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Abstract: In the present paper, we deal with some general estimates for the difference of operators
which are associated with different fundamental functions. In order to exemplify the theoretical
results presented in (for example) Theorem 2, we provide the estimates of the differences between
some of the most representative operators used in Approximation Theory in especially the difference
between the Baskakov and the Szász–Mirakyan operators, the difference between the Baskakov and
the Szász–Mirakyan–Baskakov operators, the difference of two genuine-Durrmeyer type operators,
and the difference of the Durrmeyer operators and the Lupaş–Durrmeyer operators. By means of
illustrative numerical examples, we show that, for particular cases, our result improves the estimates
obtained by using the classical result of Shisha and Mond. We also provide the symmetry aspects of
some of these approximations operators which we have studied in this paper.

Keywords: approximation operators; differences of operators; Szász–Mirakyan–Baskakov operators;
Durrmeyer type operators; Bernstein polynomials; modulus of continuity

1. Introduction, Definitions and Preliminary Results

Approximation by positive linear operators is a classical and important topic of research in
Approximation Theory and Computer-Aided Geometric Design (CAGD). The basis of the familiar
Bernstein operators is an important tool in Computer-Aided Geometric Design. This basis is used in
order to construct Bézier curves, which have applications for designing curves for the cars industry and
problems involving animations. In addition, the Bézier curves are used in order to control the velocity
over time. A class of symmetric Beta-type distributions involving the symmetric Bernstein-type basis
function was introduced and studied in [1]. In recent years, the quantum (or the q-) calculus and
its variation, the so-called post-quantum or the (p, q)-calculus, which have many applications in
quantum physics, attracted the attention of many researchers. For example, some variations of positive
linear operators by using the (p, q)-calculus instead of their known forms involving the traditional
q-calculus were, in fact, published recently in Symmetry itself (see [2]). In this connection, the readers
are referred also to a subsequent survey-cum-expository review article by Srivastava [3] in which the
above-mentioned variation aspect of the (p, q)-calculus was exposed. Several other applications of the
positive linear operators in learning theory can also be found in the literature. For more details about
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this topic, the reader is referred to the applications of the Bernstein operators and the iterated Boolean
sums of operators (see [4]) and the applications of the Durrmeyer operators (see [5]).

The attention of many researchers in the study of the differences of positive linear operators
began with the question raised by Lupaş in regard with the possibility to give an estimate for the
following commutator:

[Bn,Bn] := Bn ◦Bn −Bn ◦ Bn,

where Bn are the Bernstein operators and Bn are the Beta operators (see, for details, [6]).
In [7], an algebraic structure of positive linear operators, which map C[0, 1] into itself,

was considered in order to give an inequality for the commutators of certain positive linear operators.
In several sequels to this study, Gonska et al. (see, for example, [8–10]) considered an algebraic
structure (S,+, ◦, 0, I) which satisfies each of the following conditions:

(i) It is closed under both “+” and “◦”;
(ii) Both “+” and “◦” are associative;
(iii) 0 is the identity for + and I is the identity for “◦”;
(iv) 0 is an annihilator for “◦”, that is, A ◦ 0 = 0 ◦ A = 0;
(v) “+” is commutative;
(vi) “◦” distributes over “+”, that is, both of the distributive laws hold true.

The set
PLO = {L : C[0, 1]→ C[0, 1] and L is linear and positive} ,

which is equipped with the canonical operations of addition and operator composition, is an algebraic
structure defined above. The commutator given by

[A, B] := AB− BA (A, B ∈ PLO)

was studied from a quantitative point of view in [7].
A solution of the Lupaş problem was given by Gonska et al. [7] by using the Taylor

expansion. The estimates for the differences of two positive linear operators, which have the same
moments up to a certain order, were derived in [8–10]. In [11], the differences of certain positive
linear operators, which have the same fundamental functions, were studied. These studies of the
positive linear operators, which are defined on unbounded interval, become an interesting area of
research in Approximation Theory (see [12–15]). Estimates for the differences of these operators
in terms of weighted modulus of smoothness were obtained by Aral et al. [16]. The Bernstein
polynomials are, by all means, the most investigated polynomials in Approximation Theory and
were introduced by Bernstein in order to prove the Weierstrass Theorem. Various new generalizations
of these operators were considered in, for example, [17,18]. In [19], estimates of the differences of the
Bernstein operators and their derivatives were obtained. Recently, some interesting results on this
topic were published in [20–25]. In the present paper, our approach involves positive linear operators
which have substantially different fundamental functions. In fact, the results presented in this paper
extend the earlier studies in [11] for more general classes of positive linear operators.

We denote by E(I) the space of real-valued continuous functions defined on an interval I ⊆ R,
which contains the polynomials. Let

|| f || = sup {| f (x)| : x ∈ I}

and
EB(I) := { f ∈ E(I) and ‖ f ‖ < ∞}.

