inequality√

a ≤
√

a + b ≤
√

a +
√

b valid for any nonnegative a and b, one can easily shows that the relative
error induced by neglecting q′⊥ is less than vF in the whole range of parameters). Thus,

p′3 + b = |b− |q′3||+
√
(p3 − q3)2 + q2

⊥. (32)

This equation can be solved for q⊥ if an only if

p′3 + b− |b− |q′3|| ≥ |p3 − q3|. (33)

This inequality is easy to solve. There are no solutions for q3 < 0. For q3 > 0, one has to
distinguish two cases:

b > q′3 : |p′3 − q′3| < 2p′3vF, (34)

b < q′3 : |p′3 − q′3| < 2bvF . (35)

We neglect v2
F corrections on the right hand sides of both inequalities. Both regions are quite

narrow, and the frequencies ω of emitted photons are also peaked. In the region in Equation (34),
ω ' p′3 + q′3 ' 2p′3., while in Equation (35) ω ' p′3 − q′3 + 2b ' 2b.

Let us estimate the effect of a non-unit refraction index n. The second square root in Equation (31),
which represents the energy of emitted photon, has to be divided by n. The initial form of this equation
is recovered with the replacements vF → nvF and b → nb. The analysis proceeds exactly as before.
After returning to the original parameters, the inequalities in Equations (34) and (35) receive the factors
of n on the right hand sides. Thus, the kinematic regions become n times wider.

4. Decay Rates in the Small Mass Approximation

We are interested in the decays where the initial fermion is in the state described by v+(p), while in
the final state we have v−(q). Since assume that p⊥ = 0, we can also take u+

−(p) to describe the initial
state (see Equation (28)). Relevant matrix elements of the electromagnetic field are easily computed:(

u+
−(p)

)†v−(q) = −(q0 − q′3 + b)
(

im
q′3
− im

p′3

)
(36)(

u+
−(p)

)†
α1v−(q) = (q′2 + iq′1)

(
m
q′3
− m

p′3

)
(37)(

u+
−(p)

)†
α2v−(q) = (q′2 + iq′1)

(
im
q′3
− im

p′3

)
(38)(

u+
−(p)

)†
α3v−(q) = (q0 − q′3 + b)

(
im
q′3

+ im
p′3

)
(39)
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One can check that these matrix elements satisfy the transversality condition(
u+
−(p)

)†
αµv−(q)(q′ − p′)µ = 0 (40)

to the linear order in m.
Let us estimate the decay probabilities. All relevant formulas for normalizations, integration

measures, etc. are taken from [4]. The normalized initial and final fermion states read

ψi(p) = Niu+
−(p), Ni = 2−1/2 (41)

ψf(q) = Nfv−(q), Nf = (4q0(q0 + b− q′3))
−1/2 (42)

respectively. The emitted photon may be in two polarization states given by the formulas

A(1)(k) = Np,1(0, k2,−k1, 0), Np,1 = (2k2
⊥k0)

−1/2 (43)

A(2)(k) = Np,2(0, k1k2
3, k2k2

3,−k3(k2
1 + k2

2)), Np,2 = (2k3
0k2
⊥k2

3)
−1/2. (44)

Here, k denotes the 3-momentum of photon. These two states correspond to the TE and TM
modes with respect to the x3 direction.

The differential decay probability

dw =
1

(2π)4 |A|
2δ4(p− q− k)

d3q
(2π)3

d3k
(2π)3 . (45)

is expressed though the interaction vertex computed with normalized states

A ≡ eA′i(k)ψi(p)†αiψf(q) . (46)

To get the full decay probability, we have to integrate Equation (45) over the spatial components
of k and q. The integration over k removes three of the four delta functions and enforces the spatial
momentum conservation. To compute the integral over q, we write d3q = d2q⊥dq3 = πdq2

⊥dq3 (where
we use the rotational symmetry of integrand to integrate over the angular variable on q⊥ plane).
To integrate over dq2

⊥, we use the remaining delta function, so that q2
⊥ has to be expressed through

other momenta with the help of equation√
(p3 − q3)2 + q2

⊥ + |b− |q′3|| = p′3 + b. (47)

In this equation, we neglect q′2⊥ as compared to q2
⊥ on the left hand side. This integration

also produces a Jacobian factor 2k0 and enforces the integration limits for q3 as prescribed by
Equations (34) and (35).

