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Abstract: As a newly proposed video coding standard, Versatile Video Coding (VVC) has adopted some
revolutionary techniques compared to High Efficiency Video Coding (HEVC). The multiple-mode
affine motion compensation (MM-AMC) adopted by VVC saves approximately 15%-25% Bjøntegaard
Delta Bitrate (BD-BR), with an inevitable increase of encoding time. This paper gives an overview
of both the 4-parameter affine motion model and the 6-parameter affine motion model, analyzes
their performances, and proposes improved algorithms according to the symmetry of iterative
gradient descent for fast affine motion estimation. Finally, the proposed algorithms and symmetric
MM-AMC flame of VTM-7.0 are compared. The results show that the proposed algorithms save
6.65% total encoding time on average, which saves approximately 30% encoding time of affine
motion compensation.

Keywords: Versatile Video Coding (VVC); inter-prediction; affine motion compensation (AMC);
affine motion model; edge detection

1. Introduction

H.264/AVC [1] was successfully standardized in 2003, which can provide better quality of the
reconstructed image under the same bandwidth. Soon after that, the ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) set the technical performance
goals for the next generation video coding standard. As the replacement of AVC, the High Efficiency
Video Coding (H.265/HEVC) [2] was finalized in 2013. HEVC has been demonstrated that can save
about 50% bitrate comparing to the bitrate of AVC, while the subjective qualities are approximately the
same [3].

To be compatible with the transmission and broadcasting of high-definition videos in recent years,
ISU and ISO are developing the Versatile Video Coding (VVC)—a new standard which is expected to
be standardized by 2020 [4]. Now the works of standardization is close to the end. VVC continues to
use the block-based coding structure but adopts some new methods.

In the inter-prediction process, the affine motion model was adopted as an important coding
tool, saving approximately 15–25% BD-rate alone in the current test model. HEVC uses Translational
Motion Compensation (TMC) as the underlying model for motion compensation, meaning that the
object motion information is presented by only one motion vector. This model cannot effectively predict
rotation, scale, and shearing motion in most video sequences.

Studies of affine motion compensation (AMC) have always been a subject, while many former
studies have tried to embed the affine motion model into the frame of AMC [5], but the proposals had
never been adopted prior to VVC. The impediments are as follows [6]: 1. The former AMC proposals
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introduced greatly increase complexity, which is intolerable in most cases; and 2. an elegant AMC
frame is much more complicated and requires adjustment in nearly all processes of inter-prediction.

To adaptively choose different affine motion models, Qualcomm’s response to the CFP proposed the
multiple model affine motion compensation (MM-AMC) and efficient MVPs for AMC [7]. The proposed
MM-AMC and efficient MVPs for AMC were adopted into VVC in July 2018. Based on this foundation,
this paper proposes improved methods, and the rest of the paper is organized as follows:

In Section 2, a description of AMC in VVC is presented. Section 3 analyzes the performance of
the AMC and proposes improved algorithms. The experimental procedure and results are shown in
Section 4. Finally, the paper is concluded in Section 5.

2. Related Works

The affine motion model is based on the theory of affine transformations (also called affine
mapping), which consists of a linear transformation followed by a translation transformation. If the
changes of motion vectors meet the conditions of affine transformations, figures with any shapes
(simple or complex) can be applied to the affine motion model. In the field of video coding, the affine
motion model can predict some basic transformations such as rotation, zooming and translation in 2-D
pictures for their transformation functions are linear.

Rotation, scale, and shearing motion exist in most video sequences and always become a more
complicated motion with the combination of each other or translational motion. To linearly express
those motions, V. E. Seferidis and M. Ghanbari [8] proposed higher-order motion models in 1993,
since when the affine motion model has been widely employed for its simplicity.

In the block-based affine motion model, motion vectors (MVs) of each Control-point need to be
coded in AMC [9]. For example, three Control-points at the corner are needed to describe the affine
motion process of a rectangular block precisely, while the parameters are three times as many as the
translational motion model’s parameters.

Researchers thus recently proposed a more simplified but less accurate affine motion model [10],
which only needs two Control-points’ information.

2.1. Affine Motion Model

(1) 4-parameter affine motion model: The 4-parmeter affine motion model assumes a simplified affine
motion model combining translation, rotation and zooming. Figure 1 shows these three typical motions:
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Figure 1. Three typical motions: (a) rotation, (b) translation, (c) zooming.

