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Abstract: Accurate brain tumor segmentation from 3D Magnetic Resonance Imaging (3D-MRI) is an
important method for obtaining information required for diagnosis and disease therapy planning.
Variation in the brain tumor’s size, structure, and form is one of the main challenges in tumor
segmentation, and selecting the initial contour plays a significant role in reducing the segmentation
error and the number of iterations in the level set method. To overcome this issue, this paper
suggests a two-step dragonfly algorithm (DA) clustering technique to extract initial contour points
accurately. The brain is extracted from the head in the preprocessing step, then tumor edges are
extracted using the two-step DA, and these extracted edges are used as an initial contour for the MRI
sequence. Lastly, the tumor region is extracted from all volume slices using a level set segmentation
method. The results of applying the proposed technique on 3D-MRI images from the multimodal
brain tumor segmentation challenge (BRATS) 2017 dataset show that the proposed method for brain
tumor segmentation is comparable to the state-of-the-art methods.

Keywords: 3D-MRI tumor detection; bio-inspired clustering; level set segmentation

1. Introduction

The American national brain tumor society noted that approximately 700,000 humans suffered
from brain tumors in 2017 [1]. A brain tumor is an abandoned growth of cancerous cells inside or
around the brain. These tumors are classified into two main types, i.e., benign (noncancerous) and
malignant (cancerous) [2]. Knowing the tumor type can, therefore, help to understand the patient’s
condition. In medical practice, the early detection and accurate recognition of brain tumors are vital.
A timely diagnosis helps in the treatment procedure.

Brain biopsy and brain imaging systems are the common techniques used for the diagnosis
of tumors and their cause. In open biopsies, a small hole is drilled into the skull and a tiny piece
of tissue is extracted to examine the tumor under a microscope to determine its type, composition,
and cause (see Figure 1). This technique is highly risky to human life. The development of medical
imaging technologies has revolutionized medical diagnosis allowing doctors to detect tumors earlier
and improving the prognosis. Tumor type, size, and position are now able to be determined using
Magnetic Resonance Imaging (MRI) scans. Furthermore, MRI can differentiate soft tissue and detect
small changes in tissue density and physiological mutations associated with tumors [3,4]. Moreover, an
advantage of the use of MRI scans for brain tumor diagnosis is that the procedure does not rely on the
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use of ionizing radiation [5,6]. In general, an MRI image of the brain consists of 3D scans of the human
brain or a sampling of the brain structure in three different dimensions (see Figure 2). Accurate MRI
segmentation requires precise labeling of MRI image pixels, and segmentation information helps in
brain tumor treatment and radiation therapy. For infected tumor tissue detection in medical imaging
modalities, segmentation is employed.
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Image segmentation is one of the most popular research areas in the medical imaging domain.
Because of manual contouring is time consuming, research has focused on automated contouring
methods. The segmentation task attempts to obtain the location of the object of interest by contouring
that object. The more variations in the appearance of the object of interest and the greater the number
of irregular boundaries, the greater the difficulty of the segmentation task. Based on previous studies,
there is an overlap in the intensity range of healthy and unhealthy tissues. Three dimensional images
provide greater benefits than 2D images since they can provide complete information in all directions
rather than having only a single 2D view [7].

Tumor detection is a challenging task due to the overlap in intensity between tumor and normal
tissue, the deformation of nearby healthy tissues, and the large heterogeneity of tumors in terms of
shape, position, size, and appearance [8]. Despite many exciting advances over the last decade for
3D brain tumor segmentation, numerous key problems and challenges remain. High-resolution MRI
scanning requires a significant amount of memory and computational resources because of its large
data size, which is issue for 3D segmentation [9].

A variety of approaches have been attempted to tackle the problem of brain tumor segmentation
of 3D MRI. Two methods have been proposed to deal with volumetric input. The first of these uses the
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idea of natural image segmentation, where the 3D volume is cut into 2D slices, and a 2D network is
then trained to process each slice individually or sequentially. The second method involves cutting
the volume into patches, then training a 3D network to process these patches. In the following stage,
the two methods use a sliding window to test the original volume. Both methods have advantages and
disadvantages [10]. Due to varying resolutions in the third dimension of the MRI dataset, 3D-MRI
images are converted into 2D slices. Within the second category, level set based segmentation is broadly
used. The level set method provides a direct way to estimate the geometric properties of the evolving
structure. Figure 3 shows an example of brain tumor segmentation using level set after initializing
the initial contour [11,12]. The advantage of using a level set representation is its ability to represent
contours of complex topology and handle various topological changes, such as merging and splitting,
in a natural and efficient way. To solve this optimization problem, gradient descent is used as an
effective search method within the level set technique. However, the main drawbacks of gradient
descent methods are their sensitivity to local optima and slow convergence.
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Recently, numerous papers have proposed an umbrella deployment of swarm algorithms for
medical imaging applications. The dragonfly algorithm (DA) is one of the most recently developed
swarm optimization algorithms. Many studies have shown that DA is highly effective in convergence
to the optimal solution in various problems. To guarantee convergence during the optimization process,
dragonflies should adaptively change their weights to transform from intensification to diversification.
The neighborhood area is expanded to adjust the flying path during the progress of the optimization
process and, accordingly, the swarm is unified in one group to converge to the global optimum at
the final stage of the optimization process. In DA, the best solution will represent food, while the
worst solution will represent the enemy. The main advantage of DA over other swarm algorithms
is that DA is stable and could easily be merged with other optimization techniques. However, a
lack of internal memory may lead to convergence to a local optimum. A lack of correlation between
position updating and the centroid of the algorithm is one of the difficulties the user may find while
using DA. This property may lead DA to converge to a local optimum and fail to locate an optimal
solution [13–15].

