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Abstract: This work presents an analysis of low-visibility event persistence and prediction at
Villanubla Airport (Valladolid, Spain), considering Runway Visual Range (RVR) time series in winter.
The analysis covers long- and short-term persistence and prediction of the series, with different
approaches. In the case of long-term analysis, a Detrended Fluctuation Analysis (DFA) approach
is applied in order to estimate large-scale RVR time series similarities. The short-term persistence
analysis of low-visibility events is evaluated by means of a Markov chain analysis of the binary time
series associated with low-visibility events. We finally discuss an hourly short-term prediction of
low-visibility events, using different approaches, some of them coming from the persistence analysis
through Markov chain models, and others based on Machine Learning (ML) techniques. We show
that a Mixture of Experts approach involving persistence-based methods and Machine Learning
techniques provides the best results in this prediction problem.

Keywords: low-visibility events; radiation fog; persistence analysis; detrended fluctuation analysis;
markov chains; machine learning algorithms

1. Introduction

Very low-visibility events due to fog are classified among severe weather conditions that most
affect air traffic and flight operations at airports [1-3], since they can dramatically reduce the runway
capacity [4]. In foggy conditions, airport managers activate specific low-visibility procedures to sustain
safe operations. In fact, in extreme situations, the reduced visibility can cause the suspension of the
runway operations, or even the temporary closure of the complete airport. Forecasting low-visibility
conditions is therefore a recurrent problem for airport managers. It is, however, a very difficult task
requiring both knowledge of the meteorological causes of fog formation, and a thorough awareness of
the local topography.

Very different techniques have been developed to help forecasters improve the prediction
of reduced-visibility events at airports facilities. Numerical weather prediction is one of the
most widely-used approaches. However, as stated by many authors [5-8], the forecasting of fog
events by numerical weather prediction is particularly difficult, in part because fog formation is
extremely sensitive to small-scale variations of atmospheric variables, such as wind-shifts or changes
in the low-level stability. Other approaches consist of using statistical methods for predicting
low-visibility events. One of the first attempts was the use of linear regression [9], but the recent
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development of Machine Learning (ML) has produced high-quality algorithms for the prediction of
low-visibility events, based on non-linear approaches such as artificial neural networks, fuzzy logic,
Bayesian networks or support vector machines [10-17].

In spite of this huge work on different prediction techniques, there are some aspects related to
low-visibility events which have not been exploited enough in the developing of new forecasting
algorithms. One of them is, without doubt, the fact that low-visibility events due to fog are highly
persistent phenomena. The persistence of these events is a well known fact, but very little work on
exploiting this fact in prediction systems can be found in the literature [18]. Persistence analysis of other
atmospheric and oceanic phenomena has been frequent [19,20], with recent studies taking into account
rainfall and hydrology [21,22], wind [23-25], sea surface temperature [26] or solar radiation [27,28]
time series, but not for fog or mist events.

In this paper we carry out a complete study of persistence in low-visibility events due to fog at
Villanubla Airport (Valladolid, Spain). This area is well-known for persistent radiation fog episodes in
winter, which sometimes compromise the airport activity. Our analysis takes into account long-term
and short-term fog persistence, and its short-term prediction, using different techniques such as
Detrended Fluctuation Analysis (DFA), Markov Chain Models (MCMs) analysis and ML algorithms.
After the persistence analysis, we will show how prediction methods based on persistence are extremely
efficient for very short-term prediction of fog events. This prediction problem has been tackled in this
paper as a binary classification task that is highly unbalanced (there are much more samples of the
class “no-fog” than of the class “low-visibility event” (fog)). We have then designed a high quality
approach for low-visibility events prediction based on a Mixture of Experts (MOE), which includes the
Naive persistence operator, and several ML algorithms with a procedure to balance the dataset.

The remainder of the paper is structured in the following way: the next section presents the
available data at Villanubla Airport, and the description of the methods considered for this analysis.
Section 3 shows the results on persistence in low-visibility events carried out both in long-term and
short-term time horizons. Section 4 discusses the main results obtained in this research, and closes the
paper with some concluding remarks about this work. Finally, note that we have included a list of
acronyms at the end of the manuscript to make easier its reading.

