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Abstract: Attribute reduction is one of the challenging problems in rough set theory. To accomplish
an efficient reduction algorithm, this paper analyzes the shortcomings of the traditional methods
based on attribute significance, and suggests a novel reduction way where the traditional attribute
significance calculation is replaced by a special core attribute calculation. A decision table called the
positive region sort ascending decision table (PR-SADT) is defined to optimize some key steps of the
novel reduction method, including the special core attribute calculation, positive region calculation,
etc. On this basis, a fast reduction algorithm is presented to obtain a complete positive region
reduct. Experimental tests demonstrate that the novel reduction algorithm achieves obviously high
computational efficiency.
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1. Introduction

Due to the development of data collection technology, more objects and attributes are
stored. However, storing and processing all attributes could be very expensive and impractical
computationally [1]. To address this issue, it is necessary to omit several attributes that will not
seriously impact the resulting classification (recognition) error, cf. [2]. In rough set theory, an important
method is emphasized to solve this problem and is referred to as attribute reduction [3].

Attribute reduction is one of the most important contributions and challenges in rough set
theory. It deletes redundant attributes to enhance the efficiency and accuracy of knowledge
abstraction technologies, such as pattern recognition, data mining, knowledge discovery, and decision
analysis [4–9]. In general, classical reduction methods are divided into three types, which are
referred to as positive region reduction, boundary region reduction, and entropy based reduction,
respectively [10]. The positive region reduction method ignores the discernibility relationship between
rough granules [11–14]. The second type ignores the discernibility relationship between rough granules
with the same decision value sets [15]. The third type ignores the discernibility relationship of rough
granules with the same information entropy [16–18]. As a comparison, positive region reduction is the
most popular and widely used, especially for dynamic data sets and big data [19–21].

At present, a very important challenge of attribute reduction is to design an efficient and complete
algorithm. It should be noted that calculating all of the reducts is a NP (non-deterministic polynomial)
hard problem [22]. Therefore, most of the fast reduction algorithms apply the heuristic construction
to calculate a single reduct. A classical heuristic algorithm calculates an entire core set first and then
iterates the following heuristic processes until the algorithm is finished. The heuristic processes are:
calculate the attribute significances of all the attributes, select the attribute with the most attribute
significance, alter the object set or discernibility matrix, and return to the next heuristic process.
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To accomplish an efficient heuristic reduction algorithm, many techniques have been developed
in the last twenty years. In [23,24], the researchers calculate the entire core set by analyzing all of
the object pairs, and the time complexity of the core set calculation is O(|U|2|C|). By using the notion
of information granules, several algorithms successfully reduce the object set from |U| to |U/C| and
make the time complexity of the core set calculation be O(|C||U/C|2) [25,26]. Xu et al. proposed a fast
core set algorithm with the complexity of O(|C||U|+|C|2|U/C|) [27]. At the same time, many formulas
or methods were proposed to calculate the different types of attribute significances. Some classical
formulas are designed based on the positive region [28–30], entropy [3,16–18], the discernibility ability
of attributes [13,14,24,31,32], the relationship between attributes [33], etc. In addition, many researchers
proposed the mixed formulas by combining rough set theory and other theories, such as fuzzy set [12],
ant colony optimization [23], granular computing [2,6,16,34], etc.

Although the efficiencies of traditional heuristic methods are optimized by the existing techniques,
there are still some problems unresolved. First, the computation of attribute significance is inefficient.
As a common feature, the formula of attribute significance would run (2|C|−|R|+1)×|R|/2 times if the
addition construction was adopted, or (|C|+|R|+1|)×(|C|−|R|)/2 times if the deletion construction was
adopted. These repeated calculations on attribute significance consume some running time. Second,
when many attributes have the same significance, one randomly selects any one in general. However,
a different subset of the selected attributes may make a great difference in classification accuracy [35].

To address these problems, this paper proposes a novel heuristic method. It applies a special
core attribute calculation to replace the traditional attribute significance calculation. In detail, the new
method only iterates the following heuristic processes, which are described as: calculate a single
relative core attribute, alter the decision table, and return the next heuristic process, respectively.
The new method is of simple structure, and includes three important features. First, it abandons the
notion of attribute significance. Second, it only calculates a single core attribute in each heuristic
processes. Third, each conditional attribute is checked at most once.

In order to realize the new method efficiently, some definitions and technologies are suggested.
First, we define a positive region sort ascending decision table (PR-SADT), shown as Definition 1 and
Algorithm 1. Next, a special core calculation algorithm is proposed (shown as Algorithms 2 and 3),
which not only calculates a core attribute quickly, but also deletes some redundant column data.
Besides, the traditional positive region calculation algorithm is also optimized based on PR-SADT
(shown as Algorithm 4). These technologies are essential to achieve a fast reduction algorithm as in
Algorithm 5.

The remainder of this paper is structured as follows. Some basic concepts are briefly reviewed
in Section 2, which include attribute reduction and the positive region. In Section 3, the positive
region sort ascending decision table is defined, and some related properties are discussed. In Section 4,
we propose the reduction algorithm based on PR-SADT and analyze the advantages of the novel
algorithm. Section 5 presents some numerical experiments to validate the efficiency of the proposed
algorithm. Finally, we conclude this paper and discuss the outlook for further work in Section 6.

2. Preliminaries

In rough set theory, data are represented in an information table where a set of objects is described
by using a finite set of attributes. An information table S is represented as the following tuple:

S = (U, At, {Va |a ∈ At}, {Ia |a ∈ At})

where U is the universe of objects, At is a finite non-empty set of attributes, Va is the set of values of
attribute a, and Ia:U →Va is an information function that maps an object of U to exactly one value
in Va. As a special type, the information table S is also referred to as a decision table if At = C ∪
D, where C = {a1,a2, . . . ,an} is the condition attribute set and D = {d} is the decision attribute set.
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The decision table is considered to be inconsistent if two objects with the same condition values have
different decision values. For example, Table 1 is a classical inconsistent decision table.

