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Abstract: All electromagnetic potentials and space–time metrics of Stäckel spaces of type (2.0) in
which the Hamilton–Jacobi equation for a charged test particle can be integrated by the method of
complete separation of variables are found. Complete sets of motion integrals, as well as complete
sets of killing vector and tensor fields, are constructed. The results can be used when studying
solutions of field equations in the theory of gravity.
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1. Introduction

The construction of the theory of the separation of variables in the classical and quantum equations
of test particles motion, as well as in the classical equations of mathematical physics, is one of the
most important results in the theory of symmetry implementation. The main tool in the theory
of the separation of variables is the Stäckel spaces. Thus, the Riemannian spaces, whose metrics
in some (privileged) coordinate systems allow separation of variables in the free Hamilton–Jacobi
equation were named after Paul Stäckel [1,2]. In the found metric, the equation admits a complete
separation of variables in the orthogonal privileged coordinate system. The equation itself has a
complete set of motion integrals quadratic in velocity. Among the articles devoted to the Stäckel
spaces beside the works from Stäckel himself and from Eisenhart [3], we mention Levy-Civita [4],
who formulated in a covariant form the condition for separation of variables in privileged coordinate
systems, and Yarov-Yarovoy [5], who generalized the definition of Stäckel spaces in the case of
non-orthogonal privileged coordinate systems. V.N. Shapovalov in a series of works [6–8] proved the
main theorem of the theory of separation of variables—the theorem on the necessary and sufficient
conditions for separation. In the case of the free Hamilton–Jacobi equation, such condition is met
when there is a complete set of Killing fields in space. The set includes n geometric objects which are
called Killing tensor fields not higher than the second rank, which mutually commute and meet some
additional restrictions.

The results obtained by solving the appropriate Killing equations allowed finding all Stäckel
metrics in the real coordinate systems. The work [9] provides proof for the generalization of the
theorem in the case of complex privileged coordinate systems.

Even though there are known examples of spaces in which the quantum-mechanical equations
of motion allow non-commutative integration (see, for example, [10]), these were Stäckel spaces that
attracted the greatest interest of researchers due to their high level of symmetry and rich geometric
content. Therefore, the types of Stäckel metrics for the flat space–time were used to construct the
theory of separation of variables in the Klein–Gordon–Fock and Dirac equations. Using the complete
sets of symmetry operators, all privileged coordinate systems, electromagnetic potentials, and many
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examples of the exact integration of equations by the method of complete separation of variables were
found (see, for example: [11–15] ).

A special place is taken by the Stäckel spaces in the theory of gravitation. The set of Stäckel
spaces of type (2.0) include such important solutions of the Einstein equations as solutions found
by Schwarzschild, Kerr, and by Taub–Newman–Unti–Tambourino (Taub–NUT solution). Moreover,
the basic metric of cosmology, the Roberson–Walker metric also belongs to the set of Stäckel spaces,
namely the spaces of type (1.0). A high level of symmetry of the metric allows provision of new
approaches to solving cosmological problems, in particular, related to the consideration of dark energy
or to the construction of modified gravity theories (see, for example, [16,17]). Also, it is possible to use
methods of symmetry theory to justify model selection in the Extended Gravity Cosmology [18].

Hundreds of works have been devoted to the study of the Stäckel spaces geometry so as the
problem of integrating the basic equations of mathematical physics and field equations of the theory
of gravitation. A sufficiently detailed bibliography, can be supplemented by the numerous works of
Russian authors, can be found in papers [19,20].

Recently, interest in the problem of separation of variables has grown significantly. So the
work [21] separation of variables of type (2.0) is directed to obtain the exact solutions of the Maxwell
equation in the Plebanski–Deminski space. A lot of work is devoted to the study of various effects in
individual Stäckel spaces; see, for example, [22–30].