2. Data and Methods

2.1. Data Description

We consider the prediction of low-visibility events at Villanubla Airport, Spain (41.70 N, 4.88 W),
see Figure 1. This area is well-known for its low-visibility episodes, with the radiation fog as the
most frequent fog phenomenon [7], due to the geographical and climatological characteristics of the
zone. This zone is located in a valley surrounded by hills (“Montes Torozos”), and near the Duero
river basin [29]. These two conditions, together with the low winter temperatures observed in the
area, are good ingredients for the formation of radiation fog in winter [30]. The target variable to
analyze low-visibility events is the Runway Visual Range (RVR) of the airport, obtained from three
visibilimeters deployed along the airport runway (the touchdown zone, the mid-point and stop-end
of the runway), which belong to the aeronautical observation network of the Meteorological State
Agency of Spain. These instruments are managed under a quality-management system certified by
ISO 9001:2008, which guarantees measurement accuracy, and ensures the international standards
compliance of the measurements.
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Figure 1. Location of Villanubla airport, Valladolid, Spain; (a) Location in the Iberian Peninsula;
(b) Orography of Valladolid area.

We consider hourly RVR data at Villanubla airport from years 2008 to 2013 during the months
when radiation fog is most intense according to [30] (November, December, January and February).
To study the occurrence of reduced-visibility conditions, we also use in some cases data from a 100-m
meteorological tower at the Research Centre for the Lower Atmosphere (CIBA), which is located about
13 km north-north-west from the airport. Specifically, these exogenous variables are used as inputs
in the ML techniques applied, in order to take into account the atmospheric state. The exogenous
variables provide relevant atmospheric-state information to predict radiation fog, such as temperature,
wind speed, atmospheric pressure or relative humidity in the zone. The complete list of exogenous and
target variables considered in this paper are summarized in Table 1. We have employed four previous
time steps (time windows for input variables) to take into account these predictive variables (t -1,
t-2,t-3and t - 4), in an attempt to obtain better results in the prediction than the Naive persistence
operator described later on. Finally, note that since the RVR time series is highly unbalanced (2027 fog
events versus 11,261 no-fog events) we have applied an over-sampling technique, SMOTE (Synthetic
Minority Over-sampling Technique), as will be further explained in Section 2.4.3.

Table 1. Description of the input variables considered in the Machine Learning (ML) algorithms.

Variable Height above the Ground (m) Units Instrument
Temperature 97,96.6, 35.5,20.5,10,10.5,2.3, 2 °C Riso P2448A and P2642A
Relative Humidity 97,10, 2 % Vaissala HMP45A
Wind speed 98.6,74.6,34.6,9.6,2.2 m/s Riso P2548A
Wind direction 98.6,74.6,34.6,9.6 degrees true Riso P2021A
Atmospheric pressure 2 hPa Vaisala PA21
RVR (target) 2 m Vaisala FD12

2.2. Methods for Long-Term Persistence: Detrended Fluctuation Analysis.

The DFA algorithm was first proposed by Peng et al., in two seminal papers [31,32]. Since then, it has
been frequently used to analyze long-term persistence of time series in different applications [22,33].
The DFA algorithm consists of three main steps [34]:

(1)  We first remove the periodic annual cycle of the time series, by the procedure explained in detail
in [22]. Adapted to our problem, the process consists of standardizing the input time series x; of
length N as follows:

xj =" (1)

where x; stands for the original hourly RVR time series, ¥; represents the mean value of the
hourly RVR time series and ¢; is its standard deviation.
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(2) Then, the time series profile Y; is computed as follows:

j

=1

The profile Y; is divided into Ns = [gj non-overlapping segments {Y]k | 1 <k < Ns} of equal
length s.
For each segment Y]k, we calculate the local least squares straight-line Z;.‘ which measures its local

trend. As a result, we obtain a linear piece-wise function Z]S compounding each linear fitting:

js:[zjl Z;-‘ ZJNS], ®3)

where the superscript s refers to the time window length used to the linear fitting of each piece.

(3) We then obtain the so-called fluctuation as the root-mean-square error from this linear piece-wise
function 2]5 and the profile Y}, varying the time window length s:

)

At the time scale range where the scaling holds, F(s) increases with the time window s following
a power law F(s) o s*. Thus, the fluctuation F(s) versus the time scale s would be depicted
as a straight line in a log-log plot. The slope of the fitted linear regression line is the scaling
exponent «, also called correlation exponent. The scaling exponent &« in the DFA method is
a generalization of the Hurst exponent (H) [35], and in this context they have the same meaning.
The Hurst coefficient is frequently used as a measure of long-term persistence of time series,
i.e.,, H (or a in our case) provides a measure of possible simple power law scaling of the power
spectrum S( f) with frequency f (sometimes referred to as “self-similar” behavior [36]):

S(f)~fP )
where the scaling exponent f is given by 8 = 2a - 1.