Let ej(t) := tj (j = 0, 1, 2, · · · . We consider the linear positive functional F : E(I)→ R preserving
constant function, namely, F(e0) = 1. We also put
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µF
r = F

(
(e1 − φFe0)

r) :=
r

∑
i=0

(
r
i

)
(−1)i F(er−i)[φ

F]i (r ∈ N),

where φF := F(e1). For the functional F, the following basic result was obtained in [11].

Lemma 1 (see [11]). Let f ∈ E(I) with f (4) ∈ EB(I). Then∣∣∣∣∣F( f )− f (φF)−
µF

2
2!

f (2)(φF)−
µF

3
3!

f (3)(φF)

∣∣∣∣∣ ≤ µF
4

4!
‖ f (4)‖.

Let us now consider the fundamental functions pm,k, bm,k ≥ 0, k ∈ K, and pm,k, bm,k ∈ C(I)
such that

∑
k∈K

pm,k(x) = ∑
k∈K

bm,k(x) = e0,

where K is a set of non-negative integers, that is,

K = N0 := N∪ {0}.

Suppose also that Fm,k, Gm,k : E(I)→ R are the linear positive functionals such that

Fm,k(e0) = Gm,k(e0) = 1

and denote

D(I) :=

{
f ∈ E(I)

∣∣∣∣∣∑k∈K
pm,kFm,k( f ) ∈ C(I) and ∑

k∈K
bm,kGm,k( f ) ∈ C(I)

}
.

Define the positive linear operators Um, Vm : D(I)→ C(I) as follows:

Um( f , x) := ∑
k∈K

pm,k(x)Fm,k( f ) and Vm( f , x) := ∑
k∈K

bm,k(x)Gm,k( f ).

In [11], the following result concerning the difference of the operators Um and Vm was proved.

Theorem 1 (see [11]). Suppose that

pm,k = bm,k and φFm,k = φGm,k k ∈ K; m ∈ N.

Let f ∈ D(I) with f (i) ∈ EB(I) (i = 2, 3, 4). Then

|(Um −Vm)( f , x)| ≤ ‖ f (2)‖γ(x) + ‖ f (3)‖β(x) + ‖ f (4)‖α(x) (x ∈ I),

where

γ(x) := ∑
k∈K
|µFm,k

2 − µ
Gm,k
2 |pm,k(x),

β(x) := ∑
k∈K
|µFm,k

3 − µ
Gm,k
3 |pm,k(x)
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and

α(x) := ∑
k∈K

(µ
Fm,k
4 + µ

Gm,k
4 )pm,k(x).

In the series of papers [8–10], the results concerning the estimations of the differences of certain
positive linear operators were based upon the fact that the positive linear operators have the same
moments up to a certain order. In the recent paper [11], the approach involved the positive linear
operators which have the same fundamental functions. The main goal of this paper is to extend the
above result for the positive linear operators that have different fundamental functions. Furthermore,
the condition φFm,k = φGm,k of ([11], Theorem 4) is shown to be not necessary in order to obtain an
estimate of the differences of the positive linear operators Vm and Um.

Theorem 2. Let f ∈ D(I). If f (i) ∈ EB(I) (i = 2, 3, 4), then

|(Um −Vm)( f , x)| ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖
+ 2ω1( f , δ1(x)) + 2ω1

(
f , δ2(x)

)
(x ∈ I),

where ω1( f , ·) is the usual modulus of continuity,

A(x) =
1
4! ∑

k∈K
(pm,k(x)µFm,k

4 + bm,k(x)µGm,k
4 ),

B(x) =
1
3!

∣∣∣∣∣∑k∈K
pm,k(x)µFm,k

3 − ∑
k∈K

bm,k(x)µGm,k
3

∣∣∣∣∣ ,

C(x) =
1
2!

∣∣∣∣∣∑k∈K
pm,k(x)µFm,k

2 − ∑
k∈K

bm,k(x)µGm,k
2

∣∣∣∣∣ ,

δ1(x) =

(
∑
k∈K

pm,k(x)
(

φFm,k − x
)2
)1/2

and

δ2(x) =

(
∑
k∈K

bm,k(x)
(

φGm,k − x
)2
)1/2

.

Proof. First of all, by using Lemma 1, we get

|(Um −Vm)( f , x)| ≤
∣∣∣∣∣∑k∈K

pm,k(x)Fm,k( f )− ∑
k∈K

bm,k(x)Gm,k( f )

∣∣∣∣∣
≤ ∑

k∈K
pm,k(x)

∣∣∣∣∣Fm,k( f )− f (φFm,k )−
µ

Fm,k
2
2!

f ′′(φFm,k )−
µ

Fm,k
3
3!

f ′′′(φFm,k )

∣∣∣∣∣
+ ∑

k∈K
bm,k(x)

∣∣∣∣∣Gm,k( f )− f (φGm,k )−
µ

Gm,k
2
2!

f ′′(φGm,k )−
µ

Gm,k
3
3!

f ′′′(φGm,k )

∣∣∣∣∣
+

∣∣∣∣∣∑k∈K
pm,k(x)

µ
Fm,k
2
2!
− ∑

k∈K
bm,k(x)

µ
Gm,k
2
2!