One of the conclusions of the necessary and sufficient conditions theorem is the partition of
the set of Stäckel metrics into invariant subsets according to the type of the complete set of Killing
fields. According to the definition of the metric of Stäckel spaces, the complete sets and the complete
separation of variables are of type (N.N0), where N is the maximum number of independent Killing
vector fields Yp

i, included in the complete set; N0 = N − det(Yp
iYqi). In the case of the Lorentz

signature N0 = 0, 1. If N0 = 0, the space is called non-null. Otherwise, null. There are seven disjoint
sets of Stäckel spaces with the signature of the space–time.

(1) Non-null Stäckel spaces of type (3.0). The complete set includes three Killing vector fields.
The coordinate hypersurface related to the non-ignored variable is non-null. (Ignored are
the privileged variables (see the definition below) that occur linearly in the complete integral.
Other variables are called non-ignored.)

(2) Null Stäckel spaces of type (3.1). The complete set includes three Killing vector fields.
The coordinate hypersurface related to the non-ignored variable is null one.

(3) Non-null Stäckel spaces of type (2.0). The complete set includes two Killing vector fields.
Coordinate hypersurfaces related to non-ignored variables are non-null.

(4) Null Stäckel spaces of type (2.1). The complete set includes two Killing vector fields.
The coordinate hypersurface belonging to one of the non-ignored variables is null.

(5) Non-isotropic Stäckel spaces of type (1.0). The complete set includes one non-isotropic Killing
vector field. Coordinate hypersurfaces related to non-ignored variables are non-null.

(6) Null Stäckel spaces of type (1.1). The set includes one isotropic Killing vector field. The coordinate
hypersurface belonging to one of the non-ignored variables is null.

(7) Non-null Stäckel spaces of type (0.0). The complete set does not contain Killing vector fields.
Coordinate hypersurfaces related to non-ignored variables are non-null.

The theorem about necessary and sufficient conditions for the separation of variables made
it possible to develop a theory of complete separation of variables for single-particle classical and
quantum-mechanical equations of motion in the theory of gravity in the presence of physical fields
of various nature. A task occurred to systematically classify Stäckel spaces in the presence of
these fields. By classification, we mean an enumeration of all non-equivalent relatively admissible
(i.e., non-violating conditions for the complete separation of variables) coordinate transformations and
gauge transformations of the potentials. Since the set of Stäckel spaces is divided into disjoint subsets
consisting of spaces of type (N.N0), the classification is carried out separately for each type.
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Apparently, the first example of a systematic classification was made by J. Iwata [31]. In the
paper vacuum solutions for the Einstein equations for spaces of type (1.0) were presented.
In works [32–35] a similar classification for the remaining types of vacuum Stäckel spaces was carried
out. For electro-vacuum Stäckel spaces, the classification was made in papers [36–38].

However, to date, the classical classification problem for the case when the Hamilton–Jacobi
equation for a charged test particle moving in an external electromagnetic field in the absence of
additional restrictions for this field admits complete separation of variables, has not been solved.
In this work, the classification is constructed for the type (2.0). All appropriate non-equivalent sets of
space–time metrics and potentials of the external electromagnetic field are found.

2. Conditions for the Existence of a Complete Set of Motion Integrals

Let us consider spaces of type (2.0) in which the Hamilton–Jacobi equation for a charged
test particle

gijPiPj = λ̃; Pi = pi + Ai = S,i + Ai, (1)

can be integrated by the complete separation of variables method. In the privileged coordinate set the
complete integral has the additive form:

S = ∑ si(ui). (2)

Let us recall that according to the definition the coordinate system, in which such form exists,
is called privileged and denoted by variables: ui = (u0, u1, u2, u3). Throughout the text, the repeating
upper and lower indices are summed up within the established limits for indices changes; i, j = 0, 1, 2, 3.
We consider the field external when the electromagnetic potential contains at least one (free) function,
which is not expressed through the metric tensor. If the complete set contains N Killing vector
fields, the first N coordinates are ignored. We will denote their coordinate indices by the letters
p, q,= 0, 1, · · · = N − 1. We will supply the non-ignored coordinates with the indices µ, ν = N, . . . , 3.
Functions that depend only on the variable u2 will be denoted by the lowercase Greek letters, only
from the variable u3 by the e lowercase Latin letters. Lowercase Latin and Greek letters with a tilde
icon indicate constants. Exceptions: δij, δij, δi

