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Abstract: We propose a new approach to the model reduction of biochemical reaction networks
governed by various types of enzyme kinetics rate laws with non-autocatalytic reactions, each of
which can be reversible or irreversible. This method extends the approach for model reduction
previously proposed by Rao et al. which proceeds by the step-wise reduction in the number of
complexes by Kron reduction of the weighted Laplacian corresponding to the complex graph of the
network. The main idea in the current manuscript is based on rewriting the mathematical model of
a reaction network as a model of a network consisting of linkage classes that contain more than one
reaction. It is done by joining certain distinct linkage classes into a single linkage class by using the
conservation laws of the network. We show that this adjustment improves the extent of applicability
of the method proposed by Rao et al. We automate the entire reduction procedure using Matlab.
We test our automated model reduction to two real-life reaction networks, namely, a model of neural
stem cell regulation and a model of hedgehog signaling pathway. We apply our reduction approach to
meaningfully reduce the number of complexes in the complex graph corresponding to these networks.
When the number of species’ concentrations in the model of neural stem cell regulation is reduced by
33.33%, the difference between the dynamics of the original model and the reduced model, quantified
by an error integral, is only 4.85%. Likewise, when the number of species’ concentrations is reduced
by 33.33% in the model of hedgehog signaling pathway, the difference between the dynamics of the
original model and the reduced model is only 6.59%.

Keywords: graph theory; biochemistry; chemical reaction network theory; systems biology;
mathematical modeling; weighted Laplacian matrix; conservation laws; complex balancing;
Schur complement; Kron reduction

1. Introduction

A mathematical model of a chemical reaction network (CRN) can be represented by a system
of ordinary differential equations (ODEs) that describe the dynamics of the concentrations of the
constituent species participating in the network. Generally, kinetic models of most CRNs involve
an immensely large number of variables, thereby making the models difficult to analyze due to
the huge computational effort required for the analysis. On top of that, as in general not all of
the species’ concentrations can be measured in an experimental set-up, identifying the parameters
contained in the mathematical model is not feasible and demands massive experimental datasets.
Thus, there exists a necessity to simplify the mathematical models of CRNs to reduced variants that
preserve the key properties of the original models but contain fewer ordinary differential equations
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and fewer unknown variables. Numerous model reduction methods for CRNs are described in the
literature. For a comprehensive survey of popular model reduction techniques, see, for example,
in [1,2]. The quasi-steady-state approximation (QSSA) (see, for example, in ([3] Chapter 2) and ([4]
Chapter 4)) is one of the most commonly used tools for model reduction of CRNs governed by enzyme
kinetics. Even though QSSA can be used for a large variety of CRNs, in many cases it demands
high computational efforts. The method is not simple to apply, as it requires a priori experimental
(biological) knowledge.

A recent model reduction method proposed in [5] reduces the mathematical model of a CRN
by eliminating complexes from its corresponding complex graph. In chemical reaction network
theory, complexes are defined as the left- (substrate) and right-hand (product) sides of the reactions.
Furthermore, the complexes of a CRN can be naturally associated with the vertices of a complex
graph with edges corresponding to the reactions of the network. The method described in [5]
selects the complexes to be eliminated in such a way that the behavior of the remaining relevant
species in the reduced CRN is close to their original behavior. It is based on the Kron reduction
method [6], and reduces the weighted Laplacian matrix associated with the complex graph. The Kron
reduction method is a popular method of model reduction for electrical networks and proceeds by
the computation of Schur complements [7] of the weighted Laplacian matrix. As an example, let us
consider the following CRN consisting of a single linkage class,

C1
ν1 C2

ν2
C3

ν3
· · ·

νc−1 Cc,

where Cj, j = 1, · · · , c, are distinct complexes and νj, j = 1, · · · , c− 1, are the overall reaction rates in
the forward direction. We recall from the work in [5] that a linkage class is a connected component of
the complex graph corresponding to the CRN. After eliminating the complex C2 using the method
proposed in [5], we obtain the following reduced network.

C1
ν̄
C3

ν3
· · ·

νc−1 Cc.