Table 1. A classical inconsistent sort ascending decision table (SADT).

a1 a2 a3 a4 a5 d

x1 0 0 0 1 1 0
x2 0 0 0 1 1 1
x3 0 0 0 1 1 1
x4 0 0 1 0 1 0
x5 0 0 1 0 1 1
x6 0 0 1 1 1 0
x7 0 0 1 1 1 1
x8 1 0 1 1 1 0
x9 1 0 1 1 1 1
x10 1 0 1 1 1 2
x11 1 1 1 1 1 1

Given a subset of attributes B ⊆ C, a symmetric indiscernibility relationship IND(B) is defined as
follows: IND(B) =

{
(x, y) ∈ U ×U

∣∣∣∀a ∈ B, Ia(x) = Ia(y))
}
. The equivalence class (or granule) of an

object x with respect to C is as follows: [x]C = {y∈U|(x,y)∈IND(C)}. The union of all of the granules with
respect to C is referred to as a partition of the universe, which is described as: U/C = {[x]C|x∈U}. [x]C is
exact if it has one decision value; otherwise, it is rough. The union of all of the exact granules with
respect to C is referred to as the positive region.

Given an information table S, an attribute set R is called a reduct if and only if it satisfies the
following two conditions:

(1) IND(R) = IND(At);(2) For any a ∈ R, IND(R− {a}) , IND(At).

A reduct is a subset of attributes that are jointly sufficient and individually necessary to represent
the equivalent knowledge with the attribute set C [14]. In general, there are several reducts for an
information table. The set of reducts is referred to as RED(S), and the intersection of all reducts is
the core set, which is described as: Core(S) = ∩RED(S). The core attributes are so important that they
should be added into the results for addition and addition–deletion construction methods and should
not be deleted in the heuristic steps for the deletion construction method [36].

3. Positive Region Sort Ascending Decision Table and Its Properties

In this section, we defined a sort ascending decision table (SADT) and a positive region SADT and
investigated some important properties. These definitions and properties are important to optimize
the novel attribute reduction algorithm.

3.1. SADT

In general, a data set is arrayed in two ways: sort ascending or sort descending. They are
both effective for the proposed algorithm in this paper. For convenience, only sort ascending is
discussed here.

Definition 1. A decision table S = (U, At = C∪ {d}, {Va |a ∈ At}, {Ia |a ∈ At})is referred to as a sort
ascending decision table (SADT) if and only if it satisfies the following conditions:

1. ∀xi, xi+1 ∈ U[Ia1(xi) ≤ Ia1(xi+1)]

2. ∀xi, xi+1 ∈ U
[
(xi, xi+1) ∈ IND(Bm)⇒ Iam+1(xi) ≤ Iam+1(xi+1)

]
3. (xi, xi+1) ∈ IND(C)⇒ Id(xi) ≤ Id(xi+1).
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where Bm = {a1,a2, . . . ,am}.

All of the objects in a SADT are sorted based on the ordered condition attribute set C. The default
significance is: a1>a2> . . . >a|C|. In real applications, the order of condition attributes would be adjusted
based on prior knowledge. For example, if the test costs of condition attributes are referenced, one
makes the cheap attributes in advance for calculating a reduct with a lower cost.

The SADT is easily realized by sort functions or algorithms [37], such as Bubble Sort, Selection
Sort, Insertion Sort, Shell Sort, Merge Sort, Quick Sort, Heap Sort, Counting Sort, Bucket Sort, Radix
Sort, etc. However, in order to obtain a fast reduction algorithm, these sort algorithms with linear
time complexity of O(|U||C|), such as Counting Sort, Bucket Sort, and the algorithm in [30], are only
suggested. It is noted that we did not discuss how to design a fast sort algorithm. Additionally,
we suggest the sortrows function to construct a SADT. The code is listed as follows.

“[m,n] = size(S);
SADT = sortrows (S,1: n);”
Based on SADT, one easily obtains the following properties.

Property 1. Given an attribute set Bm = {a1,a2, . . . ,am}. If (xi, x j) ∈ IND(Bm) and i<k<j, then (xi, xk) ∈

IND(Bm).

Property 2. Let U/C = {X1,X2, . . . ,XK} be a partition of a SADT. For any Xi ∈ U/C, it has Xi = {xp+1, xp+2,
. . . ,xp+q}. where p =

∑i−1
j = 1

∣∣∣X j
∣∣∣, q = |Xi|.

These properties show that the objects in a granule with respect to C or Bm are adjacent physically.
It is thus easy to discern the repeat objects and U/C.

3.2. PR-SADT

Since only positive region reducts were discussed in this paper, a positive region SADT (PR-SADT)
was defined to replace SADT if the original decision table was inconsistent.

Definition 2. Given a SADT S, a positive region sort ascending decision table (PR-SADT) Sp = (U,
C∪{d},{Va},{Ia}) satisfies the following condition

f or ∀x ∈ U, Id(x) = dnew i f
∣∣∣Id([x])

∣∣∣ > 1

where |.| denotes the cardinality of a set, dnew is a new decision value. In the related experiments in Section 5, we
set dnew = max(Id(x)) + 1.

Definition 2 shows that the PR-SADT changes all of the rough granules in a SADT to the exact
granules. Based on Definition 2, one easily obtains the following properties.

Property 3. There are the same number of granules in SADT and PR-SADT.

Property 4. If the original SADT is inconsistent, then there are repeated objects in the PR-SADT.