1.1. Problem Statement and Motivation

Brain cancer is one of the dangerous diseases globally. Thus, early diagnosis of cancer is
key to its cure. As the human brain is highly complex, the structure analysis of tumors in this
region is a difficult process. Existing systems use different algorithms, such as threshold-based,
model-based, and hybrid-based segmentation, which have numerous disadvantages; in particular,
they are time-consuming and more inclined to mistakes. The motivation for the current work is to
enhance the physician’s perception of targeted objects (i.e., tumors in the brain) because this process
is subject to a number of obstacles, including a lack of detection accuracy. In order to overcome the
drawbacks of existing brain tumor segmentation systems, the work presented in this paper aimed to
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provide an efficient model that combines two-step dragonfly algorithm-based clustering and the level
set method for segmenting 3D-MRI scans.

1.2. Contribution and Methodology

This paper offers a modified bio-inspired level set segmentation technique to extract brain tumors
in MRI images. The suggested model utilizes a two-step clustering technique to determine the accurate
initial contour points of the level set segmentation method. This clustering technique integrates
k-means and the dragonfly algorithm. In DA, instead of using a random initial position for the
population centroid, k-means is used to identify the initial position. Due to the variability in the
tumor’s size, form, and structure, the initial position is crucial for handling topological changes in
contours. This paper suggests a two-step dragonfly algorithm clustering technique to extract initial
contour points accurately. The brain is extracted from the head in the preprocessing step, then tumor
edges are extracted using the two-step DA, and these extracted edges are used as an initial contour
for the MRI sequence. Lastly, the tumor region is extracted from all volume slices using a level set
segmentation method.

The remainder of the paper is structured as follows. In Section 2 some of the recent related works
are presented. The proposed two-step DA model is described in detail in Section 3. In Section 4,
we interpret our results using the multimodal brain tumor segmentation challenge (BRATS)2017
dataset. Finally, conclusions are drawn in Section 5.

2. Related Work

Over many decades, a large number of brain image segmentation approaches have been developed
to find a solution to the associated optimization problem. Researchers have also made significant
efforts to improve the performance of the segmentation algorithms. However, complicated image
segmentation remains a difficult problem to solve. From the literature, the current brain segmentation
approaches can be broadly grouped into five major categories [16,17]: (a) intensity-based segmentation,
which categorizes individual pixels/voxels based on their intensity; (b) atlas-based segmentation,
which labels the desired anatomy or set of anatomy from images generated by medical imaging
modalities; (c) deep learning approaches, which extract representative features using convolution and
pooling operations to learn the relationships between the pixels of input images; (d) model-based
segmentation, which involves the formulation of a propagating interface (a closed curve in 2D
and a closed surface in 3D) that changes under a speed function determined by local, global,
and sovereign properties; and (e) hybrid segmentation, which combines different techniques to
achieve the segmentation goal. Within the model-based segmentation category, the level set method
allows segmentation to easily follow shapes that change topology [18]. Several studies have been
conducted by researchers regarding MRI brain tumor segmentation techniques. An brief review of
some of the recent studies is presented here; these studies used different methods, including Neural
Network Models, Deformable Models, Fuzzy C-Means (FCM), Genetic Algorithms, Level Set Models,
Differential Evolutionary Algorithms, Hybrid Clustering, and Artificial Intelligence [19,20].

The authors in [21] suggested a 3D-MRI brain tumor detection method based on symmetry
analysis using the fast-bounding box technique followed by region growing and geodesic level set
methods to acquire the final tumor. This algorithm is efficient and completely unsupervised and
does not necessitate any training phase. The limitations of this method are that volumes with very
low tumor size and multiple tumors have not been tested. Similarly, the authors in [22] presented an
automated segmentation technique for a brain tumor in MRI by combining a rough fuzzy c-means
algorithm and shape-based topological features to detect the tumor region. The advantage of the
rough-fuzzy c-means approach is that it can appropriately handle the uncertainty and overlapping
partitions in the datasets. However, this method requires high computation time, and the experiments
were conducted on one type of tumor.
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Furthermore, the authors in [23] contributed a robust system that segments brain MRI using
the adaptive pillar k-means algorithm. This type of segmentation overcomes k-means clustering
limitations as it shows strong sensitivity to outliers and noise. Their system used the Euclidean distance
to determine the distance between an object and its cluster centroid. This robust system can determine
the best initial clusters for the k-means by deploying all centroids discretely among the clusters in
the data distribution. Using a similar approach, to track the poor convergence of the traditional level
set segmentation towards the tumor boundary, a k-means and level set-based hybrid brain tumor
segmentation technique was proposed in [24]. Despite the importance of contour initialization to the
accuracy of that approach, it was randomly determined in most cases. The limitation of this method is
that k-means clustering is sensitive to outliers and noise due to the random initialization of centroids.