Here, the principle of complex balancing is applied to C2 to replace the two reversible reactions

C1
ν1 C2 and C2

ν2 C3 of the original network by the new reversible reaction C1
ν̄ C3. We say

that C2 is complex balanced if its inflow is equal to its outflow. In other words, the concentrations of
the species participating in C2 are adjusted in such a way that ν1 = ν2, which leads to the deletion of
C2 from the complex graph. Moreover, the reaction rates νj, j = 3, · · · , c− 1, of the other reactions
remain unchanged. Note that the goal of considering this example is to illustrate how the reduction
procedure in [5] is carried out. It describes how the aforementioned method is used to delete a complex
(in this case the complex C2) from the corresponding complex graph. Thus, without loss of generality,
we assume that the deletion of C2 does not cause major changes in the dynamics of the considered
chemical reaction network.

This method is effective in eliminating intermediate complexes from linkage classes that have
more than one reaction. We note that an intermediate complex is a complex participating in more than
one reaction, with each reversible reaction considered as a single reaction. For instance, with reference
to the network given above, C2 is an intermediate complex, but C1 is not. However, as mentioned
in [5,8], when every linkage class has just two complexes, the method fails in producing a meaningful
reduction as it just deletes reactions from the network. For example, consider the following part of a
kinetic model of yeast glycolysis,

R1 : Glco
ν1

Glci,

R2 : Glci + ATP
ν2

G6P + ADP,

R3 : G6P
ν3

F6P,

R4 : F6P + ATP
ν4

F16BP + ADP,

R5 : F16BP
ν5

TRIO (1)
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where νj is the overall rate of the jth reaction in the forward direction. Note that a reaction rate
is a function of species’ concentrations of the network and it depends on the governing law of the
corresponding reaction. In this case, elimination of any complex by the approach proposed in [5]
results in deleting the corresponding reaction. For instance, if we delete the complex G6P + ADP
from the network, the method will result in deleting the entire second reactionR2 from the network.
The reduced CRN will then have the reactionR1 occurring independently of the remaining reactions.
Therefore, the reduced network will possess a behavior that is completely different from the original
one. It is easy to see that the complex graph corresponding to (1) is not connected. As this complex
graph does not have any linkage class that contains more than one reaction, the method proposed
in [5] does not result in a meaningful reduction of the corresponding model. In this case, there is a
need to find a reasonable method of rewriting the complex graph of the given network as a graph with
linkage classes that have more than one reaction in order to ensure that the application of the method
proposed in [5] results in a meaningful reduction in the number of complexes.

We propose to eliminate the species ADP from the network in such a way that we can replace the
reactions R2 and R4 with the reversible reactions Glci + ATP G6P and F6P + ATP F16BP,
respectively. This replacement can be done, for example, by expressing the concentration of ADP in
terms of the concentrations of ATP. This can be done by using the two ODEs that represent the change
in concentration over time for ADP and ATP. These ODEs can be represented in the following form,

d[ADP]
dt

= ν2 + ν4,
d[ATP]

dt
= −ν2 − ν4,

where [X] denotes the molar concentration of the species X. From these equations, we easily derive
the following conservation law, which express the concentrations of ADP in terms of the concentration
of ATP,

[ADP] = −[ATP] + C, (2)

where C is a non-negative constant (known as a conserved quantity) depending on the initial
concentrations of ATP and ADP. The conservation law (2) can now be used to eliminate the
concentration of the species ADP from the mathematical model of the network. This elimination
allows us to rewrite the mathematical model as a model of a network containing two linkage classes
that consist of more than one reaction.

Glco Glci

Glci + ATP G6P F6P (3)

F6P + ATP F16BP TRIO

Note that even though the species ADP is not explicitly participating anymore in the CRN,
its concentration still appears in the corresponding mathematical model in terms of the concentration
of ATP. The method in [5] may now be used on the network (3) to reduce its mathematical model
in a meaningful way by deleting the species (complexes) G6P and F16BP from the corresponding
complex graph. Even though the elimination of the concentration of ADP enables the application of the
reduction method [5], the reduced model is valid only for trajectories for which the total concentration
of the pool of ADP and ATP is fixed.