∣∣∣∣∣ · || f ′′||
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+

∣∣∣∣∣∑k∈K
pm,k(x)

µ
Fm,k
3
3!
− ∑

k∈K
bm,k(x)

µ
Gm,k
3
3!

∣∣∣∣∣ · || f ′′′||
+ ∑

k∈K
pm,k(x)| f (φFm,k )− f (x)|+ ∑

k∈K
bm,k(x)| f (φGm,k )− f (x)|

≤ 1
4!

(
∑
k∈K

pm,k(x)µFm,k
4 + ∑

k∈K
bm,k(x)µGm,k

4

)
‖ f (iv)‖

+

∣∣∣∣∣∑k∈K
pm,k(x)

µ
Fm,k
2
2!
− ∑

k∈K
bm,k(x)

µ
Gm,k
2
2!

∣∣∣∣∣ · || f ′′||
+

∣∣∣∣∣∑k∈K
pm,k(x)

µ
Fm,k
3
3!
− ∑

k∈K
bm,k(x)

µ
Gm,k
3
3!

∣∣∣∣∣ · || f ′′′||
+ ∑

k∈K
pm,k(x)| f (φFm,k )− f (x)|+ ∑

k∈K
bm,k(x)| f (φGm,k )− f (x)|

= A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+

(
1 +

∑k∈K pm,k(x)
(
φFm,k − x

)2

δ2
1(x)

)
ω1( f , δ1(x))

+

(
1 +

∑k∈K bm,k(x)
(
φGm,k − x

)2

δ2
2(x)

)
ω1( f , δ2(x))

= A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1(x)) + 2ω1( f , δ2(x)).

This completes the proof of Theorem 2.

Remark 1. Let

ν1(x) =
(

Um

(
(e1 − x)2; x

)) 1
2

and

ν2(x) =
(

Vm

(
(e1 − x)2; x

)) 1
2 .

Then, by using the result of Shisha and Mond [26], we find that

|(Um −Vm)( f ; x)| ≤ |Um( f ; x)− f (x)|+ |Vm( f ; x)− f (x)|
≤ 2ω1( f , ν1(x)) + 2ω1( f , ν2(x)).

Since
F2

m,k(e1) ≤ Fm,k(e2
1)

and
G2

m,k(e1) ≤ Gm,k(e2
1),

it follows that
δi(x) ≤ νi(x) (i = 1, 2).

2. Applications of Theorem 2

As applications of the Theorem 2, in this section, we give estimates of the differences between some
of the most used positive linear operators in Approximation Theory. The considered examples involve
the Baskakov type operators, the Szász–Mirakyan type operators, and the Durrmeyer type operators.
We also show for the Durrmeyer type operators that, in some particular cases, our result improves the
estimates obtained by using the classical result of Shisha and Mond [26].
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2.1. Difference Between the Baskakov and the Szász–Mirakyan Operators

The Szász–Mirakyan operators are defined by

Sm( f , x) =
∞

∑
k=0

pm,k(x)Fm,k( f ), (1)

where

pm,k(x) = e−mx (mx)k

k!
and Fm,k( f ) = f

(
k
m

)
.

Lemma 2. The moments of Sm satisfy the following relation:

Sm(en+1, x) =
x
m

S′m(en, x) + xSm(en, x).

In particular,

Sm(e0, x) = 1, Sm(e1, x) = x and Sm(e2, x) = x2 +
x
m

and

Sm(e3, x) = x3 +
3x2

m
+

x
m2 and Sm(e4, x) = x4 +

6x3

m
+

7x2

m2 +
x

m3 .

Remark 2. We have
φFm,k = Fm,k(e1) =

k
m

and, for r ∈ N, we get

µ
Fm,k
r := Fm,k(e1 − φFm,k e0)

r = 0.

The Baskakov operators are defined by

Vm( f ; x) =
∞

∑
k=0

vm,k(x)Gm,k( f ), (2)

where

vm,k(x) =
(

m + k− 1
k

)
xk

(1 + x)m+k and Gm,k( f ) = f
(

k
m

)
.

Lemma 3. The moments satisfy the following relation:

Vm(en+1, x) =
x(1 + x)

m
V′m(en, x) + xVm(en, x).

The moments of the Baskakov operators up to order 4 are listed below:

Vm(e0, x) = 1

Vm(e1, x) = x

Vm(e2, x) =
x2(m + 1) + x

m

Vm(e3, x) =
x3(m + 1)(m + 2) + 3x2(m + 1) + x

m2

Vm(e4, x) =
x4(m + 1)(m + 2)(m + 3) + 6x3(m + 1)(m + 2) + 7x2(m + 1) + x

m3 .
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Remark 3. We have
φGm,k = Gm,k(e1) =

k
m

,

and, for r ∈ N, we get

µ
Gm,k
r := Gm,k(e1 − φGm,k e0)

r = 0.