Note that when the coefficient & = 0.5, the time series is uncorrelated, which means that there
is no long-term persistence in the time series. For larger values of a (0.5 < a < 1), the time
series is positively long-term correlated, which also means the long-term persistence exists
across the corresponding scale range. When 0 < a < 0.5 the process is anti-persistent. For a > 1,
the persistence becomes so extreme that the time series exhibits non-stationary behavior.

2.3. Methods for Short-Term Persistence: Markov Chain Models

Many statistical methods have been used for meteorological forecasting [37]. One of the
statistical techniques employed in short-term prediction of meteorological time series are MCMs.
The great advantage of using MCMs is its low computational cost, in addition to the possibility
of doing an immediate forecasting after the observations, because they use local information of
the meteorological variables [38]. We can find some chain-dependent processes in meteorology
(e.g., temperature, precipitation amount, etc.) which can be explained in terms of an underlying
first-order Markov chain [39].

In the present case of low-visibility events, we can consider a discrete binary variable with
two possible states. That is, the RVR time series, converted to a binary variable, can take value 1,
which means fog (low-visibility event), or 0, which means no-fog. Consequently, assuming that the
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occurrence probability of fog at present time depends on the previous hour state (first-order Markov
chain), the transition probabilities of hourly fog can be divided into the following four cases:

poo=P(X¢=0]|X;1=0)

p01=P(Xt=1|Xt_1=0) (6)
p10=P(Xt=O|Xt_1=1) '

pr1=P(Xi=1|X;1=1)

An explanatory diagram is represented in Figure 2 for a first-order and N-order MCM.

Figure 2. Diagrams representing a two-state (a) First-order; (b) N-order Markov process.

We estimate the transition probabilities through the conditional relative frequencies, as follows:

A _ Npo ~ _ nm

Poo = 5, Po1 = 3, @)
~ _ Mo A _ N o7

P1o =% P11 =757

where 7;; represents the number of transitions from state i to state j, and 7; is the number of states
i followed by any other data point, i.e., n; = njp + n;1. The subscripts refer to the state, i,j € {0,1}.
Note that the Naive persistence operator is a special case of first-order Markov chain, whose formula
x(t+1) = x(t) forces the state preservation at any time, and it can also be described with the following

transition probability matrix:
10
P= .
(o 1) ®

For a higher-order MCM, the transition probabilities take into account the states at the time
windows considered. The memoryless property characteristic of the first-order Markov chain breaks
for the higher-order chains. For example, in a second-order Markov chain, the states at times ¢ - 2 and
t —1 are considered to predict the state t; or in a third-order Markov chain, the states at times -3,
t-2and t -1 are taken into account to predict the state t. The transition probabilities for second and
third-order respectively are defined as:

Piyip—i = P(Xi =i | Xy_1 =11, Xy =12), 1,i1,i2€{0,1} )

Pisinip—i =P (Xe =i | Xp1 =iy, X2 =12, X43=13), 1,i1,i2,i3€{0,1} (10)

and so on for higher-orders:

Pasi =P (Xp=i|Xpg =1, Xeen =an), i€{0,1},a= (a1, ayn) {01}V, (11)
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where « is a tuple of N elements which encompass all time windows considered.

2.4. Machine Learning Techniques for Classification and Prediction

Two state-of-the-art ML classification algorithms are considered in this work to solve the
prediction of low-visibility events at Valladolid airport: Support Vector Machines (SVMs) [40,41],
and Extreme Learning Machines (ELMs) [42,43]. The SVM is a well-established statistical learning
technique, based on kernels. The ELM is a very fast-training algorithm, since it is based on
a pseudo-inverse calculation. Note that both algorithms are focused on solving classification
problems [44], i.e., in this paper we tackle the low-visibility prediction as a classification task.