Most CRNs in real-life have reaction network structures similar to the original yeast glycolysis
network (1), with certain linkage classes consisting of only one reaction. New tools for model reduction
are required for these types of networks. In this paper, we generalize the approach of the complex
graph rewriting procedure briefly illustrated above. This procedure, in conjunction with the method
proposed in [5], results in a meaningful model reduction.

The main idea of our model reduction method is to enable the application of the model reduction
method proposed in [5] by joining certain linkage classes of a CRN into a single linkage class using
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linearly independent conservation laws. An important result related to conservation laws is Noether’s
theorem [9], which states that there is a one-to-one correspondence between a conservation law and
a differentiable symmetry of nature. For instance, an example of a conservation law in the field of
classical physics is the law of conservation of energy in Hamiltonian systems, which corresponds to
time translation symmetry.

We develop an automation process for our model reduction method in order to make
it straightforward to apply for a wide range of CRNs governed by any kind of enzyme kinetics. In the
automation procedure we assume that the CRN admits a single steady state and is asymptotically
stable around it. This assumption is necessary for determining the settling time of the network over
which we compare the original model and the reduced model. We created a MATLAB library, which
contains all the files corresponding to each step of our step-wise reduction procedure. It uses the input
files containing the information of a given CRN provided by the user to reduce the corresponding
mathematical model in a fully automated fashion.

Finally, we exhibit the application of our new technique of model reduction for real-life examples
of CRNs drawn from the Biomodels database [10]. For each of the cases, we explain how the
corresponding mathematical model can be meaningfully reduced.

2. Preliminaries

In this section, we give a compact description of the mathematical techniques that are necessary
for our automated model identification method. We commence by introducing the notations that are
used throughout the manuscript and continue by explaining a framework for deriving a system of
ODEs that describes the dynamics of the constituent species of a given CRN. Subsequently, we recall
the Kron reduction method proposed in [5].

S P denotes a reaction from the substrate S to the product P , where the dotted line indicates
that it can be reversible or irreversible. In this case, when referring to its reaction rate we refer to
the outgoing overall reaction rate in the forward direction. The transpose and the null space of
an m× n matrix A = [Aij], j = 1, · · · , n, i = 1, · · · , m, are denoted by A> and ker(A), respectively.
The number of elements of a set I is denoted by n(I). For any vector v ∈ Rn, denote by diag(v)
the n× n diagonal matrix whose diagonal elements are the corresponding elements of the vector v.
Define the function Exp : Rm → Rm

+ as [xi]
m
i=1 7→ [exp(xi)]

m
i=1 and the function Ln : Rm

+ → Rm as
[xi]

m
i=1 7→ [ln(xi)]

m
i=1. The Schur complement of the block matrix D ∈Rq×q of the matrix L ∈ Rp×p is

denoted by LD ∈ R(p−q)×(p−q).

2.1. Mathematical Models of Reaction Networks

Consider a CRN that involves m distinct chemical species, c complexes, and has r unidirectional
reactions. We present a framework for describing the dynamics of reaction networks using their
complex graphs [5,11]. The c complexes of the network are represented by an m × c complex
composition matrix Z, whose columns express the complexes in terms of their species. Any CRN is
defined by a c× r incidence matrix B, where

Bij =


−1, if the ith complex is the substrate of the jth reaction,

1, if the ith complex is the product of the jth reaction,

0, otherwise.

It can be shown that the m × r stoichiometric matrix S of the network is S = ZB. We denote by
ν(x) ∈ Rr

+ the vector of reaction rates of the given CRN. The basic structure underlying the dynamics
of the species’ concentration vector x ∈ Rm

+ is given by the balance law [12]:

dx
dt

= Sν(x). (4)
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Let ξ ∈ ker(S>). Using (4) we easily see that this vector satisfies the condition ξ> dx
dt = 0.