Now, as an application of Theorem 2, the difference of Vm and Sm defined, respectively, by
Equations (1) and (2), can be given as Proposition 1 below.

Proposition 1. Let I = [0, ∞), f ∈ D(I) and f (s) ∈ EB(I) (s = 1, 2, 3, 4). Then, for each x ∈ [0, ∞), it is
asserted that

|(Vm − Sm)( f , x)| ≤ 2ω1

(
f ,

√
x(1 + x)

m

)
+ 2ω1

(
f ,
√

x
m

)
.

The proof of Proposition 1 follows from Remarks 2 and 3, Lemmas 2 and 3, and Theorem 2. We,
therefore, omit the details involved.

2.2. Difference Between the Baskakov and the Szász–Mirakyan–Baskakov Operators

In the year 1983, Prasad et al. [27] introduced a class of the Szász–Mirakyan–Baskakov
type operators. These operators were subsequently improved by Gupta [28] as follows:

Mm( f , x) =
∞

∑
k=0

pm,k(x)Hm,k( f ), (3)

where
Hm,k( f ) = (m− 1)

∫ ∞

0
vm,k(t) f (t)dt.

Here pm,k and vm,k are defined in Equations (1) and (2), respectively.

Remark 4. Since

Hm,k(er) = (m− 1)
∫ ∞

0

(
m + k− 1

k

)
tk

(1 + t)m+k trdt =
(k + r)!(m− r− 2)!

k!(m− 2)!
,

we get

φHm,k = Hm,k(e1) =
k + 1
m− 2

and

µ
Hm,k
2 = Hm,k(e1 − φHm,k e0)

2

= Hm,k(e2) +

(
k + 1
m− 2

)2
− 2Hm,k(e1)

(
k + 1
m− 2

)
=

(k + 2)(k + 1)
(m− 2)(m− 3)

−
(

k + 1
m− 2

)2

=
k2 + mk + m− 1
(m− 2)2(m− 3)

,
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µ
Hm,k
3 = Hm,k(e1 − φHm,k e0)

3

= Hm,k(e3)− 3Hm,k(e2)

(
k + 1
m− 2

)
+ 3Hm,k(e1)

(
k + 1
m− 2

)2
− Hm,k(e0)

(
k + 1
m− 2

)3

=
4k3 + 6mk2 + (2m2 + 4m− 4)k + 2m(m− 1)

(m− 2)3(m− 3)(m− 4)

and

µ
Hm,k
4 = Hm,k(e1 − φHm,k e0)

4

= Hm,k(e4)− 4Hm,k(e3)

(
k + 1
m− 2

)
+ 6Hm,k(e2)

(
k + 1
m− 2

)2

− 4Hm,k(e1)

(
k + 1
m− 2

)3
+ Hm,k(e0)

(
k + 1
m− 2

)4

=
(k + 1)(k + 2)(k + 3)(k + 4)

(m− 5)(m− 4)(m− 3)(m− 2)
− 4

(k + 1)(k + 2)(k + 3)
(m− 4)(m− 3)(m− 2)

(
k + 1
m− 2

)
+ 6

(k + 1)(k + 2)
(m− 3)(m− 2)

(
k + 1
m− 2

)2
− 4

(k + 1)
(m− 2)

(
k + 1
m− 2

)3
+

(
k + 1
m− 2

)4
.

In Proposition 2 below, a quantitative result concerning the estimate of the difference between
Mm and Vm is proved.

Proposition 2. If f ∈ D
(
[0, ∞)

)
with f (i) ∈ CB[0, ∞) (i = 2, 3, 4), then, for each x ∈ [0, ∞), it is

asserted that

|(Mm −Vm)( f , x)| ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1(x)) + 2ω1( f , δ2(x)),

where

A(x) =
1

8(m− 5)(m− 4)(m− 3)(m− 2)4

{
x2(x + 1)2m5

+ x(4x3 + 14x2 + 14x + 5)m4

+ (x + 1)(24x2 + 5x + 3)m3 + 28x2 + 7x− 8)m2
}

,

B(x) =
x(x + 1)(2x + 1)m3 + (2x + 1)(3x + 1)m2 −m

3(m− 2)2(m− 3)(m− 4)
,

C(x) =
x(1 + x)m2 + (x + 1)m− 1

2(m− 2)2(m− 3)
,

δ1(x) =

√
x(1 + x)

m

and

δ2(x) =
√

4x2 + (4 + m)x + 1
(m− 2)

.
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Proof. Applying Remarks 3 and 4, together with Lemma 2, we find that

A(x) =
1
4! ∑

k∈K
(pm,k(x)µHm,k

4 + vm,k(x)µGm,k
4 )

=
1
4!