The repeated objects are not valuable for the reduction algorithms based on the positive region.
Instead, they add the running time and the space requirement. Thus, it is necessary to delete the
repeated objects. A fast algorithm for constructing a PR-SADT without repeated objects is described as
Algorithm 1.
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Algorithm 1. Construct a PR-SADT without repeated objects.

Input: a SADT;
Output: a PR-SADT without repeated objects.
1: Begin
2: For k = |U|:-1:2
3: If ∀a ∈ C,[Ia(xk−1)= Ia (xk)] ∧ [Id (xk−1),Id (xk)]
4: Id (xk−1) = dnew;
5: Delete object xk;
6: end
7: end
8: end

Algorithm 1 only compares the adjacent objects. The time complexity is O(|U||C|). In the next
sections, we only discussed the PR-SADT calculated by Algorithm 1. Namely, the PR-SADT is defaulted
as a decision table without any repeated objects for convenience.

Example 1. A decision table in [10] is listed to show the difference between a SADT and a PR-SADT calculated
by Algorithm 1. The original data set is sorted in ascending order and is presented in Table 1.

Table 1 has 11 objects that are classified as five granules {x1,x2,x3}, {x4,x5}, {x6,x7}, {x8,x9,x10},
and{x11}, and only the last granule {x11} is exact. The corresponding PR-SADT calculated by Algorithm 1
is presented in Table 2.

Table 2. Positive region (PR)-SADT corresponding to Table 1

a1 a2 a3 a4 a5 d

x1 0 0 0 1 1 3
x2 0 0 1 0 1 3
x3 0 0 1 1 1 3
x4 1 0 1 1 1 3
x5 1 1 1 1 1 1

PR-SADT in Table 2 has five objects, and there is a new decision value “3”. PR-SADT also has five
granules but does not have any rough granules or repeating objects.

4. The Reduction Algorithm Based on PR-SADT

In this section, we will discuss how to obtain a positive region reduct by using PR-SADT in theory.
Next, two efficient subalgorithms are proposed. Finally, the complete reduction algorithm based on
PR-SADT is presented.

4.1. Positive Region Reduction Method Based on PR-SADT

PR-SADT is different from the original decision table because it changes and deletes some
objects. To obtain a positive region reduct of the original decision table, it is necessary to provide the
related description.

In general, a positive region reduction keeps the positive region of the target decision table
unchanged. Although all of the granules or objects in the positive region are exact, the rough granules
or objects cannot be ignored. In [10], we noted that a positive region reduction method should satisfy
the following discernibility matrix M = (m(i,j)).

m(x, y) =
{
a
∣∣∣∣Ia([xi]) , Ia

([
x j

])}
i f (Id[xi] , Id

[
x j

]
)∧

{
min

(∣∣∣∣Id[xi]|, |Id
[
x j

]∣∣∣∣) = 1
}

(1)
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Matrix M illustrates the discernibility relationships corresponding to positive region reduction.
To explain these relationships, we classified and listed them in Table 3.

Table 3. The discernibility relationships corresponding to a positive region reduct.

Type of Granule Pair Decision Value Set Discern

1 Two exact granules Id([x]C) = Id([y]C) No
2 Two exact granules Id ([x]C) , Id ([y]C) Yes
3 Two rough granules any No
4 Exact granule and rough granule any Yes

For the original inconsistent decision table, it is necessary to analyze the “type of granule pairs”
and the “decision value set” for judging whether a granule pair should be discerned.

If the original decision table is reformed to a PR-SADT by using Algorithm 1, all of the rough
granules in the original decision table are changed to exact granules with the new decision value dnew.
This means that the third type is changed to the first type. In a similar way, the fourth type of the
granule pair is changed to the second type.

In conclusion, the discernibility relationships corresponding to positive region reduction in
PR-SADT are described in Table 4.

Table 4. The discernibility relationships corresponding to positive region reduction in PR-SADT.

Type of Object Pair Decision Value Set Discern

1 Two exact objects Id (x) = Id (y) No
2 Two exact objects Id (x),Id (y) Yes

It is worth noting that there are no rough granules or repeating objects in a PR-SADT calculated
by Algorithm 1. Each granule in a PR-SADT only has one object. Therefore, the object pair is used to
judge the discernibility relationship for convenience. In Table 4, there are only two items, which are
less than those in Table 3, and only the “decision value set” is necessary.

Based on Table 4, we gave a new definition on the positive region reduct, which is described
as follows.

Definition 3. Let Sp be a PR-SADT without repeated objects. An attribute set R⊆C is called a positive region
reduct if and only if R satisfies the following two conditions:

1. ∀x, y ∈ U,∃a ∈ R[Id(x) , Id (y) =⇒ Id(x) , Id (y)],
2. ∀a ∈ R,∃x, y ∈ U[Id (x) , Id (y) ∧ (x, y) ∈ IND(R− {a})].

The first condition ensures the discernibility relationship corresponding to an unchanged positive
region reduct. This means that each object pair with different decision values in PR-SADT should be
discerned. The second condition means that each attribute in a reduct is necessary. They are jointly
sufficient and individually necessary to represent a positive region reduct if a PR-SADT is constructed.

4.2. Fast Core Attribute Calculation Based on PR-SADT

In this section, a special core attribute calculation algorithm is presented for the novel heuristic
reduction method.