Consequently, ξ>x is a constant, and thus

ξ>x = ξ>x0, (5)

where x0 ∈ Rm
+ is the vector of initial species’ concentrations, i.e., x0 = x|t=0. Equation (5) is called a

conservation law of the CRN. The constant term ξ>x0 appearing in the conservation law (5) is called
a conserved quantity. Clearly, the number of linearly independent conservation laws is equal to the
dimension of ker(S>). In other words, irrespective of the governing laws, we can obtain a maximal set
of linearly independent conservation laws by computing ker(S>).

Let ZSi be the column of Z corresponding to the substrate Si of the ith reaction. Assuming
that every reaction of the CRN is governed by an enzyme kinetic rate law, the reaction rate of the ith
unidirectional reaction between the substrate Si and product Pi, as explained in [5], can be expressed as

νi(x) = di(x)ki exp(Z>Si
Ln(x)), (6)

where, for every i = 1, · · · , r, di : Rm
+ → R+ is a rational function and ki denotes the rate constant of

the ith reaction. Note that if the governing law of the ith reaction is mass action kinetics, then di(x) ≡ 1.
Consider the r× r diagonal matrices D(x) = diag(d1, · · · , dr) and K = diag(k1, · · · , kr). Define the
c× r outgoing matrix ∆ = [∆ij] as follows,

∆ij =

{
0, if Bij = 1,

Bij, otherwise.

It can be shown that the c× c weighted Laplacian matrix associated with the complex graph of
the network is L(x) = BKD(x)∆>. As explained in [5], the balance laws (4) can be expressed in terms
of the Laplacian matrix as

dx
dt

= −ZL(x)C(x), (7)

where C(x) = Exp
(
Z>Ln(x)

)
. Some well-known enzyme kinetic rate laws for which the balance

laws can be written in matrix multiplication form (7) are the reversible Michaelis–Menten kinetics [13],
Monod–Wyman–Changeaux kinetics [14], Hill kinetics [15,16], Ping Pong Bi Bi kinetics [17],
and Koshland–Nemety–Filmer kinetics [18]. In order to clearly illustrate the modeling procedure,
we demonstrate it for the following reaction network with four unidirectional reactions,

∅ −→ X1

2X1 + X2 3X3 + X4 (8)

X4 −→ ∅

where ∅ is the zero complex representing the environment. It is treated as a regular complex, in which
the number of moles of each species is zero as explained in [11]. More precisely, the first reaction
is a creation of X1 and the last reaction is a degradation of X4. In this example, the substrate
complexes of the four reactions are S1 = ∅, S2 = 2X1 + X2, S3 = 3X3 + X4, and S4 = X4,

respectively. Thus, ZS1 =
[
0 0 0 0

]>
, ZS2 =

[
2 1 0 0

]>
, ZS3 =

[
0 0 3 1

]>
, and ZS4 =[

0 0 0 1
]>

. The complex composition matrix and the incidence matrix corresponding to the
network (8) are given by
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Z =


0 1 2 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 1 1

 , B =


−1 0 0 1
1 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 −1

 .

Let Vf and Vr be the maximum reaction rates of the second and the third reactions of (8),
respectively. The expressions for the reaction rates (6) depend on the governing laws of the reactions.
One possibility is

ν1(x) = p1,

ν2(x) =
Vf

K1K2
x2

1x2

1 + x1
K1

x2
K2

+ x3
K3

x4
K4

,

ν3(x) =
Vr

K3K4
x3

3x4

1 + x1
K1

x2
K2

+ x3
K3

x4
K4

,

ν4(x) = p2x4,

where Ki is the Michaelis constant of the species Xi for i = 1, · · · , 4, and p1, p2 are positive constants.
The reaction rates of the network (8) can be represented in the form (6) by defining the rate constants
ki as

k1 = p1, k2 =
Vf

K1K2
, k3 = Vr

K3K4
, k4 = p2,

and the rational terms di(x) in the expressions of reaction rates as

d1(x) = 1,

d2(x) =
1

1 + x1
K1

x2
K2

+ x3
K3

x4
K4

,
d3(x) =

1
1 + x1

K1

x2
K2

+ x3
K3

x4
K4

,

d4(x) = 1.