∞

∑
k=0

pm,k(x)
[

(k + 1)(k + 2)(k + 3)(k + 4)
(m− 5)(m− 4)(m− 3)(m− 2)

− 4
(k + 1)(k + 2)(k + 3)
(m− 4)(m− 3)(m− 2)

(
k + 1
m− 2

)
+ 6

(k + 1)(k + 2)
(m− 3)(m− 2)

(
k + 1
m− 2

)2
− 4

(k + 1)
(m− 2)

(
k + 1
m− 2

)3
+

(
k + 1
m− 2

)4]
=

1
8(m− 5)(m− 4)(m− 3)(m− 2)4

{
x2(x + 1)2m5

+ x(4x3 + 14x2 + 14x + 5)m4

+ (x + 1)(24x2 + 5x + 3)m3 + 28x2 + 7x− 8)m2
}

and

B(x) =
1
3!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)µHm,k
3

−
∞

∑
k=0

vm,k(x)µGm,k
3 =

x(x + 1)(2x + 1)m3 + (2x + 1)(3x + 1)m2 −m
3(m− 2)2(m− 3)(m− 4)

.

Furthermore, we have

C(x) =
1
2

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)µHm,k
2 −

∞

∑
k=0

vm,k(x)µGm,k
2

∣∣∣∣∣
=

x(1 + x)m2 + (x + 1)m− 1
2(m− 2)2(m− 3)

,

δ1(x) =

(
∞

∑
k=0

vm,k(x)(φGm,k − x)2

)1/2

=

(
∞

∑
k=0

vm,k(x)
(

k
m
− x
)2
)1/2

=

√
x(1 + x)

m

and

δ2(x) =

(
∞

∑
k=0

pm,k(x)(φHm,k − x)2

)1/2

=

(
∞

∑
k=0

pm,k(x)
(

k + 1
m− 2

− x
)2
)1/2

=

√
4x2 + (4 + m)x + 1

(m− 2)
.

Now, by using Theorem 2, Proposition 2 is proved.
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2.3. Difference Between the Baskakov and the Szász–Mirakyan–Kantorovich Operators

Let pm,k be the Szász–Mirakyan basis function defined in Equation (1). In addition, let

Jm,k( f ) = m
∫ (k+1)/m

k/m
f (t)dt.

The Szász–Mirakyan–Kantorovich operators are defined by

Km( f ; x) =
∞

∑
k=0

pm,k(x)Jm,k( f ). (4)

Remark 5. The following result can be obtained by simple computation:

φJm,k = Jm,k(e1) =
k
m

+
1

2m
.

Moreover, we have

µ
Jm,k
2 = Jm,k(e1 − φJm,k e0)

2

= Jm,k(e2)− 2
(

k
m

+
1

2m

)2 ( k
m

+
1

2m

)2

=
1

12m2 ,

µ
Jm,k
3 := Jm,k(e1 − φJm,k e0)

3

= Jm,k(e3)− 3Jm,k(e2)

(
k
m

+
1

2m

)
+ 3Jm,k(e1)

(
k
m

+
1

2m

)2
− Jm,k(e0)

(
k
m

+
1

2m

)3

= 0

and

µ
Jm,k
4 := Jm,k(e1 − φJm,k e0)

4

= Jm,k(e4)− 4Jm,k(e3)

(
k
m

+
1

2m

)
+ 6Jm,k(e2)

(
k
m

+
1

2m

)2

− 4Jm,k(e1)

(
k
m

+
1

2m

)3
+ Jm,k(e0)

(
k
m

+
1

2m

)4

=
1

80m4 .

The following quantitative result concerning the difference between Km and Vm is proved next.

Proposition 3. Let I = [0, ∞). If f ∈ D(I) with f (i) ∈ EB(I) (i = 2, 3, 4), then, for each x ∈ [0, ∞), it is
asserted that

|(Km −Vm)( f , x)| ≤ A(x)‖ f (4)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1) + 2ω1( f , δ2),

where

A(x) =
1

1920m4 and C(x) =
1

24m2
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and

δ1(x) =

√
x(1 + x)

m
and δ2(x) =

√
4mx + 1

2m
.

Proof. Applying Remarks 3 to 5 and Lemma 2, we get

A(x) :=
1
4!

∞

∑
k=0

(pm,k(x)µJm,k
4 + vm,k(x)µGm,k

4 )

=
1
4!

∞

∑
k=0

pm,k(x)
1

80m4

=
1

1920m4

and

B(x) =
1
3!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)µJm,k
3 −

∞

∑
k=0

vm,k(x)µGm,k
3

∣∣∣∣∣
= 0.