j are the Kronecker symbols, gij, gij—components of the

metric tensor, ε, εi = +1,−1; λ, λi = const, hij
ν , hi

ν, hν - functions of uν. In this notation, the metric tensor
of the Stäckel space of type (2.0) can be written as:

gij = (Φ̂−1)ν
3hij

ν =
δi

pδ
j
q(apq + αpq) + ενδi

νδ
j
ν

∆
, (3)

ˆ(Φ)
µ
ν =

(
1 φ

−1 f

)
, ∆ = φ + f = det Φ̂, (4)

where p, q,= 0, 1; ν, µ = 2, 3. Φ̂—Stäckel matrix. Please note that the Stäckel space of type (2.0) admits
two Killing vector fields: Yi

p = δi
p and two Killing tensor vector fields (together with the metric tensor):

Xij
2 =

f ε2(δi
pδ

j
qαpq + δi

2δ
j
2)− φε3(δi

pδ
j
qapq + δi

3δ
j
3)

∆
. Xij

3 = gij. (5)

The complete set of integrals of motion for the free Hamilton–Jacobi equation has the form:

X̂ν = Xij
ν pi pj, X̂q = Yi

q pi. (6)

The integrals of motion of the Hamilton–Jacobi equation, quadratic in impulse, included in the
full set in the presence of an external electromagnetic field have the form:
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X̂2 = Xij
2 pi pj + 2Xi pi + X, X̂3 = gijPiPj. (7)

The complete integral in the privileged coordinate system can be reduced to the form:

S =
1

∑
q=0

λqup +
3

∑
ν=2

sν. (8)

The presence of a complete set of commuting motion integrals allows us to find (8) as a solution
to the system of equations:

X̂i = λi. (9)

Moreover, X̂i have the form:

X̂q = δi
q pq = pq, X̂ν = (φ̂−1)

µ
ν Ĥµ = (φ̂−1)

µ
ν (h

ij
µ pi pi + 2hi

µ pj + hµ), (10)

where
hij

2 = δi
pδ

j
qαpq + ε2δi

2δ
j
2, hi

2 = ωi, h2 = ω̂,

hij
3 = δi

pδ
j
qapq + ε3δi

3δ
j
3, hi

3 = hi, h3 = ĥ.

Equating the coefficients before the impulses to the right and left in the (10) when ν = 3 and
vanishing with a gradient transformation of the function potential ω2, h3, we obtain:

Ap =
ωp + hp

∆
, Aν = 0, Ai Ai =

ω̂ + ĥ
∆

. (11)

The expressions (11) determine the electromagnetic potential of Ai. A necessary and sufficient
condition for Equation (1) to admit complete separation of variables is:

Ai Ai =
(ωp + hp)(ωq + hq)gpq

∆
= (ω̂ + ĥ). (12)

By setting:

Gpq = gpq∆, Gpq =
gpq

∆
, G = det (Gpq), Gpq = αpq + apq, (13)

we obtain the necessary and sufficient condition in the form of a functional equation:

(α00 + a00)(ω1 + h1)2 + (α11 + a11)(ω0 + h0)2−

2(α01 + a01)(ω1 + h1)(ω0 + h0) = (14)

(det(αpq) + det(apq) + α11a00 + α00a11 − 2α01a01)(ω̂ + ĥ).

Please note that in the general case of an n-dimensional Stäckel space, it follows from the
Shapovalovs theorem that Equation (1) admits complete separation of variables if and only if there
exists a coordinate system in which:

gij = (Φ̂−1)ν
nhij

ν , Ai = (Φ̂−1)ν
nhi

ν,

Ai Ai = (Φ̂−1)ν
nhν. (15)



Symmetry 2020, 12, 1289 5 of 15

ν = 1, 2, . . . , n, hij
ν , hi

ν, h(0)ν , hν—functions only from uν, Φ̂—Stäckel matrix. If we introduce the
additively arbitrary scalar field Ψ into Equation (1):

gijPiPj + Ψ = m̃,

(see [39], where the classification problem for the natural Hamilton–Jacobi equation was considered),
it is easy to ensure that the necessary and sufficient conditions are satisfied by a simple choice:

Ψ = (Φ̂−1)ν
nh(0)ν − Ai Ai.