2.4.1. Support Vector Machines

The formulation of the standard SVM is defined as a maximum margin classifier, that is, a classifier
whose decision function is a hyperplane that maximally separates samples from different classes (in this
paper class 1 is understood to be a “low-visibility” state, and class -1 (equivalent to 0) stands for
“no-fog” state). Given a labeled training data set {(x;,y;) }/_;, where x; € RN and y; € {~1, +1},and given
a non-linear mapping ¢(-) : RN > R? (N « p), the SVM method solves:

1 N
in - +C ;
min 51wl Z;Cz

s.t. yl((w’¢(xl))+b)+€1_120 i:1/~--1n
¢i>0 i=1,...,n

, (12)

where w and b define a separating hyperplane in RN and ¢; are positive slack variables enabling to
deal with permitted errors, see Figure 3.

Maximum separating hyperplane
in feature Hilbert space H
A

e o ©

\

(@]

Figure 3. Support Vector Machine (SVM) Illustration: Linear decision hyperplane in a non-linearly
transformed feature space H. The slack variables ¢; are included to define the soft-margin.

Note that the objective function of the problem Equation (12) is composed of two terms with
a clear interpretation: one term tries to minimize the committed errors, 2111 ¢;, while the other one
minimizes the Euclidean norm of the model weights, |w/|?>, which can be shown to be equivalent to
the maximization of the margin (separation between classes). Note that one could just maximize the
margin without including the errors in the objective function, driving to the so-called hard margin SVM.
By including the slack variables ¢;, it is possible to relax the problem, managing non-separable data
and yielding to the so-called soft margin SVM, which minimizes the training error traded off against
the margin.
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An appropriate choice of the non-linear mapping ¢ : RN + R? guarantees that the transformed
samples are more likely to be linearly separable in the higher-dimension feature space R? (N « p).
The regularization hyperparameter C controls the generalization capability of the classifier, and it
must be usually tuned by the user. The primal problem giving by Equation (12) is solved by its dual
problem counterpart [45] driving to the following decision function for any test sample x, € RN:

n
f(x*) :Sgn(2yiai1<(xirx*)+b)/ (13)
iz
where «; are the Lagrange multipliers corresponding to the constraints of the primal problem (12).
The so-called support vectors (SVs) are those training samples x; with a corresponding non-zero
Lagrange multiplier a; # 0. The function K(x;,x.) is the scalar product of the high-order space
R? mapped from the sample space. It projects any test sample x, into the support vectors x; mapped
to the higher-dimensional space. Finally, the bias term b is calculated using any of the constraints
corresponding to an unbounded Lagrange multiplier as:

b= (vi —(@(xi),w)), (14)

==
M=

I
Juy

1

where k is the number of unbounded Lagrange multipliers (i.e., 0 < a; < C) and w = 37, y;a;¢p(x;) [45].
The specific SVM functions used in this paper are the one supported by the MATLAB language
program [46].

2.4.2. Extreme-Learning Machines

An extreme-learning machine [42] is a fast training method for neural networks, which can be
applied to feed-forward perceptron structures, Figure 4. In the ELM, the network weights of the
first layer are randomly set, and after this, a pseudo-inverse of the hidden-layer output matrix is
obtained. This pseudo-inverse is then used to obtain the weights of the output layer which fit best
with the objective values. The advantage of this method is not only that it is extremely fast, but also
that it obtains competitive results versus other established approaches, such as classical training for
multi-layer perceptrons, or even SVM algorithms, etc. The universal-approximation capability of the
ELM have been proven in [43].

hidden nodes

Figure 4. Multi-layer perceptron structure considered in the Extreme Learning Machine (ELM) algorithm.

The ELM algorithm can be summarized by considering a training set {(x;, ;) | x; € RN, y; €
{-1, +1}, 1 <i < n}, an activation function g(x), and a given number of hidden nodes N, and applying
the following steps:
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1. Randomly assign ELM weights values w; and the bias b;, where i = 1,...,N, according to
a uniform probability distribution in the interval [-1,1].
2. Calculate the hidden-layer output matrix H, defined as follows:

g(W1X1 +b1) g(wNX1+bN)
H-= : : . (15)

gWixpy +b1) - g(Wyxu+byg) 1, 5

3. Finally, calculate the output weight vector B as follows:
B=H'T, (16)

where H is the Moore-Penrose inverse of the matrix H [42], and T is the training output vector,

T= [yl,...,yn]T.

Note that the number of hidden nodes N is a free parameter to be set before the training of the
ELM algorithm, and must be estimated for obtaining good results by scanning a range of N. In this
paper, we use the ELM implemented in Matlab by G. B. Huang, freely available at [47].