The 5× 5 Laplacian matrix corresponding to the network (8) is

L(x) =


k1d1(x) 0 0 0 −k4d4(x)
−k1d1(x) 0 0 0 0

0 0 k2d2(x) −k3d3(x) 0
0 0 −k2d2(x) k3d3(x) 0
0 0 0 0 k4d4(x)

 .

Note that open CRNs are modeled in [5] by extended balance laws of the form
dx
dt

=

−ZL(x)C(x) + Z f (x), where the free term f ∈ Rc represents the inflows to and outflows from
the complexes of the network. Here, as the zero complex is considered as a regular complex it is
included in the Laplacian matrix in order to avoid the unnecessary free term. On top of that, unlike the
reduction method proposed in [5], if the zero complex is an intermediate complex, we consider it as a
candidate complex for deletion.

2.2. Kron Reduction of Mathematical Models Corresponding to Reaction Networks

We describe the model reduction method proposed in [5]. It is based on the Kron reduction [6]
and is performed by deleting a set of complexes from the complex graph associated with the CRN.
Recall that deleting a complex is equivalent to assuming that it is complex balanced. The complex
balancing is carried out by computing the Schur complement [7] of the weighted Laplacian matrix
associated with the corresponding complex graph.

Definition 1. Let L be an (m + n)× (m + n) block matrix of the form

L =

[
A B
C D

]
,
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where A, B, C, and D are n× n, n×m, m× n, and m×m matrices, respectively. Assume that D is invertible.
The Schur complement of D is the n× n matrix LD defined by

LD = A− BD−1C.

Consider again a CRN of c complexes and r reactions with dynamics modeled by the balance
laws (7). Let V be the set of indices corresponding to the complexes of the CRN, i.e., V = {1, · · · , c}.
Assume that we want to delete the complexes with the set of indices V̂, which is a subset of V
of cardinality] ĉ < c. Denote by D(x) ∈ Rĉ×ĉ the block matrix of the Laplacian matrix L(x) that
corresponds to the set of indices V̂. The complex deletion is carried out by computing the Schur
complement LD(x) ∈ R(c−ĉ)×(c−ĉ) (see, for example, in [7]) of the block matrix D(x). It is proven
(see in [5] Proposition 1) that LD(x) is again a Laplacian matrix, i.e., it satisfies the properties of
Laplacian matrices [19]. On top of that, it is shown that the equation

dx
dt

= −ZredLD(x)Exp(ZredLn(x))

describes the dynamics of a CRN governed by an enzyme kinetics rate law, i.e., the corresponding
reaction rates can be written in the form (6), with smaller number of complexes. Here, Zred is the
complex composition matrix of the reduced CRN defined by removing from Z the columns
corresponding to the set of indices V̂. A suitable choice of V̂ ensures that some of the elements in the
vector of species concentrations x are conserved in time, i.e., the derivatives of some of the elements of
x are zeros. This leads to a reduced number of dependent variables in the corresponding mathematical
model. As an example consider the following simple CRN of two unidirectional reactions,

X1 X2 + X3 X4.

Let ν1 and ν2 be the overall rates in the forward direction of the first reaction and the second
reaction, respectively. For i = 1, · · · , 4, denote by xi the concentration of the species Xi. In this case,
the balance laws (4) can be rewritten as

dx1

dt
= −ν1

dx2

dt
=

dx3

dt
= ν1 − ν2

dx4

dt
= ν2.

Now suppose that the second complex X2 + X3 is complex balanced, which is equivalent to

assuming that ν1 = ν2. From the above-mentioned balance laws we obtain
dx2

dt
=

dx3

dt
= 0,

which means that x2 and x3 are conserved in time.
In [5], the difference between the dynamical behaviors of the original model and the corresponding

reduced model is quantified by an error integral E. Let [0, T] be the time interval over which we want
to observe the difference between the behaviors of the original model and the reduced model. Denote
by J the set of indices of the significant species of the network. The error integral E is defined as

E(T) =
1

Tn(J) ∑
i∈J

∫ T

0

∣∣∣∣1− yi(t)
xi(t)

∣∣∣∣ dt, (9)

where xi and yi are the concentrations of the ith species in the original model and the reduced model,
respectively. Note that in [5] the right endpoint of the time interval has been set manually. However,
in our case this right endpoint is chosen to be the settling time of the network, i.e., the time instant
at which the considered CRN reaches a sufficiently small prespecified neighborhood of its unique
steady state.