In our case, for the classification, it is necessary to solve a non-trivial functional Equation (15).
It can be shown that the solution for the functional Equation (14) is equivalent to the solution of
two algebraic equation systems, each containing 7 equations (6 of the second degree and one of the
third degree). The first system includes functions only from the variable u2, the second only from
u3. Both systems are overcrowded, and solutions are possible if there is an additional symmetry
in Equation (14). As a similar symmetry, justified from a physical point of view, we require that
the electromagnetic field be external. Since the variables u2 and u3 appear in (14) symmetrically,
without loss of generality, we can assume that at least one free function is contained in ωp. We also
assume that all nonzero functions in (14) are fairly smooth, and there are points on the coordinate axes
in the vicinity of which not one of them vanishes.

3. Solutions for the Case When Both Functions ωp Are Free

To solve the classification problem, it is necessary to find and resolve the conditions for the
existence of the free function. First, consider the case where both ωp are free. We use the smoothness
condition mentioned above and consider Equation (14) at a fixed point ũ3 on the coordinate axis (u3).
Since G 6= 0, ω is expressed in terms of the function ωp as follows:

ω̂ = γpqωpωq + 2γpωp + γ. (16)

Here the functions γpq, γp, γ are rational functions of αpq. We substitute (16) into (14) and equate
the coefficients of ωpωq and ωp on the right and left sides in (14). Hence, we obtain the conditions for
the existence of an external electromagnetic field. From the equality to zero of the coefficients before
ωpωq it follows:

(αpq + apq) = γpqG, G =
1

det(γpq)
, → apq = 0→ det(αpq) 6= 0. (17)

The equality of coefficients before ωp to zero gives:
α00h1 − α01h0 = γ1,

α01h1 − α11h0 = −γ0.
(18)

As det(αpq) 6= 0, hp = h̃p = 0→ Ap = ωp

∆ , and the complete set integrals of motion has the form:

X̂q = pq, X̂2 =
f ε2(αpq pp pq + 2ωq pq + αpqωpωq + p2

2)− φε3 p2
3

∆
. (19)

X̂3 = gij pi pj, gij =
δi

pδ
j
qαpq + ενδi

νδ
j
ν

∆
. (20)
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4. The Linear Dependence of ωp on a Free Function

Now let ω0 and ω1 be connected to each other by a linear relation of the form:

ωp = αpσ + σp. (21)

Here σ is a free function; σp, αp are some rational functions of αpq. Obviously, the function ω̂ in
the relation to (14) depends on the free function as follows:

ω̂ = γσ2 + 2γ0σ + ω0. (22)

γ, γ0, ω0 are also rational functions of αpq. We substitute the expressions (21) and (22) in (14).
The equality to zero of the coefficients before σb(b = 0, 1, 2) gives the system of equations:

a00(α1)2 + a11(α0)2 − 2a01α0α1+

α11(α0)2 + α00(α1)2 − 2α01α0α1 = Gγ, . (23)

(γ = 0, 1)

(a00 + α00)α1(h1 + σ1) + (a11 + α11)α0(h0 + σ0)−
(a01 + α01)(α0(h1 + σ1) + α1(h0 + σ0)) = Gγ0, (24)

(α00 + a00)(σ1 + h1)2 + (α11 + a11)(σ0 + h0)2−
2(α01 + a01)(σ1 + h1)(σ0 + h0) = G(ω0 + h). (25)

The Equation (23) is a condition for the existence of a free function, which is superimposed on
the metric tensor. Spaces of type (2.0) satisfying (23) already allow complete separation of variables
in Equation (1). The remaining equations of the system serve to find the functions hp. Please note
that they have the obvious solution hp = 0. To find other solutions of Equation (23), we classify the
matrices Ĝ = (Gpq), with respect to the group of admissible transformations of ignored variables:
up → c̃p

q uq. Let us list all equivalence classes of matrices Ĝ. The classes will be denoted: Ĝα, where
α = 1, . . . , 5. 