In [25], the authors presented a new level set signed pressure function for MRI brain tumor
segmentation that utilized the region-based method for the segmentation of the targeted object. Herein,
the manual calculation is not needed. Therefore, it reduces the segmentation error by eliminating
human error. This model can efficiently stop the contours at weak or blurred edges and works well,
even if the image has an inhomogeneous region. However, this model fails to work in all tumor
regions for the 3D volume and the level set’s iteration number is large, and the method is thus time
consuming. The authors in [26] suggested a novel framework that provides a solution for automatic
brain tumor segmentation using deep recurrent level sets. This type of level set segmentation integrates
the advantages of both deep learning and level set. Overall, on the 2017 BRATS dataset, their algorithm
achieved average dice scores of 0.86, 0.89, and 0.77 for the Whole Tumor (WT), Core Tumor (CT),
and Enhancing core tumor (ET) regions, respectively. Moreover, the authors in [27] suggested a
novel framework that combines a Deep Neural Network (DNN) with a level set method to perform
sub-region segmentation for MRI brain tumor scans. They trained the DNN to classify the center pixel
of the image patches according to four MRI modalities (T1, T1c, T2, and flair). The output of the DNN
was then used as the initial contour for the level set method. The level set method improves the MRI
image segmentation accuracy, however, DNN requires time for training.

The authors in [28] combined k-means clustering, fuzzy c-means, and active contour by level set
in a unified framework for brain tumor segmentation. Herein, employing the intensity adjustment
process improved the segmentation accuracy. The authors in [29] applied the same concept and
compared their results with k-means, expectation-maximization, mean shift, and fuzzy c-means.
Furthermore, the authors in [30] enhanced the previous work by adding an extra layer that was based
on an integrated set of image processing algorithms, while the other method was based on a modified
and improved probabilistic neural network structure. Simulation results showed the efficiency of
this algorithm to accurately detect and identify the tumor. However, multiple tumors were not
tested. The authors in [31] merged random forests and an active contour model (level set method)
for segmenting volumetric MRI images. Specifically, they utilized a feature representation learning
strategy to effectively explore both contextual and local information from multimodal images. Finally,
a novel multi-scale patch driven active contour model was exploited to refine the inferred structure by
taking advantage of sparse representation techniques. The limitation of this model is that it requires
several labeled training data that were annotated by the fusion of clinical experts’ annotation and
segmentation results from algorithms. Thus, the ground truth labels could be systematically biased by
the algorithm results.

In recent years, optimization techniques have received significant attention from researchers.
For instance, the authors in [32] contributed a new brain tumor segmentation methodology based on
the ABC algorithm. Genetic algorithm-, k-means-, and fuzzy c-means-based MRI image segmentation
methods were compared with the ABC-based segmentation method, and results showed that ABC-based
methods performed better in both visual and numerical terms. However, ABC performs well at
exploration but performs poorly at exploitation. Moreover, its convergence speed is also an issue
and initial cluster centers are selected randomly. In [33], the authors suggested a new sophisticated
brain tumor segmentation algorithm named the Clown Fish Queuing and Switching Optimization
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Algorithm (CFQSOA). The MRI scan is segmented using CFQSOA by characterizing the ecological
behavior of clownfish. The results were compared with well-known other optimization algorithms.
The results showed that their algorithm is a promising method for segmenting brain tumors accurately.
In general, selecting the appropriate algorithm to solve a certain problem depends on the knowledge
of the different algorithms available, and it should be appreciated that there is no unique optimization
algorithm that can be used to solve all optimization problem. Furthermore, different configurations of
an algorithm may provide better performance compared with standard values. Moreover, an adverse
configuration may lead the algorithm to be trapped at a local optimum instead of the global optimum.

With the active development of deep learning, many deep learning approaches have been proposed
to improve the performance of MRI image processing and analysis [34–36]. In [36], a Deep Neural
Network (DNN) was used to automatically segment brain tumors. The DNNs are customized to
segment glioblastomas (high and low grade) in MRI scans. The network exploits both global and
local contextual features simultaneously. The networks use a final fully connected convolutional
layer. The results from applying this approach to the BRATS 2013 dataset showed that the network
architecture surpasses the state-of-the-art methods of the time. Numerous studies have been devoted
to developing deep learning-based MRI segmentation applications, with some yielding promising
results, Nonetheless, many challenges remain that require innovative solutions. The most challenging
limitations are (1) class imbalance and small dataset size, and (2) selecting a suitable Deep Learning
(DL) architecture with the consistent hyperparameters for an application.