2.4.3. Synthetic Minority Over-Sampling Technique

Several studies have demonstrated that the treatment of the unbalanced data set samples
improve the results obtained by the classifier’s training. Synthetic Minority Over-sampling Technique
(SMOTE) [48] is a well-known technique for over-sampling the minority class in unbalanced
classification problems. The objective is to increase the number of samples of the minority class by
means of the formation of synthetic samples, working on the characteristics space. An over-sampling
is applied to the minority class by means of the selection of every sample in this class and introducing
synthetic samples as the k nearest neighbors (KNN) of the same class. Depending on the over-sampling
applied, neighbors will be selected randomly from their KNN. In our case, a implementation with
k = 51s used. The generation process of the synthetic samples is as follows:

Let X = [x1,...,xn] be a vector of characteristics and N the number of features.
Let X be a sample with N features for which its KNN are calculated.

Let Y be one of its KNN with the same size.

The synthetic sample, Z, would be:

L .

Z=X+(X-Y)xD, (17)

where D ~ U(0,1) is a uniform random variable equally distributed in the interval (0,1),
which causes the selection of an aleatory point in the segment between two particular features.

This approach makes that the decision region of the minority class becomes most general. That is,
SMOTE balances the series, equating the minority class with the majority class. This will avert the
classification of the majority class more accurately than the minority class. The application of the
SMOTE leads to important improvements in the results obtained for for the detection of low-visibility
events, as can be seen in Section 3.2.

3. Experiments and Results

We present here the results of this study of low-visibility event persistence at Villanubla airport.
We distinguish between long-term and show-term persistence, due to the different nature of their
analyses: for long-term persistence, we show the results of the DFA approach, which provides its
correlation exponent, a (see Section 2.2). The short-term persistence is evaluated by means of the MCM
transition probabilities.
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We also consider a short-term fog prediction problem, where the prediction capabilities of MCM
and ML techniques are evaluated, in comparison to the Naive persistence operator (x(t+1) = x(t)),
which is a strong algorithm at short-term (hourly) scale. In this prediction problem, we have
considered the following statistic metrics in order to evaluate the different prediction systems proposed:
accuracy (ACC), true positive rate (TPR), true negative rate (TNR) and F1 score (F1S). For this
problem, we represent a low-visibility event with a positive state (state 1) which corresponds with
a RVR <2000 m. On the other hand, the absence of fog is represented with a negative state of the
binary variable associated with RVR (state 0 or -1 for the ML algorithms). In the formulas describing
the statistic metrics, we use the notation: TP = True Positive; TN = True Negative; FP = False Positive;
FN = False Negative; P = number of real positives; N = number of real negatives.

ACC shows how close to the actual time series are the predicted time series. It is calculated as:

TP + TN
ACC= ——— 18
P+N (18)
TPR measures the proportion of actual positives that are correctly identified as positives:
TP
TPR = ——— 19
TP + FN (19)
TNR measures the proportion of actual negatives that are correctly identified as negatives:
TN
TNR = — 20
TN + FP (20)
Finally, the F1S is a measure of a test’s accuracy, and reaches its best value at 1:
2TP
F1IS= ————— (21)
2TP + FP + FN

See references [49] and [50] for more details on these metrics.

3.1. Results: Long-Term Persistence Analysis

In order to evaluate the long-term persistence of low-visibility time series, we apply the DFA
algorithm described in Section 2.2 to the complete time series of winter RVR, in the complete period
considered (2008-2013) (Figure 5a), considering segments of length s = 5 h. The result of the DFA
analysis carried out is shown in Figure 5b where the log-log graph of the fluctuation F(s) is depicted.
It shows a marked long-term persistence, with two dominating scaling ranges, separated by a crossover
at a characteristic time of 10 h. The DFA exponent below this crossover point is &« = 1.37 > 0.5,
which reveals a very strong correlation of the RVR time series. Above this crossover point, the DFA
exponent is & = 0.97 > 0.5, which still shows a high correlation of the RVR time series, but smaller than
below the 10 h characteristic time.
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Figure 5. Runway Visual Range (RVR) time series and Detrended Fluctuation Analysis (DFA) carried
out; (a) RVR time series in winter at Villanubla airport; (b) DFA obtained from the analysis. The DFA
exponent is 1.37 in times under 10 h, and 0.97 over this characteristic time, which indicates the strong
correlation of the RVR signal.