Ĝ1 =

(
a0 + α00 a + α01

a + α01 a1 + α11

)
,

Ĝ2 =

(
a0 + α00 a + α01

a + α01 −a0 + α11

)
,

Ĝ3 =

(
a0 + α00 α01

α01 a1 + α11

)
,

Ĝ4 =

(
a0 + α00 a + α01

a + α01 α11

)
,

Ĝ5 =

(
a + α00 α01

α01 εa + α11

)
, ε = 0,−1.

(26)

Here a00 = a0, a01 = a, a11 = a1. Functions a0, a, a1 are linearly independent.
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4.1. Finding the Metric Tensor

As already noted, Equation (23) does not contain functions defining the electromagnetic potential
and, being a necessary and sufficient condition for the existence of a free function, allows us to find the
metric tensor. Let us present (23) in the following form:

(a0α12
+ a1α02 − 2aα0α1) + (α11α02

+ α00α12 − 2α01α0α1) =

(det(αpq) + det(apq) + α11a0 + α00a1 − 2α01a)γ̃, (27)

and consider it separately for options: γ̃ = 1 and γ̃ = 0.

I γ̃ = 1.

We show that in this case all the solutions of Equation (23) for all classes Ĝα from the expressions
(26) except Ĝ5 can be represented as:

Ĝ =

(
(a0)2 + ε(α0)2 a0a1 + εα0α1

a0a1 + εα0α1 (a1)2 + ε(α1)2

)
. (28)

By marking: βpq = αpαq − αpq, we bring the equation (23) to the form:

det(apq) + det(βpq) + a1β00 + a0β11 − 2aβ01 = 0. (29)

To prove the statement, let us consider (29) for all Ĝα from the expressions (26) with numbers
α = 1, . . . , 4.

(a) Ĝ = Ĝ1.

Let us fix the variable u2 to the point u2 = ũ2 in the functional Equation (24). As result,
we get the expression:

det(apq) = γ̃pqapq + ã,

which after the shift of the functions αpq → αpq + γpq, and vanishing γ̃pq can be present in
the form: det(apq) = ã. Since all apq are linearly independent, from (29) it follows:

βpq = 0→ αpq = αpαq, ã = det(apq) = 0.

From deta(pq)0 we get: apq = apaq. Therefore, the matrix Ĝ can be represented as (28).
The statement is proved.

(b) Ĝ = Ĝ2.

The functional equation follows from (29):

det(apq) + det(βpq) + a0(β11 − β00)− 2aβ01 = 0. (30)

Since in a0 and a are linearly independent, from (29) it follows:

a2 + a2
0 = ã2, βpp = ã, β01 = 0.

The elements of the matrix Ĝ can be represented as:

a00 = ã + a0, a11 = ã− a0, a01 = a, αpq = αpαq.

Thus, det(apq) = det(αpq) = 0, The equality to zero of the coefficients before (σ)b(b = 0, 1, 2)
gives the system of equations: and the matrix Ĝ2 are reduced to the form (27).
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(c) Ĝ = Ĝ3.

The functional equation follows from (29):

a0a1 + det βpq + a0β11 + aβ00 = 0.

Since aa0 6= 0, we get: βpq = β̃pq, (a0 + β̃00)(a1 + β̃11) = ã2, Therefore, the matrix Ĝ can be
represented as:

Ĝ =

(
a + εα02 ã + α0α1

ã + α0α1 ( ã2

a + εα02
)

)
. (31)

and thus, result in the form (27).
(d) Ĝ = Ĝ4.

The functional equation follows from (29):

a0β11 − 2aβ01 + detβpq = εa2.