Separately, two parameters (c and f) are used to describe translation, one parameter (θ) is used to
describe rotation, and one parameter (ρ) to describe zooming. These four parameters are independent,
and the simplified affine motion model can be described as:{

x′ = ρ cos θ·x + ρ sin θ·y + c
y′ = −ρ sin θ·x + ρ cos θ·y + f

(1)
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where ρ is zooming factor, θ is rotation angle, and c and f are displacements in x and y directions.
Replacing ρ cos θ and ρ sin θ with (1 + a) and b can obtain a concise expression of MVs.{

mvh(x, y)= x′ − x = ax + by + c
mvv(x, y)= y′ − y = −bx + ay + f

(2)

where mvh(x, y) and mvv(x, y) are horizontal and vertical MVs determined by a, b, c and f. Figure 2
shows an example of the 4-parameter affine motion model with two Control-points in inter-prediction.
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The MVs at the top-left and top-right locations of the current block in Figure 2 are Control-point 0
and Control-point 1. The MV of any arbitrary point (x, y) can be calculated by Control-point 0 and
Control-point 1.  mvh(x, y)= x′ − x =

(mv h
1−mvh

0

)
w−1 x−

(mv v
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w−1 y + mvh

0

mvv(x, y)= y′ − y =
(mv v
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(mv h
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0

)
w−1 y + mvv

0

(3)

where w is the width of the block, thus (w-1) is the distance between Control-point 0 and Control-point
1, and mvh

0 , mvv
0 , mvh

1 and mvv
1 are the MV components of Control-point 0 and Control-point 1 in the

x and y directions. The results of the four parameters (a, b, c, f) are delivered only by mv0 and mv1.
Formula (3) can also be rewritten in the form of a matrix:

mv(x, y)= A(x, y)·MVT
A (4)

A(x, y) =

 (1− x
w−1

)
x

w−1
y

w−1 −
y

w−1

−
y

w−1
y

w−1 (1− x
w−1

)
x

w−1

 (5)

MVA= [ mvh
0 mvh

1 mvv
0 mvv

1

]
(6)

(2) 6-parameter affine motion model: The 6-parameter affine motion model can precisely predict
affine motion, but needs two more parameters than the 4-parameter affine motion model.{

x′ = ax + by + c
y′ = dx + ey + f

(7)

Figure 3 shows an example of the 6-parameter affine motion model with three Control-points
in inter-prediction.
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Control-point 2 also joins prediction. Therefore, the parameters b and e in Formula (7) are
calculated by Control-point 0 and Control-point 2 as follows. mvh(x, y) =

(mv h
1−mvh

0

)
w−1 x+

(mv h
2−mvh

0

)
h−1 y + mvh

0

mvv(x, y) =
(mv v

1−mvv
0)

w−1 x+
(mv v

2−mvv
0)

h−1 y + mvv
0

(8)

where mvh
2 and mvv

2 are the MV components of Control-point 2 in the x and y direction, h is the height
of the block, and h − 1 is the distance between Control-point 0 and Control-point 2. Additionally,
this formula can be rewritten as:

mv(x, y)= A(x, y)·MVT
A (9)

A(x, y) =
[

1− x
w−1 −

y
h−1

x
w−1

y
h−1 0 0 0

0 0 0 1− x
w−1 −

y
h−1

x
w−1

y
h−1

]
(10)

MVA= [ mvh
0 mvh

1 mvh
2 mvv

0 mvv
1 mvv

2

]
(11)

The 6-parameter affine motion model takes a bigger matrix to restore motion information, but half
of the elements are zero value, which reduces the computing efficiency of the inter search process.

2.2. AMC

(1) Motion vector prediction (MVP): The MVP candidate list for affine inter-mode restores neighboring
blocks’ MVs for the current block. To increase the robustness and consistency of the VVC encoder,
the translational motion will be set as the MV tuples to fill the MVP candidate list only when the
number of available MV tuples is less than the list’s length [11]. Figure 4 shows the candidate list for
advanced motion vector prediction (AMVP):
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There are seven MVP candidates for affine MV prediction, located at the top-left, top-right and
bottom-left, and these can be categorized into three tuples.