The conducted survey showed that the 3D-MRI brain tumor detection systems have the following
limitations: (a) These systems showed low accuracy when dealing with heterogeneous tumors.
(b) Cluster-based segmentation systems yielded inaccurate segmentation results when processing noisy
images but worked well with non-noisy images. (c) Bio-inspired techniques may be slow to converge,
and are good at exploration but poor at exploitation. (d) The learning process in NN-based segmentation
is poor when dealing with noisy images with a weak border of the tumor. (e) Inaccurate segmentation
results are found when using level set segmentation method separately, whereas combining it with
other initialization techniques improves the segmentation results. To the best of our knowledge,
little attention has been paid to devising a new bio-inspired clustering technique for a brain tumor
detection system that relies on a 3D-MRI.

3. Materials and Methods

In order to detect 3D-MRI brain tumors accurately, contours should be determined correctly.
To achieve this goal, the proposed model fuses semantically k-means and DA optimization. Herein,
the semantic fusion is achieved using k-means inside DA clustering, i.e., rather than using a random
center of the mass of the neighborhood (cluster centers) within DA clustering, k-means regulate these
accurately. Figure 4 shows the main model’s components and the way they are linked to each other.
Our proposed brain tumor segmentation model consists of three main steps: pre-processing, two-step
dragonfly algorithm clustering, and the last phase, level set segmentation. The following subsections
discuss these components in detail.

3.1. Preprocessing Phase

Segmentation of MRI brain tumor scans always challenged by poor image quality, the main cause
for image degradation in MRI is the contamination of the MRI images with noises like irregularities [37].
Pre-processing operations are required to enhance the image quality, the target for these procedures
is to reduce the contaminated noise and improve segmentation of image edges by eliminating
inhomogeneous areas of the image. In the proposed model, four steps were applied: conversion of
the 3D-MRI into 2D slices, skull-stripping, anisotropic diffusion, and contrast enhancement. Figure 5
shows an example of one patient’s 2D slices after pre-processing. Herein, the conversion process
was applied using 3D Slicer, which is an open- source software web application for medical image
informatics, image processing, and three-dimensional visualization.
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Figure 5. Example of one volume after pre-processing.

Skull-stripping comprises three steps involving morphological operations: Step 1: The input
2D-MRI slices are converted to binary images using Otsu’s thresholding. Step 2: Dilation and erosion
operations are undertaken to preserve the minute features of the brain in the resultant 2D-MRI slices
(creation of the mask). By filling the holes, the brain becomes a complete connected component.
Step 3: (Superimposition): The final skull stripped image is obtained by superimposing the mask on
the input image [37]. An anisotropic diffusion filter is employed to diminish the noise in the image and
homogenize it in regions having a similar grey level by preserving regions’ edges. As a generalization
of the diffusion process, anisotropic diffusion filter creates a set of parameterized images, such that each
image in the resulting images is a fusion of the original image and an original image local content-based
filter. Therefore, anisotropic diffusion is a space variant and non-linear transformation of the original
image. See reference [38] for more information. Finally, contrast enhancement is applied using a
histogram equalization technique in which the tumor conspicuity is improved by redistributing the
greyscale of the images in a non-linear way to advance the separation of latent or hidden variations in
pixel intensity into a more visually discernible distribution, thus taking advantage of the human vision
physiological attributes [37,38].

3.2. Two Steps Dragonfly-Based Clustering Phase

Clustering is a powerful tool in machine learning systems, it uses predefined similarity criterion for
grouping unlabeled group of data objects or clusters [39,40]. The clustering problem can be formulated
as an optimization problem as follow: given a set S = {s1, s2, s3 . . . sn} is a set of n objects and Tn∗m

is a data matrix consisting of n rows and m columns where n represents the number of objects of a
dataset, and m represents the number of attributes (features) or dimensions of a given dataset. The i-th
data object xi = {i = 1, 2, 3, . . . n} is defined using a real-valued m-dimensional vector where each
object xi j denotes the j-th feature ( j = 1, 2, 3, . . .m) of the i-th object (i = 1, 2, 3, . . . n). The objective
of the clustering algorithm is to create a set of partition Z = {z1, z2, . . . zk} for the given data matrix
Tn×m and satisfying the following conditions:

∀i, jzi ∩ z j = ∅, (1)

Uk
i = 1zi = x, (2)

∀izi = ∅, (3)

In our model, to accelerate the convergence rate and preserve the stability during exploration and
exploitation, a two-step DA algorithm is used to improve it for clustering problems using the k-means
algorithm [40]. The main steps of the DA clustering algorithm are shown in Algorithm 1. Herein,
to handle randomization of the selection of the center of the mass of the neighborhood within the DA
algorithm, k-means is used to generate accurate centers.
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Algorithm 1: Two-step Dragonfly Clustering.