Since a, a0 6= const we get: a0 = εa2, α00 = (α0)2, α01 = α0α1, α11 = 1 + (α1)2, and the matrix
Ĝ can be represented as:

Ĝ =

(
εa2 + (α0)2 a + α0α1

a + α0α1 ε + (α1)2

)
. (32)

Thus, it has the form (27).
(e) Now consider the case when Ĝ = Ĝ5. The function a 6= const,→ ε = 0, and the functional

equation follows from (29):

a(α11 − α12
) = (α00 − α02

)(α11 − α12
)− (α01 − α0α1)2.

From here: α11 = α12, α01 = α0α1, and the matrix Ĝ takes the form:

Ĝ =

(
a + α + α02

α0α1

α0α1 α12

)
. (33)

II γ = 0.

In case when the matrices Ĝρ belong to the first three variants (ρ = 1, . . . , 3), Equation (23) has no
nonzero solutions and ωp does not contain any free function. Consider the remaining options.

(a) Ĝ = Ĝ4.

From Equation (23) it follows:

a0α12 − 2aα0α1 + α11α02
+ α00α12 − 2α01α0α1 = 0. (34)

From here: α1 = α11 = 0, and we get the matrix Ĝ in the form:

Ĝ =

(
a0 + α0 a + α

a + α 0

)
. (35)

(b) Ĝ = Ĝ5.

From Equation (23) it follows:
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α12
+ εα02

= 0, α11α02
+ α00α12 − 2α01α0α1 = 0. (36)

First, let ε = −1→ α0 = α1, α11 = −α00 + 2α01, and the matrix Ĝ takes the form:

Ĝ =

(
(a0 + α0) α

α −(a0 + α0) + α

)
. (37)

By replacing the variables: û0 → 1√
2
(u0 + u1), û1 → 1√

2
(u0 − u1), we bring the solution to

the form:

Ĝ =

(
α (a0 + α0)

(a0 + α0) 0

)
. (38)

Now let ε = 0. It is easy to show that in this case α1 = 0 and Ĝ has the form:

Ĝ =

(
a0 + α0 α

α 0

)
, α1 = 0. (39)

Thus, both solutions are special cases of the solution (35).

4.2. Building an Electromagnetic Potential

To complete the classification, it is necessary to establish the dependence of the electromagnetic
potential on the variable u3 for this, it is necessary to consider the remaining Equations (24) and (25).

(a) Matrix Ĝ1.

We substitute the matrix Ĝ1 into the equation (24). After some transformation we get the equation:

a0h1 − a1h0 = a0(γα1 − σ1)− a1(γα0 − σ0).

This implies:
a0(h1 − c̃1) = a0(h0 − c̃0), σp = γαp.

By the admissible gradient transformations of the potential, the values c̃p and γ can be set to zero.
The solution has the form:

Ap =
aph + αpω

∆
, Aν = 0,

(gij) =


(a0)2+ε(α0)2

∆
a0a1+εα0α1

∆ 0 0
a0a1+εα0α1

∆
(a1)2+ε(α1)2

∆ 0 0
0 0 ε2

∆ 0
0 0 0 ε3

∆

 . (40)

This result was first obtained by Carter [38].
(b) Matrix Ĝ3.

We substitute the matrix Ĝ3 into Equation (24). After some transformations in Equation (24) we
get: h1 + ω1 = γ(α01 + a01). Hence, γ = γ̃. By the admissible gradient transformation of the
potential γ̃ can be set to zero. The final solution is:
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A0 =
h + ω

∆
A1 = Aν = 0, gij =


a0+α0

∆
a+α

∆ 0 0
a+α

∆ 0 0 0
0 0 ε2

∆ 0
0 0 0 ε3

∆

 . (41)

(c) Matrix Ĝ5.

Substitute it in Equation (24). Denote: Hp = hp + σp. After the reduction, we get:

H1 = σ1 → h1 = 0.