Furthermore, we have

C(x) =
1
2!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)µJm,k
2 −

∞

∑
k=0

vm,k(x)µGm,k
2

∣∣∣∣∣
=

1
24m2 ,

δ1(x) =

(
∞

∑
k=0

vm,k(x)(φGm,k − x)2

)1/2

=

(
∞

∑
k=0

vm,k(x)
(

k
m
− x
)2
)1/2

=

√
x(1 + x)

m

and

δ2(x) =

(
∞

∑
k=0

pm,k(x)(φJm,k − x)2

)1/2

=

(
∞

∑
k=0

pm,k(x)
(

k
m

+
1

2m
− x
)2
)1/2

=

√
4mx + 1

2m
.

Upon collecting the above estimates and by using Theorem 2, the proof of Proposition 3
is completed.
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2.4. Difference of Two Genuine-Durrmeyer Type Operators

Let ρ > 0 and f ∈ C[0, 1]. Suppose also that

Fρ
m,k( f ) =



f (0) (k = 0)

∫ 1

0

tkρ−1(1− t)(m−k)ρ−1

B(kρ, (m− k)ρ)
f (t)dt (k 6= 0, 1)

f (1) (k = 1).

Păltănea and Gonska (see [29–31]) introduced and studied a new class of the Bernstein–Durrmeyer
type operators defined by

Uρ
m : C[0, 1]→ Πm and Uρ

m( f ; x) :=
m

∑
k=0

Fρ
m,k( f )pm,k(x),

where

pm,k(x) =
(

m
k

)
xk(1− x)m−k.

Neer and Agrawal [32] introduced a class of the genuine-Durrmeyer type operators as follows:

Ũρ
m( f ; x) =

m

∑
k=0

Fρ
m,k( f )p<

1
m >

m,k (x),

where

p<
1
m >

m (x) =
2 ·m!
(2m)!

(
m
k

)
(mx)k(m−mx)m−k.

Proposition 4 below provides an estimate of the difference between Uρ
m and Ũρ

m.

Proposition 4. Let f ∈ C4[0, 1]. Then the following inequality holds true:∣∣∣(Uρ
m − Ũρ

m

)
( f ; x)

∣∣∣ ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+ 2ω1 ( f , δ1(x)) + 2ω1 ( f , δ2(x)) ,

where

A(x) :=
x(1− x)(n− 1)

8m3(mρ + 1)(mρ + 2)(mρ + 3)(m + 1)(m + 2)(m + 3)

·
{

mρ(3m4 + 5m3 + 7m2 − 5m− 6) + 4m5 + 4m4 + 4m3 − 30m2 + 30m

+ 36 + x(1− x)(m− 2)(m− 3)(mρ− 6)(2m3 + 6m2 + 11m + 6),

B(x) :=
x(1− x)|1− 2x|(m− 2)(m− 1)(3m + 2)

3(mρ + 1)(mρ + 2)m2(m + 1)(m + 2)
,

C(x) :=
x(1− x)(m− 1)

2(mρ + 1)m(m + 1)
,

δ1(x) :=

√
x(1− x)

m
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and

δ2(x) :=

√
2x(1− x)

m + 1
.

Proof. In Theorem 2, we set

Fm,k( f ) = Gm,k( f ) = Fρ
m,k( f ),

so that we have

φFm,k = φGm,k =
k
m

;

µ
Fm,k
2 = µ

Gm,k
2 = Fm,k

(
e1 − φFm,k

)2
=

k(m− k)
m2(mρ + 1)

;

µ
Fm,k
3 = µ

Gm,k
3 = Fm,k

(
e1 − φFm,k

)3

=
2k(2k2 − 3km + m2)

m3(mρ + 1)(mρ + 2)

and

µ
Fm,k
4 = µ

Gm,k
4 = Fm,k

(
e1 − φFm,k

)4

=
3k(k3mρ− 2k2m2ρ + km3ρ− 6k3 + 12k2m− 8km2 + 2m3)

m4(mρ + 1)(mρ + 2)(mρ + 3)
.

Now, by considering the following relations:

n

∑
k=0

pm,k(x) = 1,

n

∑
k=0

k
m

pm,k(x) = x,

m

∑
k=0

(
k
m

)2
pm,k(x) =

x(mx− x + 1)
m

,

m

∑
k=0

(
k
m

)3
pm,k(x) =

x(m2x2 − 3mx2 + 3mx + 2x2 − 3x + 1)
m2 ,

m

∑
k=0

(
k
m

)4
pm,k(x) =

x
m3

(
m3x3 − 6m2x3 + 6m2x2 + 11mx3

−18mx2 − 6x3 + 7mx + 12x2 − 7x + 1
)

,

m

∑
k=0

p<
1
m >

m,k (x) = 1,

m

∑
k=0

(
k
m

)
p<

1
m >

m,k (x) = x,
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m

∑
k=0

(
k
m

)2
p<

1
m >

m,k (x) = x2 +
2x(1− x)

m + 1
,

m

∑
k=0

(
k
m

)3
p<

1
m >

m,k (x) = x3 +
6mx2(1− x)

(m + 1)(m + 2)
+

6x(1− x)
(m + 1)(m + 2)

and

m

∑
k=0

(
k
m

)4
p<

1
m >

m,k (x) = x4 +
12(m2 + 1)x3(1− x)

(m + 1)(m + 2)(m + 3)
+

12(3m− 1)x2(1− x)
(m + 1)(m + 2)(m + 3)

+
2(13m− 1)x(1− x)

m(m + 1)(m + 2)(m + 3)
,

the proof of Proposition 4 is completed.