The model reduction method proposed in [5] is an iterative procedure that selects a subset
of intermediate complexes to be deleted from the corresponding complex graph as follows. First,
the candidate complexes for deletion, i.e., the intermediate complexes of the network, are identified.
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For each candidate complex the error integral corresponding to the reduced model obtained after its
deletion is evaluated. These values of error integrals are used to rank the candidate complexes
and then delete the candidate complex with the least value of error integral. In the next step,
the above-mentioned procedure is repeated with the reduced model. The iteration is continued
until the error integral E(T) exceeds a prespecified threshold value.

One of the advantages of the reduction method [5] is that it does not rely on a priori biological
knowledge about the CRN. Moreover, it is an easy-to-implement model reduction method that can be
used to simplify huge mathematical models of CRNs by retaining the original kinetics.

3. Equivalent Mathematical Models

In this section, we give a detailed explanation of the basic idea of our reduction technique
which we briefly introduced in Section 1. We first establish concepts that are relevant to the model
reduction procedure.

Definition 2. The index set ICj ⊂ {1, · · · , m}, j ∈ {1, · · · , c}, corresponding to the jth complex Cj of the
network, is the set of indices of the species participating in the expression of the complex Cj.

We thus obtain the following expression for the complex Cj in terms of its species,

Cj = ∑
i∈ICj

aCj ,iXi, j = 1, · · · , c,

where aCj ,i ∈ R+ represents the number of moles of the ith species in the expression of the complex Cj.
It is clear that two complexes Cp and Cq share common species if and only if ICp ∩ ICq 6= ∅. Trivially,⋃c

j=1 ICj = {1, · · · , m}.

Definition 3. Let C be a complex of a CRN. For ε ∈ N, we define εC as the new complex consisting of the
species of C with their respective number of moles multiplied by ε, i.e., εC = ∑i∈IC εaC,iXi.

With the following lemma, we show the equivalence between two mathematical models of a given
CRN. Later on, we will see that the application of this lemma allows us to join certain reactions into
a single linkage class.

Lemma 1. Let ν(x) = [νj(x)]rj=1 be the vector of overall reaction fluxes in the forward direction of the CRN
Rj : Sj Pj, j = 1, · · · , r. For every ε = [ε j]

r
j=1 ∈ Nr, the reaction network is equivalent, in terms of

its mathematical model, to the reaction network ε jSj ε jPj, j = 1, · · · , r, with the vector of overall reaction

fluxes being ν(x) =
[

1
ε j

νj(x)
]r

j=1
.

Proof. Let Xα, α ∈ {1, · · · , m} be a random species of the CRN ε jSj ε jPj, j = 1, · · · , r. Using (4),
the rate of change of the concentration xα of species Xα is given by

dxα

dt
=

r

∑
j=1

(
−ε jaSj ,α

[
1
ε j

νj(x)

]
+ ε jaPj ,α

[
1
ε j

νj(x)

])

=
r

∑
j=1

(
aPj ,α − aSj ,α

)
νj(x).

As the right-hand side of this equation represents the rate of concentration change of species Xα

in the original network, the proof of Lemma 1 is complete.
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Remark 1. As the CRNs Rj : Sj Pj, j = 1, · · · , r, with ν(x) =
[
νj(x)

]r
j=1, and Rj : ε jSj ε jPj,

j = 1, · · · , r, with ν(x) =
[

1
ε j

νj(x)
]r

j=1
, have the same mathematical models, they also possess the same

conservation laws.

In the following proposition, we generalize the idea of the complex graph rewriting procedure,
as was roughly illustrated in Section 1. We show that in the presence of a shared species between two
complexes, a suitable conservation law can be used to join the corresponding reactions with the shared
species as intermediate complexes.