The Equation (25) can be reduced to the form:

(H0 − α0σ)2 = (ρ + p)A, (A = a + α). (42)

Equation (42) has a unique solution: H0 = α0σ + êA. By the admissible gradient transformation
of the potential we vanish ẽ. The solution has the form

A0 =
a0ω

∆
, A1 = Aν = 0.

5. Quadratic Dependence between Free Functions

To complete the classification, we must consider the variant of a quadratic dependence between the
functions ωp. Using the same technique as before, from Equation (14) we find the relation connecting
the functions ωp. Without limiting the generality, we assume that the free function is ω0. Then:

ω1 = γ0 + γ1ω0 + Σ (Σ2 = φ2ω02
+ φ1ω0 + φ0). (43)

In the relations (43), all functions except the free function ω0 are expressed in terms of αpq. If Σ2 is
a full square, we get the already considered version of the linear relationship between ωp. Therefore:

(φ1)
2 − φ0φ2 6= 0. (44)

Obviously, under this condition

ω0, ω02
, ω0Σ, Σ (45)

are linearly independent functions (with coefficients depending on αpq). These functions are included
in the function ω0 as follows (see (14)):

ω̂ = ρ + τ2ω02
+ 2τ1ω0 + τ0 + 2ξ1ω0Σ + 2ξ0Σ. (46)

Substituting (46) into the system (14) and equating the coefficients to the independent functions
(46) to zero, we obtain the following systems of equations after some transformations:{

G00γ1 − G01 = ξ1G,
G00(φ2 − γ1

2) + G11 = (τ2 − 2ξ1γ1)G;
(47)

{
G00h1 − G01h0 = ξ0G− G00γ0,
G01h1 − G11h0 = (−τ1 + γ1ξ0)G− G01γ0 + G00φ1;

(48)

G00((h1 + γ0)
2 + φ0) + G11h02 − 2G01h0(h1 + γ0) = (ρ + p)G. (49)
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The Equation (47) are solved in the same way as in the case of linear dependence of the functions
ωp. Using the classification (26), the matrix Ĝ is found. A distinctive feature is that the completion of
this stage does not mean, as before, automatically obtaining a particular case of the desired potential,
since the system (48) and Equation (49) non-trivially include the functions defining ω1. Now, to find
the potential, it is necessary to satisfy all the remaining equations. To do this, the found matrices Ĝa

are substituted in them and a solution is sought. The second distinguishing feature is that the system
(48) immediately implies absence in the potential of a free function that depends only on u3 since from
det Ĝ 6= 0 → the functions hp are expressed in terms of apq. The third feature is that the obtained
solutions must satisfy the condition (44).

Omitting the obvious, but rather cumbersome calculations, we present the final solutions for
the (47)–(49):

γ0 = γ1 = φ1 = 0, φ0 = −ε, φ2 = ã. (50)

(ω1)2 =
√

ã− ε(ω0)2. (51)

Ĝ =

(
a 0
0 εa

)
, ε = +1,−1. (52)

The metric tensor and electromagnetic potential have the form:

(gij) =



a
∆

0 0 0

0
εa
∆

0 0

0 0
ε2

∆
0

0 0 0
ε3

∆

 ;

a)ε = 1, A0 =
ẽsinσ

∆
, A1 =

ẽcosσ

∆
, Aν = 0;

b)ε = −1, A0 =
ẽshσ

∆
, A1 =

ẽchσ

∆
, Aν = 0.

(53)

6. Discussion

The main result of the classification is to obtain all metrics and potentials of the external
electromagnetic field that have sufficient symmetry to perform an exact integration of the
Hamilton–Jacobi equation for a charged test particle. Currently, many exact solutions of Einstein’s
equations are known [40]. However, only a small part of them have such property, and they
are the main object of research. The additional symmetry of Stäckel spaces, which allows us to
separate variables in the Hamilton–Jacobi equation for a charged test particle, can be applied for
integrating the vacuum equations of the gravitational field both in General relativity (for example,
when studying the problem of axion fields [41]) and in alternative theories. For convenience of use
metrics: (ds)2 = gijduiduj, covariant components of electromagnetic potentials: Ai, and separated
systems whose solutions determine the complete integrals of Equation (1)