Theorem 1. Let a PR-SADT without repeated objects Sp and the last conditional attributean ∈ C, If an

is a core attribute, then ∃xk ∈ U, which satisfies the conditions: (xk,xk+1) ∈ IND(B),Ian(xk) < Ian(xk+1),
andId(xk) , Id(xk+1), where B = {a1,a2, . . . ,an−1}.
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Proof. In a consistent decision table, if an ∈ Core(S), then ∃[xi]B ∈ U/B and |Id([xi]B)|>1. This
means that ∃xk, xk+1 ∈ [xi]B, it has Id(xk) , Id(xk+1). Considering that Sp is a PR-SADT, it also has
Ian(xk) < Ian(xk+1). �

Theorem 1 shows three necessary conditions on the last condition attribute an. At the same time,
the conditions (xk,xk+1)∈ IND(B), Ian(xk) < Ian(xk+1) mean that the attribute an is the unique attribute
that discerns the object pair (xk, xk+1), and Id(xk) , Id(xk+1) means that the object pair should be
discerned according to Definition 3. Hence, the three conditions in Theorem 1 are also sufficient to
check whether an is a core attribute or not. Based on the above conclusion, an algorithm is given
as follows.

If flag = 1, then the last condition attribute is a core attribute. In the worst case, Algorithm 2
iterates through the data set and has a time complexity of O(|U||C|).

The output of Algorithm 2 has two possibilities. If the last condition attribute is not a core
attribute (flag = 0), one can efficiently check a core attribute by applying Theorem 2, which is described
as follows.

Algorithm 2. Check the last condition attribute an.

Input: a PR-SADT
Output: flag
1: Begin
2: flag = 0;
3: for k = 1: |U|-1
4: if (xk,xk+1)∈ IND(B), Ian (xk) < Ian (xk+1), and Id(xk) , Id(xk+1)

5: flag = 1 and return
6: End
7: End
8: end

Theorem 2. Suppose S1 is the new decision table when the last column data of a PR-SADT Sp is deleted.
If an < Core

(
Sp

)
, then RED(S1) ⊆RED(Sp) and RED(S1),∅.

Proof. Let RED(Sp)= R1∪R2, where R2 is the set of reducts that includes the last condition attribute an.
Owing to an < Core

(
Sp

)
, R1,∅. According to the relationship between Sp and S1, it has R1= RED(S1).

Thus, RED(S1) ⊆RED(Sp) and RED(S1),∅. �

Theorem 2 shows that the column data corresponding to the last condition attribute is redundant
for a heuristic reduction algorithm if an is not a core attribute. Namely, it is effective for obtaining a
reduct of the original decision table based on S1 because RED(S1) ⊆RED(Sp) and RED(S1),∅. To reduce
the running time of all of the remaining heuristic steps, it is necessary to delete the data of column an.

It is worth noting that it is impossible to obtain a reduct including an if the last column data is deleted.
This shortcoming is acceptable because only one reduct is required in a heuristic reduction algorithm.

Algorithm 3 has several special features. First, it only calculates a single core attribute. Second,
it deletes some redundant column data. Third, the output of Algorithm 3 is a relative core attribute.
In other words, owing to some redundant column data have been deleted in Algorithm 3, the output is
just a core attribute of S1. Considering RED(S1) ⊆RED(Sp), it has Core

(
Sp

)
⊆ Core(S1). Thus, the output

may not be a core attribute of the original decision table Sp.
The time complexity is dependent on the number of redundant condition attributes. In the

worst case that the output is a1, the time complexity is O(|U||C|2/2). The more exact analysis on time
complexity is shown in Section 4.4.
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Algorithm 3. The special core attribute calculation algorithm.

Input: a PR-SADT
Output: a core attribute
1: Step 1: check the last condition attribute by Algorithm 2.
2: Step 2: if flag = 0, then delete the data corresponding to the last condition attribute and jump to step1; else
step3.
3: Step 3: output the last condition attribute

4.3. Fast Positive Region Calculation Based on PR-SADT

In this section, a fast method based on PR-SADT is presented to calculate the positive region with
respect to attribute set R.

Theorem 3. Let attribute set R = {a1,a2, . . . ,am}, U/R = {X1,X2, . . . ,XK}. For ∀Xi ∈ U/R, if Xi ∩

POSR(D) = ∅, then ∃xk, xk+1 ∈ Xi, and it satisfies: Id(xk),Id (xk+1).

Proof. In a PR-SADT, the objects in a granule with respect to attribute set R are adjacent.
Suppose Xi =

{
xp+1, xp+2, . . . , xp+q

}
, where q = |Xi|. Owing to Xi ∩ POSR(D) = ∅, it has |Id

(Xi)| >1. Hence, ∃xk, xk+1 ∈ Xi and it satisfies Id (xk),Id (xk+1). �

Theorem 3 illustrates a simple way to discern the positive region with respect to R. The related
algorithm is described as follows.

Algorithm 4 calculates the positive region with respect to R by scanning a PR-SADT once. The time
complexity is O(|U||R|), where |R|≤|C|. As a contrast, the time complexity of a classical positive region
calculation is O(|U|2|C|). The positive region calculation algorithm in [29] has the complexity of
O(|U||C|2). In [32], the complexity of calculating the positive region is O(|U||C|log|U|).

Algorithm 4. Calculate the positive region with respect to R in a PR-SADT.

Input: a PR-SADT, attribute set R = {c1,c2, . . . ,cm}.
Output: the positive region with respect to R.
1: Step 1: set the default value.

PR = ∅, gra = {x1}, flag = 0.
2: Step 2: compare the adjacent object pair

For i = 1: |U|−1
gra = gra ∪ {xi+1} if (xi, xi+1) ∈ IND(R);//discern the object in a granule;
flag = 1 if (xi, xi+1) ∈ IND(R)and Id (xi),Id (xi+1);//the granule is rough if flag is 1;
PR = PR ∪ gra if ∃a ∈ R, Ia(xi) , Ia(xi+1) and flag == 0;//record the exact granule;
gra = {xi+1}, flag = 0 if ∃a ∈ R, Ia(xi) , Ia(xi+1);//prepare for the next granule

end
3: Step 3: record the last exact granule.

If flag==0
PR=PR ∪ gra;//record the last exact granule

end
4: Step 4: output PR.