3.2. Results: Short-Term Persistence Analysis

Both the short-term persistence analysis and the subsequent fog prediction (classification problem)
discussed in this paper, involve binary states of the fog event (fog/non-fog series). Thus, we have to
binarize the RVR series. Let the series {x; | 1 <k < N} be the RVR time series considered. We then
apply the following binarizing procedure:

if  x;<2000-€

1
%= { {0/-1} otherwise @2)

where sy is the actual binary time series which depends on a given binarizing threshold € (0 m in this
case, so we consider as low-visibility event any visibilimeter measurement strictly under 2000 m).
Recall that 2000 m is the observational limit of the visibilimeters at Valladolid airport (see Figure 5a
above). The non-fog binary value could be 0 or —1 depending on the evaluated method (0 for MCM,
but -1 for ML algorithms).

With this in mind, we report here the results obtained in the short-term persistence analysis of
low-visibility events at Villanubla airport, and in the next section the results of the fog prediction
problem. A K-fold cross-validation procedure has been carried out, to ensure that the results are
independent from the partition in training and test data [51]. The folding has been set to K = 5 which
corresponds to a 80% to train and 20% to test. Note that this data partition has been used both for this
persistence analysis and also for the short-term prediction results reported in the next section.

In this case, the evaluation of the short-term persistence will be carried out by using the matrix of
transition probabilities of the MCM, shown in Section 2.3. Note that the elements of the main diagonal
can be used to estimate the persistence, as follows:

1
P =5 (poo + p11) (23)
Note that in the case of higher-order MCM we estimate the short-term persistence as
1
P= E(Paoﬁo + Pai) (24)
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where a0 = (0,---,0) stands for a tuple of N elements equal to 0, and al = (1,---,1) stands for a tuple of

N elements equal to 1.

Tables 2-5 show the transition probabilities and short-term persistence estimation (in the training
set), for low-visibility events at Valladolid airport. It is possible to observe that low visibility events
have a clear short-term persistence pattern, more pronounced when higher-order MCM are taken
into account. As can be seen in Table 5 (4"?-order MCM), the persistence of the low visibility event,
given that the four previous hours have had low visibility (i.e., event 1111 — 1), is over 87%. With
this value, the total persistence P is near 92%. The short-term persistence pattern is clear even when
the 1st order MCM is considered, in this case with a value of P close to 85%, though in this case the
persistence of the low-visibility case (that is, the probability of transition from a foggy state to another
foggy state, a' — 1) is lower than for higher-orders MCM, only 75% (see Table 2).

Table 2. Transition probabilities for the 1st order Markov Chain Models (MCM). Boldface figures stand
for pop and p11, respectively.

P = 1(Poo + Pr1)

0 1
85.47 %
0 95.57 4.43
1 24.63  75.37

Table 3. Transition probabilities for the 2nd order MCM. Boldface figures stand for pgg_.o and
P11-1, respectively.

P = 2(Poo—o + P111)

0 1
89.82 %
00 95.90 4.10
01 50.22 49.78
10 88.60 11.40
11 16.26  83.74

Table 4. Transition probabilities for the 3rd order MCM. Boldface figures stand for pggo—.o and
P111-1, respectively.

P = 2(Poo0—0 + P111-1)

0 1
91.36 %

000 96.01 4.00
001 51.85 48.15
010 91.17 8.83
011 31.52 68.48
100 9325 6.75
101 37.30 62.70
110 86.01 14.00

111 13.29 86.71
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Table 5. Transition probabilities for the 4th order MCM. Boldface figures stand for pggop—o and
P1111-1, Tespectively.

1
P = 5(Poooo—0 + P1111-1)

0 1
91.76%

0000 96.13  3.87
0001 50.54 49.46
0010 91.19 881
0011 3345 66.55
0100 9441 5.59
0101 4549 54.51
0110 90.04 9.96
0111 17.69 82.31
1000 93.22 6.78
1001 69.77 30.23
1010 90.43 9.56
1011 20.13  79.87
1100 92.02 798
1101 3191 68.09
1110 84.19 15.81
1111 12.62 87.38

3.3. Results: Short-Term Prediction

Once we have shown the high persistence of the low-visibility phenomenon at Valladolid airport,
we will test whether this property can be exploited to improve short-term low-visibility prediction in
the zone, by solving a classification task.