Example 1. Applying Proposition 2 for f (x) = x
x2+1 , x ∈ [0, 1] and ρ = 2, we get the following estimate:

|(Uρ
m − Ũρ

m)( f ; x)| ≤ Em( f ), (5)

where
Em( f ) = K1‖ f (4)‖+ K2‖ f (3)‖+ K3‖ f (2)‖+ 2(δ1 + δ2)‖ f ′‖ and f ∈ C4[0, 1]

and

K1 :=
(m− 1)

64m3(2m + 1)(m + 1)2(2m + 3)(m + 2)(m + 3)

·
(

1
2
(m− 2)(m− 3)2(2m3 + 6m2 + 11m + 6) +10m5 + 14m4 + 18m3 − 40m2 + 18m + 36

)
,

K2 :=
(m− 2)(m− 1)(3m + 2)

24(2m + 1)(m + 1)2m2(m + 2)
,

K3 :=
m− 1

8(2m + 1)m(m + 1)
,

δ1 :=
1

2
√

m

and
δ2 :=

1√
2(m + 1)

.

Now, by using the result of Shisha and Mond (see [26]; see also Remark 1), we get the following estimate:

|(Uρ
m − Ũρ

m)( f ; x)| ≤ E(SM)
m ( f ), (6)

where

E(SM)
m ( f ) =

(√
3

2m + 1
+

√
5m + 1

(m + 1)(2m + 1)

)
‖ f ′‖, f ∈ C1[0, 1].

Table 1 below contains the values of Em( f ) and E(SM)
m ( f ) for certain given values of n. We note

here that, for this particular case, the estimate in Equation (5) is better than the estimate given by the
Shisha–Mond result in Equation (6).
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Table 1. Estimates for the difference of Uρ
m f and Ũρ

m f .

m Em( f ) E(SM)
m ( f )

10 0.74402776700 0.84783596730
102 0.24073382150 0.27926364330
103 0.07632064786 0.08868768037
104 0.02414170100 0.02805750320
105 0.00763444237 0.00887294116
106 0.00241421554 0.00280588236
107 0.00076343666 0.00088729829
108 0.00024142458 0.00028058836

2.5. Difference of the Durrmeyer Operators and the Lupaş–Durrmeyer Operators

Durrmeyer [33] and, independently, Lupaş [34] defined the Durrmeyer operators by

Mm( f , x) = (m + 1)
m

∑
k=0

pm,k(x)
1∫

0

pm,k(t) f (t) dt (x ∈ [0, 1]). (7)

Gupta et al. [35] introduced a modification of the operator in Equation (7) as follows:

D< 1
m >

m ( f ; x) = (m + 1)
m

∑
k=0

p<
1
m >

m,k

∫ 1

0
pm,k(t) f (t)dt ( f ∈ C[0, 1]). (8)

Finally, the difference between Mm and D< 1
m >

m is provided in the estimate asserted by
Proposition 5 below.

Proposition 5. Let f ∈ C4[0, 1]. Then the following inequality holds true:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+ 2ω1 ( f , δ1(x)) + 2ω1 ( f , δ2(x)) ,

where

A(x) :=
1

8(m + 1)(m + 2)5(m + 3)2(m + 4)(m + 5)

· {x(1− x)m(m− 1) [x(1− x)(m− 2)(m− 3)(m− 4)

· (2m3 + 6m2 + 11m + 6) + 11m5 + 41m4 + 77m3 + 25m2 + 26m + 24
]

+(m + 1)2(m + 2)(m + 3)(3m2 + 5m + 4)
}

,

B(x) :=
m|x(1− x)(1− 2x)(m− 1)(m− 2)(3m + 2) + m3 + 4m2 + 5m + 2|

3(m + 1)(m + 2)3(m + 3)(m + 4)
,

C(x) :=
m(m− 1)x(1− x) + (m + 1)2

2(m + 1)(m + 2)2(m + 3)
,

δ1(x) :=

√
x(1− x)m + (2x− 1)2

m + 2

and

δ2(x) :=

√
2x(1− x)m2 + (1− 2x)2(m + 1)

(m + 2)
√

m + 1
.
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Proof. In Theorem 2, we let

Fm,k( f ) = Gm,k( f ) = (m + 1)
∫ 1

0
pm,k(t) f (t)dt,

so that we have
φFm,k = φGm,k =

k + 1
m + 2

,

µ
Fm,k
2 = µ

Gm,k
2 = Fm,k

(
e1 − φFm,k

)2

=
(k + 1)(m− k + 1)
(m + 2)2(m + 3)