Example 2. According to Algorithm 4, the positive region of the PR-SADT in Table 2 is calculated by the
following process.

Suppose R = {a1,a2}. In step 1, PR=∅, gra = {x1}, flag =0. In step 2, these parameters were calculated
in Figure 1.
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In step 3, the last object x5 is added into PR. Finally, output the positive region
PR = {x1, x2, x3, x4, x5}.

4.4. The Attribute Reduction Algorithm Based on PR-SADT

The fast positive region reduction algorithm based on PR-SADT (FPRA) was proposed as
Algorithm 5, and the related flow chart is described as Figure 2.

Algorithm 5. The fast positive region reduction algorithm based on PR-SADT (FPRA)

Input: a decision table S.
Output: a complete reduct.
1: Step 1. R = ∅. Sort the original decision table.
2: Step 2. Delete the repeated objects, and calculate a PR-SADT by Algorithm 1.
3: Step 3. Check the last condition attribute an by Algorithm 2. If it is a core attribute, then jump to step 5; else,
step 4.
4: Step 4. Delete the last column data, and jump to step 3.
5: Step 5. R = R∪{ak }. Place the last column to the first column, and sort the decision table.
6: Step 6. Calculate the positive region with respect to R by Algorithm 4. Delete the positive region.
7: If Sp is null or Id(Sp) is dnew, then output the reduct R; else, jump to step 3.
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Analysis on the completeness of FPRA:
FPRA satisfies two key features. First, it adopts the reduct construction by deletion. Second, each

attribute in R is a core attribute with respect to the related heuristic steps. Thus, R is a complete reduct.
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The detail proof is described as follows.
Considering any attribute ai ∈ R, there is a object pair (xk,xk+1), which satisfies the conditions

according to step 3 in FPRA: (xk,xk+1)∈ IND(B), Ian(xk) < Ian(xk+1), and Id(xk) , Id(xk+1), where
B=Ri∪{a1,a2, . . . ,ai−1}, Ri =

{
a j ∈ R

∣∣∣ j > i
}
. This means that the object pair (xk,xk+1) cannot be discerned

by B. At the same time, owing to R− {ai} ⊆ B, it is concluded that the object pair (xk,xk+1) cannot be
discerned by R-{ai}. However, the object pair can be discerned by R according to Algorithm 5. Thus,
attribute ai is essential for attribute set R.

In conclusion, the attributes of R are jointly sufficient and individually necessary for the original
data set. Thus, R is a complete reduct.

Analysis on time complexity:

FPRA includes three subprocesses: the S1 process of constructing a PR-SADT (step 1 and step 2),
the S2 process of calculating a core attributes (step 3->step 4->step 3) and the S3 process (step 5->step 6).

Considering an original decision table, one adopts the algorithm in [27,30] to construct a PR-SADT
with the time complexity of O(|U||C|). However, the real running times of algorithms in [27,30] are
dependent on the good programming style or habit. In the related experimental section, we apply
the sortrows function to sort a decision table. Step 2 is accomplished by Algorithm 1, and the time
complexity is O(|U||C|). Thus, the time complexity of the S1 subprocess is O(|U||C|).

In the next steps, the number of object sets and condition attribute sets are different in each
heuristic process. The S2 process (step 3->step 4) deletes some related columns of data set, and the S3
process (step 5->step 6) rearranges the PR-SADT and deletes the related positive regions (some rows of
data set). These two subprocesses reduce |U| and |C| and are highly efficient in optimizing the time
complexity of FPRA.

Let Ui and Ci represent the object set and condition attribute set of the ith heuristic process,
respectively. It has U1 ⊃ U2 ⊃ . . . ⊃ Uk−1,C1 ⊇ C2 ⊇ . . . ⊇ Ck−1, where k = |R| is the number of attributes
in reduct R, C1 = C, and |U1| = |U/C|.

Step 3 is calculated with Algorithm 2, and the time complexity is O(|Ui||Ci|). Step 5 sorts the
decision table, and the complexity of the ith heuristic process is O(|Ui||Ci|). The time complexity of
step 6 includes two parts. One comes from Algorithm 4 and is represented as O(i |Ui|), where i is
the number of attributes of R for the ith heuristic process. The other part originated by deleting the
positive region, and it also has a time complexity of O(i |Ui|).

In Algorithm 5, S2 subprocess will be performed |R| times and thus has a time complexity of

O
(∑|R|

i = 1|Ui|
∑Qi

j = 1(|Ci| − j + 1)
)

where Qi = |Ci|-|Ci+1|. S3 will also be performed |R| times with time

complexity of O
(∑|R|

i = 1|Ui|(i + |Ci|)
)
.

Finally, the total time complexity is O(
∣∣∣∣U∣∣∣∣∣∣∣∣C∣∣∣∣+∑|R|

i = 1|Ui|(i+|Ci|) +
∑|R|

i = 1|Ui|
∑Qi

j = 1 (
∣∣∣Ci

∣∣∣− j + 1) ) .
In the best case where R = {c|C|}, even the speed of O(|C||U|) is possible. In the worst case where R = C,
the time complexity is O

(
|U||C|+

∑|C|
i = 1|Ui|(i + |Ci|) +

∑|C|
i = 1|Ui||Ci|

)
. Considering R is the output of

FPRA, the time complexity is treated as O(|U||C|+
∑|C|

i = 1|Ui|(i + 2|Ci|). The time complexity of FPRA is
considerably less than those of traditional algorithms, which has a time complexity of O(|U|2|C|2) [2,27].
To stress the advantage of Algorithm 4, some excellent reduction algorithms are compared and listed
in Table 5.

Table 5. Time complexity description.