S0 = {MVA, MVB, MVC}

S1 = {MVD, MVE}

S2= {MVF, MVG}
(12)

where the MVs belonging to S0 are used to predict mv0, the MVs belonging to S1 are used to predict
mv1 and the MVs belonging to S2 are used to predict mv2.

AMC provides affine advanced motion vector prediction (AAMVP) based on HEVC AMVP. As for
the 4-parameter affine inter mode, mv0 and mv1 are eventually signaled explicitly to the decoder, while
mv2 is used to implicitly judge the prediction correctness, and is not sent. Affine inter mode choses the
best AMVP candidates of S0, S1 and motion vector difference (MVD). Therefore mv0 and mv1 can be
calculated as mvp0+mvd0 and mvp1+mvd1. Figure 5 shows an example of AAMVP:
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First, the encoder checks the availability of neighboring blocks (block A to G) and whether their
MVs are pointing to the same reference frame as the given one.

Then the encoder side transmits all possible (MV0, MV1, MV2), where MV0, ∈ S0, MV1, ∈ S1 and
MV2, ∈ S2. By setting mv0 = MV0, mv1 = MV1, the encoder predicts mv2 according to Formula (3).
The smaller the difference between mv2 and MV2 is, the more probable it is that the current MV
combination forms a real affine motion model. The difference value named DMV can be calculated as
follows [10]:

DMV =
∣∣∣∣MVh

1−MVh
0 −

(
MVv

2−MVv
0

)∣∣∣∣+ ∣∣∣∣(MVh
2−MVh

0

)
−

(
MVv

0−MVv
1

)∣∣∣∣ (13)

Finally, the encoder explicitly transmits two (MV0, MV1) with the smallest and second-smallest
DMV to the AAMVP candidate list after the traversal ends. The list will be filled with HEVC AMVP
candidates if the available arrays are less than two.

(2) Fast affine motion estimation (AME) for affine inter search: HEVC uses the block-matching search
algorithm for motion estimation and obtains the MV with smallest MVD [12], but the fast AME needs
to calculate two or three optimal MVs simultaneously.

Usually, the encoder uses the mean square error (MSE) or the sum of absolute errors (SAD) as the
matching rule. The MSE can be calculated as:

MSE =
1

w·h

∑
(x, y)∈current block

∣∣∣∣Picorigin(x, y)−Picref

(
(x, y)+mv(x, y)

)∣∣∣∣2 (14)

where w and h are the width and height of the current block, Picref refers to the reference picture.
In HEVC and VVC, encoders search the MVs through iterations, for iterative search is an efficient way
to find the best MVs with the least cost. To minimize MSE, both the conventional motion estimation
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(CME) and the fast AME needs to find the MV close to mv(x, y) through iterations. In fact, the iteration
in the process of motion estimation is a process of searching for the best MVs with the least cost.
Iteration is much faster than searching every pixel and checking their costs.

Define the change of MVs at the ith iteration as dMVi, then the MVs at the ith iteration is
expressed as:

mvi
(x, y)= A(x, y)· (MV i

A

)T
= A(x, y)·

((
MVi−1

A

)T
+

(
dMVi

)T
)
= mvi−1

(x, y)+A(x, y)·
(
dMVi

)T
(15)

where (x, y) is current pixel position at the ith iteration, and dMVi+1 is a row matrix, whose transposed
matrix is given as:

(
dMVi

)T
=


dmvh

0
dmvh

1
dmvv

0
dmvv

1

 =


mvih
0 −mv(i−0)h

0
mvih

1 −mv(i−1)h
1

mviv
0 −mv(i−1)v

0
mviv

1 −mv(i−1)v
1

, if affine model = 4

(
dMVi

)T
=



dmvh
0

dmvh
1

dmvh
2

dmvv
0

dmvv
1

dmvv
2


=


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0 −mv(i−0)h

0
mvih

1 −mv(i−1)h
1

mvih
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0 −mv(i−1)v
0
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1 −mv(i−1)v
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, if affine model = 6

(16)

After i iterations, we have:

Picref
(
(x, y)+mv(x, y)

)
= Picref

((
xi−1, yi−1

)
+A(x, y)·

(
dMVi

)T
)