First, note that a prediction exclusively based on previous values of low-visibility events (or in
the binary states of the system) is possible by using the probability matrices of the MCM. In fact,
we can use the Naive persistence operator performance (obtained by means of a first-order MCM with
transition matrix given by Equation (8)) as a baseline prediction algorithm. It obtains good results
predicting low-visibility events with an hourly time window, as expected, with accuracy values over
0.92. Note that, with this level of accuracy, the Naive persistence operator constitutes a very good
prediction system, which is difficult to outperform even when adding exogenous variables.

The atmospheric state and dynamics will be considered in the prediction by means of the ML
methods, which are trained with the input variables reported in Table 1. We will also consider both
persistence and atmospheric state by means of the Mixture of Experts (MOE) approach. The idea of
this analysis is to show that, in spite of persistence being extremely high in this problem, the use of
hybrid models combining atmospheric state and persistence obtain the best results in the prediction of
low-visibility events at Valladolid airport.

The result of the Naive persistence operator (baseline algorithm) is compared to those by other
techniques employed in this analysis for different time windows in the input data (t -1, f -2, ¢ -3 and
t —4), see Table 6. Note that for the MCM and ELM approaches a Monte Carlo simulation of 30 runs
(to ensure the statistical significance of the results) has been carried out, hence, the results are obtained
from the mean of these 30 runs (the rest of the algorithms are deterministic, so it is not necessary to
run them more than once). When the results of the different techniques have been obtained separately,
we have prepared a MOE, where a majority voting from all methods involved gives the predicted RVR
time series to compare with real data.

As it can be observed (see Table 6), the MCM is not able to beat the Naive persistence operator,
in spite of it having been trained with the real frequencies of low-visibility events occurrence.
As previously mentioned, the ML approaches have the advantage of including external variables
which take into account the atmospheric state. Both techniques (ELM and SVM) are able to overcome
the Naive operator, but the differences among them are small. It is possible to further improve the
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performance of ML approaches by using the Naive operator as a basis and modifying it by means of
other algorithms (ELM, SVM and MCM in this case) with a majority voting scheme (MOE system,
as previously proposed in [18]). The MOE system is the best performing algorithm in this problem
of short-term low-visibility event detection when considering a time window of  — 1. Note that
if information from further time windows are considered (f - 2,...,f —4), the ELM with external
information (atmospheric variables) is the best-over-all algorithm tested, with an accuracy of 0.94.

Table 6. Statistical measurements for all the methods tested in this problem of low-visibility
events prediction.

Time Window Model ACC TPR TNR F1S

MCM 0.9053 0.4627 0.9641 0.5510
ELM 09299 0.6808 0.9734 0.7409

£-1 SVM 09300 06941 09698 0.7427
MOE 09306 07028 09696 0.7479
MCM 09089 04682 09631 05533
‘s ELM 09354 07059 09750 0.7625
SVM 09311 07067 09696 07501
MOE 09337 07141 09713 0.7594
MCM 09084 04633 09612 05452
‘s ELM 09370 06960 09784 07633
SVM 09340 0719 09701 07619
MOE 09356 07140 09731 0.7644
MCM 09066 04635 09585 05383
‘s ELM 09364 06919 09785 07613
SVM 09333 07165 09701 07593
MOE 09352 07105 09735 0.7632
f-1 Naive 09251 06148 09523 0.6421

If we represent the TPR against the false positive rate (FPR) in the ROC space [49] for each
time window and for each technique employed, we can find that the results are always above the
non-discrimination line (Figure 6), as expected. Note that the point in the upper left corner or
coordinate (0,1) (perfect classification point) of the ROC space, represents 100% of sensitivity (absence
of false negatives) and 100% specificity (absence of false positives) [49]. For a better visualization of
the results obtained, a zoom has been obtained and included as figure insets for each model. It can
be seen that the MCM is the only method which does not overcome the Naive operator prediction
performance (black point in the ROC space).

Table 7 represents the Euclidean distance between each point in Figure 6 and the perfect
classification point, so that the smallest value gives the best prediction. Note that this is another
way to justify what is the best time window to be considered for each method. For example, the MCM
yields its best result when the t — 2 time window is considered. The same situation occurs for ELM
method. Finally, for the SVM and MOE the best result is obtained when a t - 3 time window is
considered for the input data. The highest distance is consistently obtained for ¢ -1 in all cases.
This means that the prediction is worse when a time window for the input data of just one hour
is considered.
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Figure 6. ROC space and plots of the methods considered for different time windows in the input data
(t-1,...,t—4), and the Naive persistence operator; (a) MCM; (b) ELM; (c) SVM; (d) Mixture of Experts
(MOE). An enlarged view is represented in the insets. Note that the exact location of the points is given

in the zoomed insets.