Algorithm Time Complexity

FPRA in this paper O(|U||C|+
∑|C|

i = 1|Ui|(i + 2|Ci|)

FSPA in [1] O(
∣∣∣∣U∣∣∣∣∣∣∣∣C∣∣∣∣+∑|C|

i = 1|Ui|(
∣∣∣∣C∣∣∣∣−i + 1))

Algorithm in [38] O(|C|2|U|log|U|)
IFSPA in [39] O(

∣∣∣∣C∣∣∣∣3∣∣∣∣U∣∣∣∣+∑|C|
i = 1 ( (

∣∣∣C∣∣∣−i + 1)
2
∣∣∣∣Ui

∣∣∣∣+(
∣∣∣C∣∣∣−i + 1)

3
∣∣∣∣Ui

∣∣∣∣) )
Algorithm in [2] O(|U|2|C|2)
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Obviously, the time complexity of FPRA is less than those of the algorithms in [2,38,39]. It is
worth noting that the Ui of the algorithm in [1] is different from Ui of FPRA. This means that it is hard
to compare the efficiencies of the two algorithms (algorithm in [1] and FPRA) by the time complexity
in Table 5. The related experiments in Section 5 will propose the more effective evidence to represent
the advantage of FPRA.

Analysis on the characteristic of FPRA:
To summarize, FPRA is complete and efficient. It has the following important features

and advantages.

1. FPRA is dependent on an efficient sort function.

FPRA just repeats a simple procedure: sort->compare->delete. Only the most efficient sort
function is considered in FPRA. Thus, all the comparisons sort algorithms, such as Bubble sort (O(n2)),
Shell sort (O(nlogn)), Merge sort (O(nlogn)), Quick sort (O(nlogn)), etc., are not suitable for FPRA
because of the limit of O(nlogn). Instead, bucket sort algorithms are considered because their time
complexities below O(nlogn). In fact, we did not pay attention to how to design a sort function because
many tools or software provide the efficient sort functions. Additionally, the sortrows function or the
Shuffle in MapReduce is highly recommended.

2. FPRA does not calculate any attribute significances.

Most of traditional heuristic attribute reduction algorithms would provide a simple or complex
definition to calculate attribute significances of all the condition attributes. No matter how simple
the definition is, it is necessary to calculate and compare the significances of all the attributes and
select the most significant attribute. This calculation process on significance would be run (2|C|-|R|+1)
×|R|/2 times if the addition construction was adopted, or (|C|+|R|+1|)×(|C|-|R|)/2 times if the deletion
construction was adopted. As a comparison, the special core attribute calculation in FPRA only would
be run |C| times.

3. The heuristic method of FPRA is more efficient and concise.

The traditional heuristic algorithms include two kinds of calculation: the entire core set calculation
before the heuristic process and attribute significance calculation in heuristic processes, respectively.
As a comparison, FPRA only has a kind of calculation: core attribute calculation in heuristic processes.
In detail, FPRA calculates a single core attribute in each heuristic process, while the traditional
algorithms have to calculate the attribute significances of all the existed condition attributes.

Besides, each conditional attribute of FPRA is checked at most once. In the traditional heuristic
algorithms, a conditional attribute would be checked (2|C|-|R|+1)×|R|/(2|C|) or (|C|+|R|+1|)×(|C|-|R|)/(2|C|)
times in average. Therefore, FPRA is more efficient and concise than the traditional heuristic algorithms.

5. Experimental Results

In this section, we will evaluate the proposed approach (FPRA) based on several data sets from the
UCI (University of California, Irvine) Repository [1,38,40,41]. The related works include performance
analysis and comparison tests. All of the experiments on FPRA were conducted using a PC with
Inter(R) CPU G645, 2.9 GHz and 1.81 GB memory.

Some data sets from the UCI Repository were used in the experiments as outlined in Table 6. There
are some data sets with missing values, such as Mushroom and Breast-cancer-wisconsin. For uniform
treatment of all data sets, we replaced the missing values with a new value that did not appear in
the original data set. Some data sets, such as sensorless, were transformed into discrete data sets by
a simple uniform discretization algorithm. Specifically, each of the related continuous columns was
divided into 10 equal intervals.
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Table 6. Description of the data sets.

Data Set Size |U| Attributes |C| Classes |Vd|

1 Dermatology 358 34 6
2 Backup_large.test 376 35 19
3 Breast-cancer-wisconsin 683 9 2
4 Tic-tac-toe 958 9 2
5 Kr_vs_kp 3196 36 2
6 mushroom 5644 22 2
7 Ticdata2000 5822 85 2
8 nursery 12960 8 5
9 Letter-recognition 20000 16 26

10 Shuttle_all 58000 9 7
11 sensorless 58509 48 11
12 Connect-4 67557 42 3
13 Ipums.la.97 70187 60 10
14 Ipums.la.99 88443 60 10
15 covertype 581012 54 7

5.1. Performance Analysis

At present, the time complexities of fast reduction algorithms have beyond O(|U||C|2) and entered
the interval of (O(|U||C|), O(|U||C|2)). In order to illustrate the advantages on computational efficiency,
many researchers have to apply some inexact and sealed parameters, such as Ui, Ci, etc., to describe
the time complexities of proposed algorithms. These time complexities suffer two disadvantages.

1. It is difficult to estimate the real running times from the time complexities using sealed
parameters. For example, the time complexity of the fast reduction algorithm in [1] is

O(
∣∣∣∣U∣∣∣∣∣∣∣∣C∣∣∣∣+∑|C|

i = 1|Ui|(
∣∣∣∣C∣∣∣∣−i + 1)) . It is less than O(|U||C|2). However, there are |C| sealed parameters

|U1|,|U2|, . . . ,|U|C||. It is hard to estimate the exact running time.
2. It is difficult to compare the computational efficiencies of different reduction algorithms. First,

these sealed parameters are influenced by the heuristic constructions and real data sets. They
have different values for different algorithms. Second, the time complexities with these sealed
parameters are always very complex, such as FSPA, etc.