(17)

where
(
xi−1, yi−1

)
denotes the position of reference block in last iteration. Using the Taylor’s expansion

and ignoring the high-order terms, we have

Picref

((
xi−1, yi−1

)
+A(x, y)·

(
dMVi

)T
)
≈ Picref

(
xi−1, yi−1

)
+Pic′ref

(
xi−1, yi−1

)
·A(x, y)·

(
dMVi

)T
(18)

We need to find the proper value of Formula (17) that is close to the value of Picorigin(x, y)
in Formula (14) to minimize MSE. Therefore, by setting the relative gradients of dMVi to zero,
the maximum value can be obtained, while the dMVi can be solved by a simple system of
linear equations.

In HEVC, the edge detection algorithm is commonly used for fast partition mode decisions [13,14].
In VVC, however, the quad tree (QT) of the HEVC coding structure is replaced by the quad-tree plus
binary tree plus ternary-tree split (QT+ BT+TT) structure, and the above-mentioned methods will
cause large losses in coding efficiency or can only be used in the QT structure [15].

Still, the edge detection algorithm has its uses in VVC. The VVC test model uses the Sobel operator
to solve the relative gradients of dMVi by applying convolution with the pixel matrix:

gradx =


−1 0 +1
−2 0 +2
−1 0 +1

 ∗


px−1, y−1 px−1, y px−1, y+1
px, y−1 px, y px, y+1

px+1, y−1 px+1, y px+1, y+1


grady =


−1 −2 −1
0 0 0
+1 +2 +1

 ∗


px−1, y−1 px−1, y px−1, y+1
px, y−1 px, y px, y+1

px+1, y−1 px+1, y px+1, y+1


(19)
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where gradx and grady are the components of relative gradients on x and y directions, and px, y is the
value of pixel at (x, y). Thus, the value of Pic′reference at (x, y) can be calculated as:

∂Picref(x, y)
∂x =

(
Px−1,y+1+2Px,y+1+Px+1,y+1−Px+1,y−1−2Px,y−1−Px−1,y−1

)
<< 3

∂Picref(x, y)
∂y =

(
Px−1,y+1+2Px−1,y+Px−1,y−1−Px+1,y+1−2Px+1,y−Px+1,y−1

)
<< 3

(20)

where “<<3” corresponds to the left shift operation in the encoder. The above formula gives a
calculation method for the gradient in the x and y direction.

(3) Affine merge mode (AMM): The AMC has its own merge mode as well, to reduce information
redundancy. An additional signal is sent to indicate whether to enable the AMM or not, because the
encoder uses traditional merge mode (TMM) as default. Additionally, the AMM detects the availability
of merging with the neighboring blocks and is used only when at least one of the neighboring blocks
uses the affine mode. Figure 6 shows the choices of the AMM candidates:
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The candidates of the AMM are successively searched from A to E, which is the same as the
search order of HEVC TMM. However, different from TMM based on the reuse of MV, the essence of
the AMM is the reuse of affine parameters. For example, a 4-parameter affine motion model can be
described by the parameters a, b, c and f, where the parameters a and b reflect rotation and zooming
of the model, while the parameters c and f reflect translational motion.

It should be noted that different blocks with the same affine motion always have the same rotation
angle and zooming factor, but have a different distance to the center of rotation, and therefore have
different translational distances. We can just reuse the parameters a and b as for the neighboring blocks
with the same rotation angle and zooming factor.

Figure 6 also shows the process of merging neighboring block A. Here, a detailed description of
the process is given:

• The encoder solves the parameters of the current blocks according to MV0, MV1, and assumes the
unchecked neighboring blocks use the same parameters a, b.

• Then the encoder searches for the prediction units (PUs) that contain block A and obtain the
information regarding MVA0, MVA1 and MVA2.

• The MV0 and MV1 of the current block are calculated by using the MVs and relative position of
the neighboring block.

MV0= MVA1 +

(
yA1−y0

)(
yA2−yA0

) ·(MVA2−MVA0) (21)

MV1= MV0 +
(x1−x0)

(xA1−xA0)
·(MVA1−MVA0) (22)



Symmetry 2020, 12, 1143 8 of 16

• An additional step is needed to calculate MV2 in the 6-parameter affine motion model.