Table 7. Euclidean distance between each data point and the perfect classification point, for each time

window and method considered.

MCM ELM SVM  MOE
t-1 0538 03203 0.3074 0.29875
t-2 0.5331 0.2952 0.2949 0.28733
t-3 05381 03048 0.2820 0.28726
t-4 05381 03088 0.2851 0.29071

3.4. Discussion of the Results

The analysis of the long-term persistence of low-visibility events at Valladolid airport has been
carried out with a DFA approach. The log-log plot of F(s) vs s has shown a clear two-ranges pattern,
with two different DFA exponents (« = 1.37 before 10 h and 0.97 after 10 h). In both cases, these « fulfil
0.5 < & <1, which means a strong long-persistence of the RVR time series, i.e., low-visibility events in
winter at Villanubla airport. However, note that this result indicates that the persistence becomes so
extreme below 10 h, that the time series exhibits non-stationary behavior (« > 1). In previous works
have associated these two ranges form of the DFA with the structure of a binary time series (fog/no-fog
events) and its duration [52]. This suggests that the average returning time of low-visibility events in
Valladolid airport at winter is, on average, 10 hours, and the long-term persistence of the events is very
high (« ~ 1 for times over 10 h).

On the other hand, the study of short-term persistence has been focused on the analysis of
the MCM transition probability matrices, for different time lags. We have shown that short-term
persistence of low-visibility events is high, with values about 85% when considering one-hour time
lag, to 92% for higher order MCM, up to 4 h time lag.

Regarding the short-term prediction problem tackled (classification task), we have carried out
a comparison of different approaches, persistence-based and ML-based. First, we have shown the
good performance achieved by the Naive operator in this problem. Observe that the proposed Markov
Chain models, based on probability matrices obtained from the real low-visibility event frequencies,
are not able to outperform the Naive operator. This indicates the existence of an extremely high
persistence of the objective variable (RVR) at short-term time horizon prediction. ML algorithms with
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an over-sampling technique (SMOTE, see Section 2.4.3) are able to improve the Naive operator results,
adding some atmospheric state variables (external variables), strongly correlated with the appearance
of fog events.

However, even considering ML algorithms with atmospheric variables, the obtained
improvement versus the Naive operator in terms of accuracy is small, 0.94 versus 0.92 respectively.
Considering a time window of ¢ — 1 for the input data, the best results in terms of ACC are obtained
by the MOE. By including variables at extra time windows (¢ -2, t -3 and f —4), the ELM slightly
outperforms the MOE results, both better than the Naive operator accuracy. Although the accuracy
increment is small, ML algorithms achieve a TPR around 70%, 10% above the obtained by the Naive
operator, which constitutes a huge improvement of the low-visibility event predictions. A high TPR
results in a better prediction of low-visibility events. The unbalanced classes between high-visibility
states (over 2000 m) and low-visibility events, together with the low number of cases in which fog
events change to high-visibility states, are responsible for the good performance of the Naive operator
in this problem.

These results show that the persistence of the low-visibility events at Valladolid is extreme at
short-term time windows, where the Naive operator is able to obtain a high performance and is very
difficult to be defeated without external atmospheric extra information.

4. Conclusions

In this paper we have analyzed the persistence structure of low-visibility events at Villanubla
airport using winter RVR time series at the airport as the objective variable. First, a long-term
analysis of the RVR time series using a DFA approach has shown a long-term persistence of the
series, with two dominating scaling ranges, separated by a crossover at a characteristic time of 10 h.
The short-term persistence analysis has been studied by means of the Markov Chain probability
transitions between states of fog/no-fog, obtaining a high degree of persistence in all cases analyzed.
We have also discussed a prediction problem (classification task), where we have evaluated the role
of persistence. Specifically we have carried out a comparison among different prediction methods,
including persistence-based and ML algorithms with exogenous variables to take into account the
atmospheric state. We have shown the prediction capabilities of a Naive persistence operator in this
problem, and how it can be hybridized with ML approaches to form a Mixture of Experts approach
that is able to obtain highly accurate results in this problem.
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