Input: D dataset contains MRI brain images
Output: Best solution of final cluster center (Cbest,j) j = 1, 2, 3, 4
Begin

Initialization phase
Initialize the position of dragonfly population Xi (i = 1 2, ..., n).
Initialize step vectors ∆ Xi
For i = 1 : SN /* SN is the total number of food sources (number of clusters) */

Initialize the food source within the boundary of given dataset in random order;
Evaluate the better potions of food sources by applying the k-means algorithm / *Algorithm 2*/
Send the dragonflies to the food sources; / * Computed centers */

End For
Dragonfly algorithm Phase

Iteration = 0;
Do While (the end condition is not satisfied)

For i = 1:n
Calculate the fitness of each dragonfly
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Equations (4) to (8)
Update neighboring radius
If (a dragonfly has at least one neighboring dragonfly)

Update step vector (∆X) using Equation (9)
Update position vector X using Equation (10)

Else
Update position vector using Equation (11)

End if
Check and correct the new positions based on the boundaries of variables

End For
For i = 1 : SN

Compute the probability. /* Calculate the probability for each one */
End For
For i = 1 : SN

If (rand ( ) < Pi) /* Pi denotes the probability associated with ith food source */
Calculate the new fitness of the new food source using Equation (14);
Select the best food source by using a greedy selection between the old and new food source;

Else
i = i + 1;

End If
End For

End While
Output: Final clusters‘ centers.

End

Initialization stage: The K-means algorithm (see Algorithm 2) is used to find the initial food
sources (center of the mass of the neighborhood). Herein, four clusters representing background (RB),
gray matter (RG), white matter (RGW), and tumor (RGTC) as stated in [41] are identified. Each point is
then assigned to the nearest centroid. In this paper, the Euclidean distance is used as a measure to the
proximity which used to assign objects to the nearest centroids. The clusters are created by assigning
each object to the suitable cluster based on the proximity measure, the centroids then updated based
on the average of the object proximity measures in each cluster. The reassigning process and centroids
updating are repeated until there is no change in each cluster’s objects [42].
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Algorithm 2: K-means clustering [42].

Input: K = 4. // the number of clusters; D dataset contains MRI brain images (2D slices).
Begin

Arbitrary choose K objects from D as the initial cluster centers;
Repeat

- (re) group the most similar objects into a cluster, based on the Euclidian distance between the object
and the cluster centroid (mean);

- Update the cluster centroid, i.e., calculate the mean value of the objects for each cluster.
Until no change.

Determine initial segmentation points using dragonfly algorithm
The behavior of swarms follows three primitive principles [14,15,43,44]: (1) Separation principle,

this principle relies on the fact that the swarm individuals tries to avoid static collision with other
individuals in the neighborhood. (2) Alignment principle, this principle reflects the attitude of the
each individual in the swarm to match its velocity with other individuals in the neighborhood;
and (3) Cohesion principle, this principle refers to the tendency of swarm individuals to centralized
around the neighborhood mass center. In order to survive, all the swarm individuals should be
attracted towards food sources and repelled from enemies. Each of these behaviors is mathematically
formulated as follows:

Separation is calculated as follows [44]:

Si = −
N∑

j = 1

X −X j, (4)

where X is the position of the current individual, X j represents the position j-th neighboring individual,
and N is the number of neighboring individuals.

Alignment is calculated as follows:

Ai =

∑N
j = 1 V j

N
, (5)

where V j is the velocity of j-th neighboring individual.
Cohesion is calculated as follows:

Ci =

∑N
j = 1 X j

N
−X, (6)

where N is the number of neighborhoods, and Xj shows the position j-th neighboring individual.
Attraction towards a food source is calculated as follows:

Fi = X+
−X, (7)

where X+ is the position of the food source.
Repulsion from an enemy is calculated as follows:

Ei = X− + X, (8)

where X− is the position of the enemy.
The behavior of dragonflies is assumed to comprise the combination of these five corrective

patterns. To update the location of artificial dragonflies in a search space and simulate their movements,
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two vectors are considered: step (∆X) and position (X). The step vector shows the direction of the
movement of the dragonflies and is defined as follows:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt, (9)

where s, a, and c are the weights of separation, alignment, and cohesion respectively. Si, Ai, and Ci
represent separation, alignment, and cohesion of the i-th individual respectively f is the food factor,
Fi is the food source of the i-th individual, e is the enemy factor, Ei is the position of enemy of the
i-th individual, w is the inertia weight, and t is the iteration counter. After calculating the step vector,
the position vectors are calculated as follows:

Xt+1 = Xt + ∆Xt+1 , (10)

With separation, alignment, cohesion, food, and enemy factors (s, a, c, f, and e), during dragonfly
optimization, different explorative and exploitative behaviors can be reached. Neighbors of dragonflies
are very important, so a neighborhood (circle in a 2D) with a certain radius is assumed around each
artificial dragonfly. Dragonflies tend to align their flying while keep proper separation and cohesion
in a dynamic swarm. In a static swarm, however, alignments are very low while cohesion is high
to attack prey. Therefore, while exploring the search space, dragonflies with high alignment and
low cohesion weights were assigned, on the other hand dragonflies with low alignment and high
cohesion when exploiting the search space. Due to switching between exploration and exploitation,
the radii of neighborhoods are increased proportionally to the number of iterations. Another way to
balance exploration and exploitation is to adaptively tune the swarming factors during optimization.
While converging to the global optimum in the final stage of the algorithm, the neighborhood area
became larger as the swarm becomes one group. The best and the worthiest reached solutions are used
as the food source and enemy. This causes convergence towards promising areas of the search space
and divergence from non-promising regions of the search space. Figure 6 shows the flowchart of the
dragonfly algorithm.