MV2= MV0 +

(
y0−y2

)(
yA0−yA2

) ·(MVA0−MVA2) (23)

3. Proposed Algorithms

3.1. Fast Gradient Prediction

In this subsection, we propose an improved algorithm according to the symmetry of iterative
gradient descent for fast affine motion estimation. In the loop of gradient descent, the iteration of the
fast AME will stop when the dMV in Formula (16) is equal to zero [10], which means the iteration
cannot update the predicted MVs anymore. However, we need to limit the maximum number of
iterations in order to reduce the encoding time in worst-case scenarios. As for the 4-parameter affine
motion model, the fast AME process iterates three times for unidirectional prediction and five times
for bi-directional prediction, while with respect to the 6-parameter affine motion model, the fast AME
process iterates three times for unidirectional prediction and four times for bi-directional prediction.
Still, the AMC spends most of time carrying out the process of fast AME.

Then, we notice that the encoder checks the surrounding pixels along the gradient to search
minimum distortion and updates the MVs with minimum distortion, which are used as initial MVs for
the next iteration. The current distortion cost is updated in each iteration, which reflects whether the
MVs are rapidly converging to optimal MVs or not. Another fact is, the gradients in the horizontal
and vertical directions are relevant to the smooth region of the picture, which means the gradient is
predictable before the MVs reach the reference picture’s edges.

Additionally, to avoid shocks in the search iteration or convergence on the extremum of the
gradient that is too slow, we add momentum, a constant, to solve this problem. When the gradient
in this iteration has the same direction as the gradient in the last iteration in the x or y direction,
the momentum plays an accelerating role in this search. Otherwise, the momentum can slow down the
gradient change:  gradi

x= gradi
x+momentum·gradi−1

x
gradi

y= gradi
y+momentum·gradi−1

y
(24)

The pseudocode of momentum in AMC is described by
Combining these proposed methods, Figure 8 shows the flow chart for the modified AMC process:

Figure 7:
The specific steps are:

• Initialize iteration time i, sign j and coefficient k at the beginning of iteration.
• Check j and enable the fast gradient search when the sign is true, otherwise enable the conventional

gradient search. The fast gradient search uses the coefficient k and the gradient in the horizontal
or vertical direction to predict the gradient in another direction. In this case, only one array of
gradient is called upon to solve the derivate.

• Add momentum to update the gradient and then use gradient to update the MVs and obtain cost
with the updated MVs.

• Use the cost change of distortion as the sign for enabling fast gradient search. Set j to be true and
update k with the gradient when:

temp cost− best cost > Vth (25)

Otherwise set j to false.

• Update i and the temp cost with the best cost in the current iteration. The encoder ends the
iteration loops when i reaches the maximum of iteration time.
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3.2. AAMVP for 6-Parameters

In this subsection, we propose a modified AAMVP for 6-parameters according to the symmetry
of AAMVP for 4-parameters in VVC. HEVC provides two typical methods for determining the
translational MV: AMVP mode combined with fast ME algorithm; and merge mode.

AAMVP in VVC builds a sorted MVP candidate list for the 4-parameter affine motion model by
using MV2, belonging to the tuple S2 for the combination’s priority determination, which is signaled
explicitly to the lists and thus cannot be used for priority determination. We propose a new judgment
rule for AAMVP for the 6-parameter affine motion model.

Because the VVC encoder predicts the affine model adaptively, increasing the probability that the
current MV combination forms a 4-parameter affine motion model with a smaller DMV in Formula (13),
when the encoder chooses the 6-parameter affine motion model for prediction, the current MV
combination should be less likely to form the 4-parameter affine motion model.

In most sequences, the encoder uses the 6-parameter affine motion model instead of the 4-parameter
affine motion model to characterize complex motions like shearing. Figure 9 shows an example of the
6-parameter affine motion model with shearing:
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where MV0, MV1 and MV2 are MVP candidates that belong to the tuples S0, S1 and S2. This shows

that
MVh

1−MVh
0

w−1 and
MVv

0−MVv
1

w−1 reflect the affine transformation of the unit width or unit height of the current

block’s width in the horizontal and vertical directions, while
MVh

2−MVh
0

h−1 and
MVv

2−MVv
0

h−1 reflect the average
affine transformation degree of the current block’s length in the horizontal and vertical directions.