Ĥ2 = λ3φ + λ2, Ĥ3 = λ3 f − λ2. (54)

are given below.
The separated systems have the form:

Ĥ2 = λ3φ + λ2, Ĥ3 = λ3 f − λ2. (55)
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In conclusion, we would like to give a complete summary of the results. For each solution of
Equation (14) we give the metric (ds)2 = gijduiduj, the covariant components of the electromagnetic
potential Ap and the function Ĥν, which define the integrals of motion quadratic in momenta in
accordance with:

X̂2 =
f H2 − φH3

∆
, (56)

where
Ĥ2 = αpq pp pq + ε2 p2

2 + 2ωq pq + ω̂, Ĥ3 = hpq pp pq + ε3 p2
3 + 2hq pq + ĥ.

Recall that A2 = A3 = 0, ∆ = φ + f .

I 

(ds)2 = (
(α12

+ εa12
)du02

+ (α02
+ εa02

)du12 − 2(α0α1 + εa0a1)du0du1

(α1a0 − a1α0)2 +

ε2du22
+ ε3du32

)∆.

A0 =
εhα1 −ωa1

(α1a0 − a1α0)
,

A1 =
−εhα0 + ωα0

(α1a0 − a1α0)
.

Ĥ2 = ε2 p2
2 + αpαq pp pq + 2αq pqω + εω2

Ĥ3 = ε3 p3
2 + εapaq pp pq + 2aq pqh + h2.

(57)

II 

(ds)2 = (
2(α + a)du0du1 − (α0 + a0)du12

(α + a)
+

ε2du22
+ ε3du32

)∆.

A0 = 0, A1 =
h + ω

(α + a)
.

Ĥ2 = ε2 p2
2 + α0 p2

0 + 2αp0 p1 + 2ωp0,

Ĥ3 = ε3 p3
2 + a0 p2

0 + 2ap0 p1 + 2hp0

(58)

III 

(ds)2 = (
(α + a)du12

+ ε(α0du1 − α1du0)2

(α + a)α12 +

ε2du22
+ ε3du32

)∆.

A0 = 0, A1 =
ω

α1 .

Ĥ2 = ε2 p2
2 + αp2

0 + (αq pq + ω)2du0)2 Ĥ3 = ε3 p3
2 + ap2

0

(59)
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IV 

(ds)2 = (
α11du02

+ α00du12 − 2α01du0du1

(α00α11 − α012
)

+

ε2du22
+ ε3du32

)∆.

A0 =
ω0α11 −ω1α01

(α00α11 − α012
)

.

A1 =
ω1α00 −ω0α01

(α00α11 − α012
)

.

H̃2 = ε2 p2
2 + αpq pp pq + 2ωp pp+

α00(ω1)2+α11(ω0)2−2α01ω0ω1

(α00α11−α012
)

. Ĥ3 = ε3 p3
2

(60)

V 

(ds)2 = (
du02

+ εdu12

a
+ ε2du22

+ ε3du32
)∆.

a) ε = −1, A0 =
shω

a
, A1 =

chω

a
.

H̃2 = ε2 p2
2 + 2(p0shω− p1chω), H̃3 = εp3

2 + a(p0
2 − p1

2) +
1
a2 ,

b) ε = 1, A0 =
sinω

a
, A1 =

cosω

a
.

H̃2 = ε2 p2
2 + 2(p0sinω + p1cosω), H̃3 = εp3

2 + a(p0
2 + p1

2) + 1
a2 ,

(61)

7. Conclusions

Thus, all space–time metrics and electromagnetic potentials that allow complete separation of
variables of type (2.0) in the Hamilton–Jacobi Equation (1) for a charged test particle moving in an
external electromagnetic field are found. The complete sets of mutually commuting vector and Killing
tensor fields and the complete sets of motion integrals are defined. Please note that the same problem
has been solved for the Stäckel spaces of type (1.0) ([42]) and for the Stäckel spaces of type (2.1) ([43]).
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