In this paper, the proposed algorithm FPRA is also confused by the above hard problems. It has
some sealed parameters, which are U1,U2,..,U|R|,C1,C2, . . . ,C|R|, respectively. It is very difficult to
estimate the real efficiency based on the theoretical time complexity of O(|U||C|+

∑|C|
i = 1|Ui|(i + 2|Ci|).

In order to resolve these hard problems, we suggest an approximate time complexity of FPRA, which
is simple and easy to estimate the real running time. The detailed way is described as follows.

We will record the real running times of three subprocesses of FPRA and analyze the features of
subprocesses. On the basis, an experimental model of time complexity is suggested.

Some classical data sets in UCI are applied to test the related running time and the experimental
results are listed in Table 7, where T1, T2, and T3 are the running time with respect to the three
subprocesses of S1, S2, and S3, respectively.

Especially, the covertype data set was seldom reported by the existing reduction algorithms
because of 581,012 objects and 54 attributes. However, FPRA could calculate this data set within only
49.468 s. This phenomenon means that FPRA was efficient to the existing reduction algorithms. Some
ratios on the time consumption of subprocesses are presented in Figure 3.
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Table 7. The time consumption of subprocess of FPRA.

Data Set |U| |R|/|C| Time of S1 T1(s) Time of S2 T2(s) Time of S3 T3 (s) Total Time T(s)

1 mushroom 5644 7/22 0.047 0.031 0.079 0.157
2 Ticdata2000 5822 24/85 0.078 0.251 0.624 0.953
3 nursery 12960 8/8 0.062 0 0.266 0.328
4 Letter-recognition 20000 12/16 0.109 0.062 0.375 0.546
5 Shuttle_all 58000 4/9 0.235 0.078 0.516 0.829
6 sensorless 58509 39/48 0.828 0.592 6.907 8.327
7 Connect_4 67557 34/42 0.719 1.143 14.967 16.829
8 Ipums.la.97 70187 8/60 0.750 1.657 1.328 3.735
9 Ipums.la.99 88443 13/60 0.906 2.311 2.424 5.641
10 covertype 581012 6/54 4.140 39.25 6.078 49.468
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Figure 3 describes the ratios of |R|/|C|, T2/T, and T3/T, where the X-coordinate represents the ten
data sets in Table 7, and T1, T2, and T3 are the running time with respect to the three subprocesses of
S1, S2, and S3, respectively. Some important conclusions are presented as follows.

1. The S3 subprocess consumed the most running time when |R|/|C| was large. For data sets (3,4,6,7),
the ratios of |R|/|C| were 1, 0.75, 0.8125, and 0.8095, respectively. The related ratios of T3/T were
0.811, 0.6868, 0.8295, and 0.8894.

2. The S2 subprocess consumed the most running time when |R|/|C| was small. For data sets (8, 10),
the ratios of |R|/|C| were 13.3% and 11.1%, respectively. The related ratios of T2/T were 44.36% and
79.34%.

3. The trend of T3/T was similar to that of |R|/|C|; the trend of T2/T was opposite to that of |R|/|C|.

The above features show that the real running time was influenced by |R| as well as |U| and |C|.
Next, we compared the time complexity of FPRA with O(|U||C|2) and O(|U||C||R|). The related

results are presented in Figure 4.
The time complexity of S1 was O(|U||C|). Suppose the real time complexity of FPRA is similar to

O(k|U||C|). Then, k is described as the ratio of T/T1. In Figure 4, the ratios of T/T1 varied from 3.34 to
23.4, and the average value was 8.6. As a comparison, the average value of |C| was 40.4. Obviously,
the time complexity of FPRA was considerably less than O(|U||C|2). The average value of |R| was 15.5,
which was slightly more than that of the ratios of T/T1.

As a result, the real time complexity of FPRA is similar to O(|U||C||R|).
To obtain more accurate experimental results, we constructed 60 data sets based on six original

data sets, which were shuttle_all, sensorless, connect_4, ipums.la.97, ipums.la.99, and covertype,
respectively. For each original data set, we divided it into 10 parts of equal size. The first part was
regarded as the first data set, the combination of the 1st part and the 2nd part was viewed as the second
data set, and the combination of all ten parts was viewed as the tenth data set.

The related ratios for the real running time of the 60 data sets are shown in Figure 5.
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Figure 5. The ratios of |R|/|C|, T2/T, and T3/T based on 60 data sets.

In the 60 data sets in Figure 5, S3 consumed the most running time (T3/T > 50%) when |R|/|C| >

40%. S2 consumed the most time (T2/T > 50%) when |R|/|C| < 20%. In all of the subfigures, it was easy
to determine that the trend of T2/T was opposite to those of T3/T. These features show that the real
running time had a tight relationship with |R|.

Next, we evaluated the real time complexity with the 60 data sets.
In the 60 data sets in Figure 6, the curves on |C| were higher than the other curves. This shows

that the real time complexity of FPRA was considerably less than O(|U||C|2). There were 46 data sets
that had |R| > T/T1. The other 14 data sets satisfied the condition that |R| < T/T1. The average value of
|C| for the 60 data sets was 45.5. As a comparison, the average values of T/T1 and |R| of the 60 data sets
were 9.2252 and 15.3, respectively. In particular, in shuttle_all, ipums97, and ipums99 data sets, the
curves of |R| and T/T1 were very similar.

As a result, the real time complexity of FPRA could be evaluated as O(|U||C||R|), which was less
than O(|U||C|2). It is noted that O(|U||C||R|) was an experimental result, not a theoretical result.
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5.2. Comparison Experiments

To illustrate the advantage of FPRA, it was compared with some existing fast reduction algorithms,
which also calculated a positive region-based reduct.