,

µ
Fm,k
3 = µ

Gm,k
3 = Fm,k

(
e1 − φFm,k

)3

=
2(k + 1)(2k2 − 3km + m2 − 2k + m)

(m + 2)3(m + 3)(m + 4)

and

µ
Fm,k
4 = µ

Gm,k
4 = Fm,k

(
e1 − φFm,k

)4

=
3(k + 1)(k−m− 1)(k2m− km2 − 4k2 + 4km− 3m2 − 5m− 4)

(m + 2)4(m + 3)(m + 4)(m + 5)
.

Now, by applying the relations from the proof of Proposition 2, the resulting estimate of
the difference of the Durrmeyer operator and the Lupaş–Durrmeyer operator is as asserted by
Proposition 5.

Example 2. By pplying Proposition 5 for f (x) = cos(2πx) for x ∈ [0, 1], we get the following estimate:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ Em( f ), (9)

where
Em( f ) = K1‖ f (4)‖+ K2‖ f (3)‖+ K3‖ f (2)‖+ 2(δ1 + δ2)‖ f ′‖, f ∈ C4[0, 1]

and

K1 :=
1

8(m + 1)(m + 2)5(m + 3)2(m + 4)(m + 5)

·
{

1
4

m(m− 1)
[

1
4
(m− 2)(m− 3)(m− 4)(2m3 + 6m2 + 11m + 6)

+ 11m5 + 41m4 + 77m3 + 25m2 + 26m + 24
]

+(m + 1)2(m + 2)(m + 3)(3m2 + 5m + 4)
}

,

K2 :=
m

3(m + 1)(m + 2)3(m + 3)(m + 4)

·
{

1
4
(m− 1)(m− 2)(3m + 2) + m3 + 4m2 + 5m + 2

}
,
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K3 :=
1

2(m + 2)2(m + 3)(m + 1)

[
1
4

m(m− 1) + (m + 1)2
]

,

δ1 :=
√

m + 4
2(m + 2)

and

δ2 :=

√
m2 + 2(m + 1)

(m + 2)
√

2(m + 1)
.

Thus, by using the result of Shisha and Mond (see [26]; see also Remark 1), we get the following estimate:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ E(SM)
m ( f ), (10)

where

E(SM)
m ( f ) = 2

(√
m + 1

2(m + 2)(m + 3)
+

√
3m2 + 3m + 2

4(m + 1)(m + 2)(m + 3)

)
‖ f ′‖, f ∈ C1[0, 1].

Table 2 below gives the values of Em( f ) and E(SM)
m ( f ) for certain specific values of m. We also

note that, for this particular case, the estimate in Equation (9) is better than the estimate given by the
Shisha–Mond result in Equation (10).

Table 2. Estimates for the difference of Mm f and D< 1
m >

m f .

m Em( f ) E(SM)
m ( f )

102 1.5210054310 1.9330219770
103 0.4794548855 0.6237181803
104 0.1516781199 0.1976406539
105 0.0479680333 0.0625122598
106 0.0151689380 0.0197685170
107 0.0047968431 0.0062513668
108 0.0015168951 0.0019768561

Remark 6. The earlier works [36,37] proposed certain general families of positive linear operators which
reproduce only constant functions. Recently, as a continuation of these works, in [38] some positive linear
operators reproducing linear functions were introduced and studied. Analogous further researches for this class
of operators are possible.

3. Conclusions

The studies of the differences of positive linear operators has become an interesting area of
research in Approximation Theory. The present paper deals with the estimates of the differences of
various positive linear operators, which are defined on bounded or unbounded intervals, in terms of the
modulus of continuity. In several earlier papers, the results of the type which we have presented here
were obtained for a class of positive linear operators constructed with the same fundamental functions.
The novelty of this paper is that the fundamental functions of the positive linear operators can chosen
to be different. Our present study makes use of the Baskakov type operators, the Szász–Mirakyan
type operators, and the Durrmeyer type operators. In some illustrative numerical examples, we have
shown that the estimates obtained in this study are better than the estimates given by the classical
Shisha–Mond result. For a future work, we propose to obtain estimates for these operators involving
some suitably weighted modulus of smoothness.
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16. Aral, A.; Inoan, D.; Raşa, I. On differences of linear positive operators. Anal. Math. Phys. 2019, 9, 1227–1239.

[CrossRef]
17. Acu, A.M.; Manav, N.; Sofonea, F. Approximation properties of λ-Kantorovich operators. J. Inequal. Appl.

2018, 2018, 202. [CrossRef]
18. Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on

Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [CrossRef]
19. Acu, A.M.; Rasa, I. Estimates for the differences of positive linear operators and their derivatives.

Numer. Algorithms 2019. [CrossRef]
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