When there are no neighboring solutions, dragonflies must travel around the search space.
Dragonflies use a random walk (Lévy flight) to boost the randomness, stochastic behavior, and.
In this case, the position of dragonflies is updated using the following equation [44]:

Xt+1 = Xt + Lévy(d) ×Xt, (11)

Lévy(x) = 0.01×
r1 × σ

|r2|
1
β

, (12)

σ =

 Γ(1 + β) × sin
(πβ

2

)
Γ
( 1+β

2

)
× β× 2(

β−1
2 )


1/β

, (13)

where d is the dimension of the position vectors. r1, r2 are two random numbers in [0,1], β is a constant,
and Γ(x) = (x− 1)!. Herein, the fitness function is calculated as:

f iti =
1

1 + fi
, (14)

fi =
1
n j

∑nj

i = 1
d
(
X j, Ci

)
, (15)

n j is the number of data instances that are used to normalize the sum, and Ci is the class which data
instances belong to.
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3.3. Level Set Segmentation

Level set (LS) techniques are powerful tools for modelling time varying objects, by using level set
techniques it is not difficult to follow topological changes in the object shape. They use deformable
models with active contour energy minimization techniques without parametrizing the surface to find
a solution for the minimal distance curves problem. LS methods are controlled by curvature-dependent
speeds of moving curves or fronts [21,45,46]. The initial position of the contour is always a key
challenge in some LS methods while solving segmentation problems. The contour can move inward
or outward and its initial position determines the target for segmentation. In segmenting images
with poorly defined boundaries, some methods replace the initial contour with a region-based active
contour and the re-initialization step has been eliminated by including a term in the Partial Differential
Equation (PDE) that penalizes the deviation of level set function from a contour based signed distance
function. Different level set methods differ either in how to form an initial contour or the energy
functional to be minimized or some combination of both. There are still key challenges in using level set
in image segmentation and there is no general level set method that can solve segmentation problem
for all applications. In our case, the deformable model initialization uses the cluster centers that are
computed using the previous phase for each slice as the initial placement for final tumor segmentation.

Level set segmentation techniques are based on two main stages: first, the insertion of the interface
as the zero level set of a higher dimensional function, and, second, the interface’s speed to this higher
dimensional level set function. The evolvement of the contour or surface is managed by a level set
equation. The solution to which this partial differential equation tends to is determined iteratively by
updating ϕ at each time interval. The level set method is a numerical algorithm that gradually tracks
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the motion of a curve (in 2D slices) implicitly by embedding a propagating interface Γ as the zero level
set ϕ(X, t) = 0 of a higher dimensional function ϕ(X, t), where X = (x, y), and t represents time.
The level set function ϕ, defined over the image space, is a surface which is positive inside the region
Ω, negative outside Ω, and zero on the interfaces between Ω and other regions. The general form of
the level set equation is [21]:

∂ϕ

∂t
= −F.

∣∣∣∇ϕ∣∣∣, ϕ(x, y, t = 0) = ±d, (16)

F = −αk.g− β.g− λ∇g.
∇ϕ∣∣∣∇ϕ∣∣∣ , (17)

g =
1

1 +
∣∣∣(∇Gσ) ⊗ I(X)

∣∣∣β , (18)

Gσ(ε) =
1
σ√π

e−(ε/σ)2, (19)

∂ϕ(x, y, t)
∂t

= αk.g(x, y). |∇ϕ|+ β.g(x.y).|∇ϕ|+ λ. ∇g. ∇ϕ, (20)
ϕ(X, t) > 0, if X ∈ Ω
ϕ (X, t) = 0, if X ∈ Γ
ϕ(X, t) < 0, otherwise

, (21)

where ∂ϕ(x(t),t)
∂t is the evolution of ϕ, F is the field for speed,

→

N is the normal interface vector, k is a
curvature controlled term with the parameter α, g is a velocity term weighted by β, (∇Gσ) ⊗ I(X) is
equal to the scale of the image I outline, and σ is the variance of the Gaussian Gσ. Finally, ∇g. ∇ϕ

|∇ϕ|
represent a local advection force that pulls the level set towards the tumor boundaries; this force is
weighted by the parameter λ. After some repetitions of the PDE or once ϕ has converged, the final
level set function ϕ is achieved. Algorithm 3 illustrates the main steps of the level set segmentation
procedure. Figure 7 shows the result of applying the level set segmentation to a set of images.

In summary, in the traditional level set algorithm, if the initial contour is far from the actual
contour, the algorithm will require a greater number of iterations, and significant computation is
needed. In contrast, two-step DA clustering places the initial contour set near the actual tumor contour,
resulting in good convergence and requiring fewer iterations.

Algorithm 3: Level set segmentation.