The vertices in Equation (46) for the photons described by Equations (43) and (44) read

A(1) = eNiNfNp,1
m(q

′2
1 + q

′2
2 )(q

′
3 − p′3)

q′3 p′3
(48)

A(2) = eNiNfNp,2
im

v2
F p′3q′3

q′2⊥(q
′
3 − p′3)

[
(q′3 − p′3)

2 + (q′3 + p′3)(q0 − q′3 + b)
]

, (49)

respectively.
Since the kinematic regions in Equations (34) and (35) are very narrow, without losing too much

we may suppose that q′3 and p′3 are both larger or both smaller than b. In the region in Equation (35),
this means p′3 > b. For simplicity, we also assume that p′3 − b� vFb. This is a technical assumption
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which ensures that the q′3 is in the kinematic region in Equation (35) and allows performing all
integrations analytically. Here, we can use the following approximate relations

q′2⊥ ' 4b2v2
F − (q′3 − p′3)

2, (50)

q0 ' p′3 − b, (51)

q0 + b− q′3 '
q′2⊥

2(p′3 − b)
. (52)

The corrections to these formulas are of higher order in vF. With these approximate formulas, one
can derive simple analytic formulas for the total decay probabilities. For final photons described by
Equation (43), we have

W (1)
p′3>b =

∫
dw '

e2m2v2
F

8(2π)9 p′43

∫ p3+2b

p3−2b
dq3(q′3 − p′3)

2 =
2e2m2v4

Fb3

3(2π)9 p′43
. (53)

Similarly, for the second photon polarization in Equation (44), one obtains

W (2)
p′3>b '

4e2m2v4
Fb3(3b2 − 10bp′3 + 15p′23 )

15(2π)9 p′43 (p′3 − b)2
(54)

In the other region in Equation (34), when p′3, q′3 < b and b− p′3 � vFb, we can write

q′2⊥ ' 4p′3v2
F − (q′3 − p′3)

2, (55)

q0 ' b− p′3, (56)

q0 + b− q′3 ' 2(b− p′3). (57)

The total decay probabilities become

W (1)
p′3<b '

4e2m2v6
F p′3

15(2π)9(b− p′3)
2 . (58)

for the polarization in Equation (43) and

W (2)
p′3<b '

16e2m2v2
F

3(2π)9 p′3
(59)

for the polarization in Equation (44), respectively.
Note that these formulas have been derived assuming that |b − p′3| is finite. The apparent

singularity in Equations (58) and (54) at b = p′3 signals of a crossover behavior to a regime with a
different dependence on vF.

To estimate the order of this effect, let us take vF = (500)−1, m = 0.1 eV and p′3 = 0.3 eV. Then,

W (2)
p′3<b ' 800 s−1. This is a small number. However, there are ways to improve this result. As explained

at the end of Section 3, a non-unit refraction index of the material widens the allowed kinematic regions.
This can lead to a significant effect after the integration. In addition, getting rid of the small mass
approximation is going to increase the decay probability (since this means going away from the point
m = 0 where the decay amplitudes vanish). Without the small mass approximation, analytical results
are hardly possible. One would have to rely on numerical methods. We may hope to get in this way
the lifetime of the order of about 10 ms. To compare, we note that this is already of the same order as
the characteristic time scale of electronic cooling through interaction with phonons in Weyl and Dirac
semimetals [5]. This makes the effect phenomenologically significant, especially taking into account a
very specific spectrum of emitted photons that have their frequencies sharply peaked at 2p′3.
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The other decay probabilities in Equations (53), (58), and (54) are damped by higher powers of
v2

F and thus are less important. Unfortunately, we cannot suggest any physical explanation for the
distribution of powers of vF.

We have to stress that we have studied just a single possible relative orientation (parallel) of the
initial state momentum and the axial vector b. By repeating the computations of Section 3, one can
easily show that in the opposite case: when ~p is normal to~b, the kinematic region for m = 0 is empty.
Thus, there are no decays at least in the m2 order of the small mass expansion. Therefore, we may
assume that the case of the initial momentum ~p parallel to~b indeed represents the main effect.

The temporal component of b plays the role of a chiral chemical potential. The physics in this case
is quite different to what we have considered here. One cannot however exclude interesting decays
due to the b0 component.

5. Conclusions

The main message of this work is that, in contrast to the intuition obtained through working in
Lorentz invariant field theories, the quasiparticles in Weyl semimetals may decay emitting a single
photon. We study this effect in a small mass approximations and demonstrated that it is small but
not too small. We argue that giving up the small mass approximation and taking into account the
refraction index of the bulk of Weyl semimetals may lead to a considerable enhancement of the decay
probability. Besides, it is interesting to study the effects of chemical potential and of the temperature.
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