Proposition 1. Let ν(x) = [νj(x)]rj=1 be the vector of overall reaction rates in the forward direction of the
CRN Rj : Sj Pj, j = 1, · · · , r. Suppose that, for certain j1, j2 ∈ {1, · · · , r}, two complexes, Pj1 and
Sj2 , of different reactions share a common species Xα, α ∈ {1, · · · , m}. Define I = (IPj1

∪ ISj2
) \ {α},

where IPj1
and ISj2

are the sets of indices corresponding to the complexes Pj1 and Sj2 , respectively. If for every
β ∈ I, there exists a conservation law in which the species Xβ is participating, but not the remaining species
corresponding to I, then we can join the two reactions,Rj1 andRj2 , into a single linkage classR′,

R′ : aSj2 ,αSj1

νj1 Cα

νj2 aPj1
,αPj2 , (10)

with the corresponding reaction rates being

νj1(x) =
νj1(x)
aSj2 ,α

and νj2(x) =
νj2(x)
aPj1

,α
.

The intermediate complex Cα is the shared species Xα with number of moles aCα ,α = aPj1
,αaSj2 ,α, i.e.,

Cα = aPj1
,αaSj2 ,αXα.

Proof. For every β ∈ I, choose a vector ξ ∈ ker(S>) such that the corresponding conservation law
(5) satisfies the assumptions of the proposition. Note that this vector strictly depends on β. More
precisely, its βth component ξβ is not equal to zero. Moreover, note that all the other components of ξ

corresponding to I are zeros. Denote by ξ̃ the vector ξ with its βth element replaced by zero. Using (5)
we represent xβ in terms of the concentrations of the other species:

xβ =
1
ξβ

(
−ξ̃>x + ξ>x0

)
,

where x0 is the vector of species’ initial concentrations. By substituting xβ as in the above equation in
the expression of the vector ν(x) of the reaction rates, we can rewrite the reactions Sjk Pjk , k = 1, 2,
in the following forms

Sj1 aPj1
,αXα, aSj2 ,αXα Pj2 .

Application of Lemma 1 with

ε j =


1, j 6= j1, j2,

aSj2 ,α j = j1,

aPj1
,α j = j2

(11)

completes the proof.

As (10) represents a linkage class with more than one reaction, the method proposed in [5] can
be meaningfully applied to delete the intermediate complex Cα from the corresponding complex
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graph. In the reduced network, the linkage class (10) can be replaced by a single reaction R :
aSj2 ,αSj1 aPj1

,αPj2 using the principle of complex balancing.

Remark 2. We would like to point out the three major steps of the complex graph rewriting procedure described
in the proof of Proposition 1. Later on, these steps will be used to automate our model reduction procedure.

M1. Elimination of certain species from the network (rewriting the corresponding concentrations in terms of
the concentrations of the other species), after which certain complexes are composed of the same species.

M2. Application of Lemma 1 in order to make such complexes identical to each other.
M3. Joining the reactions with identical complexes into a single linkage class.

4. Automatic Reduction Procedure

In this section, we describe the automatic model reduction procedure step by step. We show
how to apply Proposition 1 for any kind of CRN independently of its governing laws to join certain
reactions in an automatic way. We then apply the strategy in [5] to reduce the number of complexes in
the complex graph corresponding to the equivalent network.

Inputs: The list of inputs required for the model reduction procedure is as follows.

• The complex composition matrix Z ∈ Rm×c, where m and c are the number of the species and
complexes of the network, respectively.

• The incidence matrix B ∈ Rc×r of the network, where r is the number of reactions of the network.
• The vector k ∈ Rr

+ of rate constants of the reactions.
• The vector d(x) ∈ Rr

+ of rational terms in the expressions of reaction rates.
• The vector x0 ∈ Rm

+ of initial concentrations.
• The threshold value of the error integral (9), i.e., the maximum admissible value of E.

Outputs: The automatic reduction procedure provides the following outputs.

• The mathematical model and the complex graph corresponding to the original network.
• The mathematical model and the complex graph corresponding to the reduced network.
• The final value of the error integral.