In order to obtain fair and objective conclusion, all the running times of compared algorithms
were recorded from the related literatures. That is, the running times of compared algorithms were
proved by the original researchers. At the same time, we used the similar PC and the same data sets to
obtain the real running times of FPRA. This method avoids the influences on programming habits of
researchers and makes the conclusion objective.

Experiment 1. It was compared with the classical reduction algorithm and the optimized algorithm in [1].
The experimental results are listed in Table 8.

PR is a classical reduction algorithm based on a positive region, and FSPA-PR is an optimized
reduction algorithm proposed in [29]. The running times of PR and FSPA-PR are recorded from the
literature [1].

In Table 8, three reducts of FPRA were larger than those of PR, and two reducts (Backup_large.test
and Letter-recognition) were less than those of PR. This is due to the different heuristic construction.
FPRA is based on reduct construction by deletion, while PR and FSPA-PR were based on reduct
construction by addition. In [33], we noted that the reduct construction by deletion had a strong
conservative property. As the price for obtaining a complete reduct, the construction by deletion was
less effective in obtaining a minimal reduct.

In Table 8, FPRA clearly exhibited the best time efficiency on the nine datasets, and PR performed
the worst. The ratios of running time on FPRA/PR varied from 0.09% to 12.8%. The other ratios of
FPRA/FSPA-PR were from 0.12% to 17.6%. On average, for the nine data sets, the time consumption
of FPRA was 0.14% of that of PR and 0.26% of that of FSPA-PR. The results show that the proposed
algorithm FPRA was surprisingly efficient.

Experiment 2. The proposed algorithm was also compared with algorithms in [38], and the results are shown in
Table 9.



Symmetry 2020, 12, 1189 16 of 18

Table 8. Comparison results with PR and FSPA-PR.

Data Sets |U| |C|
PR FSPA-PR FPRA

Time (s) |R| Time (s) |R| Time (s) |R|

Dermatology 358 34 0.8438 10 0.4375 10 0.016 11
Backup_large.test 376 35 0.6563 10 0.4219 10 0.016 9

Breast-cancer-wisconsin 683 9 0.1250 4 0.0938 4 0.016 5
Tic-tac-toe 958 9 0.3594 8 0.3125 8 0.031 8
Kr_vs_kp 3196 36 28.0313 29 21.5781 29 0.407 29

Mushroom 5644 22 24.875 3 20.4531 3 0.157 7
Ticdata2000 5822 85 886.4531 24 296.375 24 0.953 24

Letter-recognition 20000 16 282.6406 11 112.625 11 0.546 8
Shuttle_all 58000 9 906.0625 4 712.25 4 0.829 4

Table 9. Comparison results with the fast algorithms in [38].

Data Sets |U| |C|
Running Time(s)

ADM OADM FPRA

Voting records 435 16 1.375 0.171 0.015
Breast Cancer

Wisconsin 683 9 2.437 0.093 0.016

Tic-tac-toe 958 9 4 0.136 0.031
Kr-vs-kp 3196 36 79.719 6.169 0.407
nursery 12960 8 1032.25 10.312 0.328

Algorithm ADM (Algorithm based on discernibility matrix) is a classical reduction algorithm
based on the discernibility matrix and discernibility function. Its complexity is O(|U|2|C|2). Algorithm
OADM (optimized ADM) is an optimized fast reduction algorithm proposed in [38], which has the
complexity of O(|C|2|U|log|U|).

Table 9 shows that the running time of FPRA was considerably less than those of the compared
algorithms. The ratios of running time of FPRA/ADM were only from 0.03% to 1.09%. The other ratios
of FPRA/OADM were from 3.18% to 27.79%. On average, for the five data sets, the time consumption
of FPRA was 0.071% of Algorithm ADM and 4.72% of Algorithm OADM.

Experiment 3. We compared FPRA with the reduction algorithm in [40], and the results are shown in Table 10.

It is noted that the running times of Q-ARA (Quick Assignment Reduction Algorithm) were
reported by the literature [40] and tested in similar PC. Table 10 shows that the running time of FPRA
was considerably less than that of Q-ARA. The ratios of running time of FPRA/Q-ARA were only
from 0 to 14.56%. On average, for the 11 data sets, the time consumption of FPRA was 0.56% of
Algorithm Q-ARA.

Table 10. Comparison results with Q-ARA in [40].

Data Sets
Objects
|U|

Attributes
|C|

Classes
|Vd|

Running Time(s)

Q-ARA FPRA

waveform 5000 21 3 16.466 0.156
Wine recognition 178 13 3 0.182 0.016

Statlog heart 270 13 2 0.275 0.015
Statlog project satellite

image 6435 36 6 82.812 0.281

Image segmentation 2310 19 7 2.180 0.047
Pima indians diabets 768 8 2 0.103 0.015

wdbc 569 30 2 2.226 0.032
wpbc 198 34 2 1.328 0

Sonar, mines vs. rocks 208 60 2 0.312 0.031
Glass identification 214 9 7 0.118 0

ionosphere 351 34 2 2.211 0.015

6. Conclusions

In this paper, we proposed a unique and innovative heuristic method, which applies a special
core attribute calculation to replace the traditional attribute significance calculation. This method was
concise and each conditional attribute was only checked at most once.
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The key of the proposed method is a sort function, and the surprisingly running efficiency of
FPRA is dependent on the sortrows function. The T1 of Table 7 lists the exact times on sorting the
original data and constructing a PR-SADT.

The experimental analysis shows that the real time complexity of FPRA was less than O(|U||C|2).
The proposed algorithm FPRA is also appropriate for big data reduction because it only uses two

basic operations (sort and comparison), while MapReduce (model for big data) provides an efficient
sort technology. This issue will be addressed in future work.
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