1: Insert initial contour points using two-step DA clustering output (ROI indexes).
2: Construct a signed distance function.
3: Calculate feature image using Gaussian filter and gradient.
4: Obtain the curve’s narrow band.
5: Obtain curvature and use gradient descent to minimize energy.
6: Evolve the curve.
7: Repeat step number two and stop after obtaining the segmented region.
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4. Experimental Results

In this section, the performance of the proposed model is validated on MRI volumes from
285 subjects with different forms of cerebral tumors in terms of form, position, size, and intensity.
These 3D-MRI brain tumor data were obtained from the BRATS 2017 (Brain Tumor Segmentation)
test and challenge dataset [47,48]. The experiment was carried out using an Intel, Core i3 CPU with
8.00 GB of RAM using MATLAB software R2018a. Herein, accuracy, recall, and precision are used as
an evaluation metrics.

4.1. Experiment 1: Comparison with Existing Methods

The first group of experiments was performed to validate the efficiency of the proposed model
compared to the state-of-the-art brain tumor segmentation methods listed in Table 1 using the
BRATS 2017 dataset. The proposed method in [21] is based on a hybrid approach that uses a brain
symmetry analysis method and a combination of region-based and boundary-based segmentation
methods. However, region segmentation has the drawback of being applied only to closed boundaries.
The model in [22] utilizes fuzzy C-means and rough fuzzy C-means with shape-based topological
properties to handle uncertainty in MRI data by utilizing fuzzy membership and a rough set. However,
the construction of the membership function and determination of the upper and lower boundaries for
the rough set remain the main challenges. In [24], the combination of region-based k-means clustering
and variational level sets is introduced to deal with poor convergence towards the concavities of the
tumor boundary. However, it is difficult to predict the k-value and different initial partitions can result
in different final clusters. In addition, to compare the suggested model with other known algorithms
for segmentation purposes, the models in [49,50] were chosen. However, training a large number of
deep trees can have high computational costs and use a lot of memory, and the Support Vector Machine
(SVM) does not perform well when the data set has more noise, i.e., when target classes are overlapping.
The default level set parameters were assigned to the same values suggested by [51] (σ = 1.5, ρ = 1,
ε = 1.5, λ = 5), the time step (∇t) was set 1 to assure the stability of the curve evolution, and the velocity
term α = 15. This experiment was performed based on the default values of each method’s parameters.
See [21,22,24,49,50] for more information regarding default values for each method.
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Table 1. Results of the comparison between the proposed model and state-of-the-art brain segmentation
methods (average over 285 subjects).

Methods Accuracy Recall Precision

Proposed Model (Two-step DA, Level Set) 98.20 95.13 93.21
Symmetry Analysis, Level Set [21] 93.63 89.10 90.45

Fuzzy C-Means [22] 85.7 87.6 72.3
Rough Fuzzy C-Means [22] 91.50 90 92

K-means, Level Set [24] 89.30 92.7 75.8
Random Forest [49] 85.60 91.85 78.3

Support Vector Machine (SVM) [50] 94.25 92.15 91.21

The results confirm the superiority of the suggested model as it increases the accuracy by 5.27%
compared with the SVM-based brain segmentation algorithm. One possible explanation of this result
is that using a two-step DA approach enhances segmentation accuracy as it detects an accurate initial
contour rather than choosing it randomly or less accurately, as is done in the compared methods.
The search mechanism of DA is maintained by the utilization of the information obtained from k-means.
In other words, the connection between k-means and DA helps to increase accuracy and decrease the
error rate. Figure 8 shows a sample of segmentation results.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 22 
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Furthermore, to verify the efficiency of the proposed model, the results of the proposed model was
compared to the results of other methods that rely on the use of Deep Neural Networks (DNNs) as one
of the up to date tools for segmenting brains tumors; another group of experiments was implemented to
compare the proposed model with the recent works in [26] and [36] as illustrated in Table 2. These two
methods differ from each other in that the first incorporates the Variational Level Set (VLS) into deep
learning to address the sensitivity of the level set to initial settings and its dependence on the number of
iterations. The second uses a novel two-pathway Convolutional Neural Network (CNN) architecture
that learns about the local details of the brain in addition to the larger context. Although results largely
converged with those of the method in [36]. one of the CNN drawbacks is the problem of overfitting,
which make it computationally expensive and requires a large database for training.

Table 2. Results of the comparison between the proposed model and Deep Neural Network
(DNN)-based brain segmentation methods (average over 285 subjects).