By using the similarity of triangles, we can conclude that, with respect to blocks with small degrees
of deformation, the change of the width in the horizontal direction should be close to that of the height
in the vertical direction, while the change of the height in the horizontal direction should be close to
that of the width in the vertical direction. Then we have:

DMV6 =
∣∣∣∣(h− 1)·

(
MVh

1−MVh
0

)
− (w− 1)·

(
MVv

2−MVv
0

)∣∣∣∣+ ∣∣∣∣(h− 1)·
(
MVh

2−MVh
0

)
− (w− 1)·

(
MVv

0−MVv
1

)∣∣∣∣ (26)

With a higher value of DMV6, it will be more likely that MV0, MV1 and MV2 form a real
6-parameter affine motion model rather than a 4-parameter affine motion model. We transmit the two
(MV0, MV1, MV2) with the biggest and second biggest DMV6 to the AAMVP candidate list after the
traversal ends.

4. Experimental Results

4.1. Simulation Setup

In this part, we evaluate the performance of the proposed algorithms based on the VVC test model
(VTM) and the symmetrical general VVC test model with AMC disabled/enabled. This experiment is
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based on the VTM-7.0 anchor [16], which was released in December 2019 and was the most recent
version released during the experiment. The VTM-7.0 anchor defines different configuration files for
different applications, including all I-frame (AI), random access (RA), low delay P (LP) and low delay
B (LB). The test video sequence adopts the video sequence from class A to class F under general test
conditions [17], the resolution of which ranges from 416 × 240 to 2560 × 1600. The specific simulation
environment is shown in Table 1.

Table 1. Simulation environment.

Processor Inter(R) Core (TM) i5-8400 CPU @ 2.80GHz

Core number 6
memory 16.0GB

cache 9MB
Operating system Windows 10 × 64

IDE Microsoft Visual Studio 16 2019

The Bjøntegaard Delta Bitrate (BD-BR) [18] is employed in our experiments to provide a fair R-D
performance comparison. The quantization parameters (QPs) tested are 22, 27, 32, and 37, and the
change of encoding time computed for each of the four tested QPs for each sequence using the following
formula to calculate the mean value:

∆T =
1
4

4∑
i=1

Ti
tested−Ti

anchor

Ti
anchor

×100% (27)

where i denotes each different quantization parameter: 22, 27, 32 and 37, the Ti
tested denotes the

encoding time for the tested encoder and Ti
anchor denotes the encoding time for the anchor encoder.

The encoding time increases when ∆T is positive and decreases when ∆T is negative.

4.2. Performance and Analysis

First, we use the VTM-7.0 with TMC as the anchor encoder and test the performance of the AMC
proposed by L. Li [10] and our proposed AMC. The AMC proposed in [10] has been accepted as the
VVC standard, and has been used in VTM-7.0. The x-axis and y-axis of the rate–distortion curves are
bitrate and distortion. Usually, less distortion requires a higher bitrate. The rate–distortion curves of
some video sequences are shown in Figure 10.
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Figure 10. The rate–distortion curves with three kinds of motion compensation. (a) Performances of
the sequence “China Speed”. (b) Performances of the sequence “Park Scene”.
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Where the x-axis represents the bitrate of tested video sequences, and the y-axis represents the
average peak signal-to-noise ratio (PSNR). Under the same bitrate, higher PSNR means less distortion
and better reconstructed video quality. Figure 10 shows similar rate–distortion performances between
the AMC proposed by L. Li [10], which was based on the anchor encoder of HM-16.7 in HEVC, and our
proposed AMC. The RD curves of our proposed AMC are a bit lower.

To separately observe the effect of proposed algorithm in AMC, we first tested the performance of
the AMC encoder using only momentum to calculate gradients.

Table 2 shows that the BD-BR increases by about 0.02%, while the encoder time increases by about
0.03%, on average. For each iteration in AMC, the value of momentum is a constant, and MVs of the
last iteration are stored in the array, thus resulting in a linear increase in time complexity. This part of
the algorithm added little complexity to the increase in BD-BR.

Then, we compared the performance of the AMC and AMC with the proposed AAMVP of the
6-parameter affine motion model. The results are shown in Table 3.

Table 2. Performances of 4-Parameter AMC and AMC with momentum.