DNN Methods Accuracy Recall Precision

Proposed Model (Two-step DA, Level Set) 98.15 95.40 93.57
Two-pathway CNN [36] 96.24 89.67 82.56

DNN, level set [26] 91.58 96.40 93.23

Another group of experiments was carried out to compare the efficiency of the combination of DA
clustering and the level set algorithm in the field of brain tumor segmentation with a combination of some
nature-inspired metaheuristic algorithms with level set. We replaced the DA module in the proposed
model with well-known metaheuristic modules, via a BlackBox, with their default configurations.
These metaheuristic algorithms include Particle Swarm Optimization (PSO), the Artificial Bee Colony
(ABC) Algorithm, and the Clown Fish (CF) Algorithm [33]. The results in Table 3 confirm the
research hypothesis that using the DA classifier based on accurate center points extracted using
k-means will enhance the segmentation accuracy. The suggested combination achieved a 1% increase
in accuracy compared to the nearest combination that shields between the CF and the level set
segmentation. In PSO, ABC, and CF, the convergence rate is affected by the main parameters that affect
the individual’s movement toward the best position obtained thus far by individuals and others in the
group; this consequently affects their tendency to be explorative or exploitative. In DA, the convergence
rate is not affected by any parameters. DA tends to be explorative, which is shown by the lowest
convergence rate the compared methods. In a comparison of the time taken, PSO, ABC, and CF took
about 95–100 s, whereas DA took about 40–45 s to complete the segmentation process. Figure 9 shows
a sample of segmentation results using DA and CF combined with level set segmentation.

Table 3. Results of the comparison between combinations of different nature-inspired metaheuristic
algorithms with level set for brain tumor segmentation (average over 285 subjects).

Nature-Inspired Metaheuristic Accuracy Recall Precision

DA, Level Set 98.15 95.40 93.57
ABC, Level Set 95.90 92.13 91.40
PSO, Level Set 93.58 92.40 89.23
CF, Level Set 96.85 94.32 92.55
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4.2. Experiment 2: Model Accuracy with and without k-Means

This group of experiments was conducted to validate the role of k-means to enhance segmentation
accuracy. Table 4 reveals the power of the suggested model that utilizes k-means to get the initial
DA population, which raises the accuracy by 13% relative to the model with random initialization of
DA. This result could be explained as that utilizing a two-step DA accelerates the convergence rate
and preserve the balance between exploration and exploitation. In this research, the DA clustering
algorithm results are enhanced with the k-means algorithm rather than with random initialization
because k-means is used to determine the appropriate locations in a random search space of food
sources. In this case, cluster centers extracted by k-means act as the initial food source positions in the
DA algorithm. As revealed from the table, a low standard deviation was obtained, which means that
the data points tend to centralized around the mean, i.e., there were no outliers. This implies that the
measurements of the model’s accuracy are stable for the variety of the MRI images.

Table 4. Comparison of accuracy with and without k-means (average over 285 subjects with repeating
each experiment 5 times).

Methods Accuracy Mean Standard Deviation

k-means, DA and level set 98.10 95.67 0.02
DA, level set 85.67 82.56 0.04

4.3. Experiment 3: Role of DA to Reduce Level Set Iteration

The goal of this experiment was to emphasize the role of DA in reducing the level-set segmentation
iteration number. Herein, to reduce time cost and increase accuracy, the initial contour of the region of
interest (ROI) target was automatically generated based on the two-step DA clustering result. Table 5
shows the comparative results of the suggested model and traditional level set segmentation algorithms
in terms of the number of iterations required for level set to complete the segmentation process.
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These group of experiments were conducted 10 times to ensure the robustness of the proposed model
against random factors, which may affect the stability of the algorithm. Herein, five MRI volumes were
randomly chosen. It can be inferred that utilizing the DA algorithm reduces the number of level set
iterations dramatically. Using the best-designed two-step DA parameters, the contour was positioned
very close to the tumor region. Figures 10 and 11 show a sample of the segmentation process using the
modified level set.

Table 5. Level set iteration number with and without DA clustering.

Methods Patient No.1 Patient No.2 Patient No.3 Patient No.4 Patient No.5

Level set with DA clustering 15 18 16 15 20
Level set without DA clustering 252 330 371 266 407
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5. Conclusions and Future Work

This paper suggests an accurate model for segmenting tumors from 3D-MRI medical images.
The proposed model uses a modified version of the level set segmentation technique. This version
utilizes DA-based clustering to regulate the initial contour accurately rather than in a random manner.
The utilized bio-cluttering algorithm uses k-means to select an initial source food, rather than random
sources, to be applied to DA, with the aim of enhancing clustering accuracy. Thus, the suggested model
addresses two types of randomness: one within the DA classifier by utilizing k-means, and one within
the level set procedure. The suggested model helps to locate accurate tumors’ contours compared to
the commonly used trial-and-error contour detection methods. In addition, it aids the rapid extraction
of tumor edges by reducing the number of iterations needed in segmentation. Our experiments
assessed the accuracy of the proposed model. The suggested model achieves about a 5% increase in
accuracy compared with related works; furthermore, it reduces complexity in terms of the consumed
time by an average of 7% compared with the traditional level set-based tumor segmentation methods.
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The limitations of the suggested model are that it has not been tested on volumes containing more than
one tumor per one slice; this paper concentrates only on the whole tumor segmentation. Future work
includes utilizing the parallel segmentation approach to further reduce the complexity of the suggested
model. Furthermore, future work could include extending the suggested model to deal with different
parts of tumors, and studying the effect of variables (parameters) of both level set segmentation and
the dragonfly algorithm on the model’s accuracy. Finally, a Deep Neural Network may be used with
the suggested model to extract salient features for segmentation.
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