Class Sequences Encoded Frames
AMC (L. Li et al.) AMC with Momentum

BDBR (%) ∆T (%) BDBR (%) ∆T (%)

A
Traffic 60 −15.83 21.31% −15.85 21.36%

PeopleOnStreet 60 −16.23 22.09% −16.24 22.11%

B

ParkScene 120 −17.04 17.83% −17.08 17.89%
BQTerrace 120 −16.2 19.57% −16.23 19.74%

BasketballDrive 100 −23.32 18.61% −23.35 18.70%
Cactus 100 −31.13 19.81% −31.16 19.84%
kimono 120 −18.89 20.08% −18.9 20.09%

C

BQMall 240 −15.71 21.55% −15.71 21.59%
PartyScene 200 −20.01 22.63% −20.04 22.65%
RaceHorses 120 −19.73 25.65% −19.74 25.66%

BasketballDrill 200 −21.17 20.17% −21.2 20.18%

D
BQSquare 240 −22.99 18.78% −23.02 18.79%

BlowingBubbles 200 −15.21 18.18% −15.23 18.21%
BasketballPass 200 −21.8 21.61% −21.82 21.64%

E
Johnny 120 −20.75 39.62% −20.75 39.63%

KiristenAndSara 120 −18.74 23.50% −18.77 23.54%
FourPeople 120 −20.24 24.01% −20.25 24.02%

F

ChinaSpeed 150 −70.52 14.28% −70.54 14.30%
SlideShow 200 −41.31 19.66% −41.35 19.67%

SlideEditing 150 −19.13 14.55% −19.15 14.58%
BasketballDrillText 200 −19.98 21.08% −20.01 21.11%

average −23.14 21.17 −23.16 21.20%

Table 3. Performances of AMC (L. Li et al.) and AMC with AAMVP.

Class Sequences Encoded Frames
AMC (L. Li et al.) AMC with AAMVP

BDBR (%) ∆T (%) BDBR (%) ∆T (%)

A
Traffic 60 −15.83 21.31% −15.83 21.09%

PeopleOnStreet 60 −16.23 22.09% −16.23 21.78%

B

ParkScene 120 −17.04 17.83% −17.04 17.42%
BQTerrace 120 −16.2 19.57% −16.2 19.14%

BasketballDrive 100 −23.32 18.61% −23.32 17.02%
Cactus 100 −31.13 19.81% −31.13 19.17%
kimono 120 −18.89 20.08% −18.89 19.44%
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Table 3. Cont.

Class Sequences Encoded Frames
AMC (L. Li et al.) AMC with AAMVP

BDBR (%) ∆T (%) BDBR (%) ∆T (%)

C

BQMall 240 −15.71 21.55% −15.71 21.04%
PartyScene 200 −20.01 22.63% −20.01 22.20%
RaceHorses 120 −19.73 25.65% −19.73 24.76%

BasketballDrill 200 −21.17 20.17% −21.17 19.34%

D
BQSquare 240 −22.99 18.78% −22.99 18.49%

BlowingBubbles 200 −15.21 18.18% −15.21 17.74%
BasketballPass 200 −21.8 21.61% −21.8 21.30%

E
Johnny 120 −20.75 39.62% −20.75 38.05%

KiristenAndSara 120 −18.74 23.50% −18.74 23.11%
FourPeople 120 −20.24 24.01% −20.24 23.25%

F

ChinaSpeed 150 −70.52 14.28% −70.52 13.14%
SlideShow 200 −41.31 19.66% −41.31 19.28%

SlideEditing 150 −19.13 14.55% −19.13 14.12%
BasketballDrillText 200 −19.98 21.08% −19.98 20.11%

average −23.14 21.17 −23.14 20.52%

Table 3 shows that the proposed AAMVP for the 6-parameter affine motion model changes the
priority of the AMVP list’s candidates, and this will not affect the BD-BR, but can reduce the encoder
time by 0.65% on average. On those sequences with more complex affine motion, the effect of the
proposed AAMVP is better.

To observe the performances more specifically in different classes of videos, we compared the
performance of the AMC and our proposed AMC combining momentum, fast gradient search and
AAMVP by using BD-BR. Their performances are shown in Table 4.

Table 4 shows that the AMC exhibited improved performance when compared with the TMC.
Some sequences present outstanding performance under the AMC framework, showing both bitrate
saving and increase in PSNR in all QPs. With respect to these sequences, “Cactus” contains abundant
rotation motions, while “Slideshow” shows a PowerPoint slide with many artificial shearing motions.
It should be noted that the BDBR of “China Speed” can be reduced by up to about 70%.

Table 4. Performances of AMC (L. Li et al.) and Proposed AMC.

Class Sequences Encoded Frames
AMC (L. Li et al.) Proposed AMC

BDBR (%) ∆T (%) BDBR (%) ∆T (%)

A
Traffic 60 −15.83 21.31% −15.71 14.29%

PeopleOnStreet 60 −16.23 22.09% −16.09 14.79%

B

ParkScene 120 −17.04 17.83% −16.95 11.43%
BQTerrace 120 −16.20 19.57% −16.15 12.57%

BasketballDrive 100 −23.32 18.61% −23.14 14.17%
Cactus 100 −31.13 19.81% −30.89 13.69%
kimono 120 −18.89 20.08% −18.74 13.60%

C

BQMall 240 −15.71 21.55% −15.57 15.68%
PartyScene 200 −20.01 22.63% −19.86 15.94%
RaceHorses 120 −19.73 25.65% −19.58 16.87%

BasketballDrill 200 −21.17 20.17% −20.88 15.95%

D
BQSquare 240 −22.99 18.78% −22.63 13.24%

BlowingBubbles 200 −15.21 18.18% −15.19 14.01%
BasketballPass 200 −21.80 21.61% −21.27 14.82%



Symmetry 2020, 12, 1143 14 of 16

Table 4. Cont.

Class Sequences Encoded Frames
AMC (L. Li et al.) Proposed AMC

BDBR (%) ∆T (%) BDBR (%) ∆T (%)

E
Johnny 120 −20.75 39.62% −20.59 21.42%

KiristenAndSara 120 −18.74 23.50% −18.61 17.07%

FourPeople 120 −20.24 24.01% −20.05 14.88%

F

ChinaSpeed 150 −70.52 14.28% −69.71 11.59%

SlideShow 200 −41.31 19.66% −40.89 13.17%

SlideEditing 150 −19.13 14.55% −19.09 10.70%

BasketballDrillText 200 −19.98 21.08% −19.89 14.98%

average −23.14 21.17 −22.93 14.52

Additionally, under the AMC framework, the BDBR decreases by 23.14% on average, and the
average encoding time increases by 21.17%. Table 2 also shows that the proposed algorithm provides
22.93% BDBR saving and 14.52% time increase compared with the TMC. When compared to the
AMC proposed by L. Li [10], the coding time is reduced by 6.65% on average, with a cost of 0.21%
BDBR penalty, which means the proposed algorithm reduces the coding time of the AMC by about
30%. Noted that for sequences with poor performance, such as “China Speed”, the BDBR penalty is
0.81%. This might be because the objects exhibit fast affine motion, and the gradients are not smooth,
thus degrading the performance of the fast gradient search.

Still, the algorithm will not reduce the subjective quality of the sequence. Figure 11 shows a
comparison of the origin and reconstructed image with QP22, random access. By subtracting these
two pictures, Figure 12 shows the distortion of the reconstructed image. The example picture size is
1024 × 768 and the MSE is 912.
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5. Conclusions

The AMC frame, which has previously been adopted in VVC coding, saves approximately 15%-25%
BD-rate compared to HEVC, but increases the encoding time. In this paper, we firstly introduce the
4-parameter affine motion compensation and multiple model affine motion compensation in VVC and
analyze their performances. Then, a VVC encoder with an edge detection based AME was introduced
and tested. A new edge detection operator and a distortion-based fast gradient search were used in
this proposed VVC encoder. Additionally, we adjust the AAMVP criterion for the 6-parameter affine
motion model. Ultimately, the proposed VVC encoder reduced the coding time by 6.65% with a cost
of a 0.21% BDBR penalty compared to the anchor encoder. Considering that the anchor AMC frame
increases the coding time by 21.17% on average, the proposed algorithms can save 30% of encoding
time of AMC. The BDBR inevitably increases, but this is tolerable, and the subjective video quality is
not affected.
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