We divide our model reduction procedure into seven steps. In order to clearly explain the
reduction procedure throughout this section, we will demonstrate it step by step for the following
example of six unidirectional reactions:

X1 + X2 X3 + 2X4

3X4 + X5 X6 + X7 (12)

5X7 + X8 X9 + X10

with the corresponding reaction rates being

ν1(x) = k1x1x2,

ν3(x) =
k2x3

4x5

1 + x4x5 + x6x7
,

ν5(x) =
k3x5

7x8

1 + x7 + x8 + x9 + x10
,

ν2(x) = k−1x3x2
4,

ν4(x) =
k−2x6x7

1 + x4x5 + x6x7
,

ν6(x) =
k−3x9x10

1 + x7 + x8 + x9 + x10
.

Step 1: Mathematical model of the network.

In the first step, we determine the system of differential Equation (7) that underlies the dynamics
of the species’ concentration vector x ∈ Rm

+.
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Step 2: Settling time of the network.

Each CRN is uniquely described by the system (7) obtained from its structure. We can then
commence considering its model reduction. An important tool, which is crucial in our reduction
procedure, is the settling time of the considered CRN defined in Section 2.2. We show how to
automatically compute it for a given CRN.

It has been proved in [20] that for a class of networks called zero deficiency networks, there exists
a unique point satisfying the following system,

dx
dt

= 0,

ξ>i x = ξ>i x0, i = 1, · · · , l,
(13)

where ξi, i = 1 · · · , l, form a maximal set of linearly independent conservation laws. In [11,21,22],
the same result has been proved for a related class of networks called complex balanced networks.
It states that such a network is asymptotically stable around its unique steady state corresponding to
a particular initial concentration x0. We assume that the same property is true for the CRNs considered
for our reduction procedure as mentioned in the introduction. Solving the system (13), we find the
unique steady state x∗ ∈ Rm

+. The settling time of the CRN can then be automatically computed by the
so called bound function defined as follows. For a fixed δ� 1, the δ-bound function is given as

bδ(x) =

{
1, if (1− δ)x∗ ≤ x ≤ (1 + δ)x∗,

0, otherwise.

Note that the bound function is computed component-wise. For an appropriate choice of δ, it is
an easy numerical task to find the vector τ ∈ Rm

+ of settling time, such that τi, i = 1, · · · , m, is the time
when the bound function corresponding to the ith species becomes 1 and remains so.

Step 3: Selecting species to be eliminated from the network.

Next, we identify the set I of indices corresponding to the species whose elimination from the
network results in joining certain reactions. This can be done by using the index sets ICj , j = 1, · · · , c,
corresponding to the complexes Cj of the network, which can be easily extracted from the complex
composition matrix Z. For a given pair of complexes Cp and Cq that share at least one species Xα,

define Ip,q =
(

ICp ∪ ICq

)
\ {α}. If Cp and Cq share no species, set Ip,q = ∅. It is reasonable to define the

set I of indices to be eliminated from the network as I =
⋃

p,q Ip,q. We note that if there exists a complex
C, which is made up of a single species Xβ with β ∈ I, i.e., C = Xβ, the elimination of Xβ from the
network will end up eliminating the entire complex C, meaning that C becomes the zero complex.

The above-mentioned procedure allows us to determine the set of indices I in a fully automated
manner. For example, in the case of the network (12), we obtain I = {3, 5, 6, 8}.

Step 4: Mathematical model of the equivalent network.

In this step, we show how to determine the mathematical model of the equivalent network
obtained after eliminating the species corresponding to I from the original network. For every β ∈ I,
we find the corresponding conservation law that can be used with Proposition 1 to eliminate the
concentration xβ from the mathematical model of the original network. It can be done by computing
ker(S>β ), where Sβ is the matrix obtained by replacing all the rows of the stoichiometric matrix S that
correspond to the elements of I \ {β}, with zero rows. If the assumptions of Proposition 1 are satisfied,
then it can be used to join certain reactions. The mathematical model of the equivalent network is then
determined according to the steps described in Remark 2. We give a detailed explanation of how Z, B,
k, d, and x0 for the corresponding model change after each step.
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M1. As the eliminated species are no longer participating in the equivalent network, we delete the
corresponding rows from Z. Subsequently, the vector x̃ ∈ Rm̃ of species’ concentrations is
defined by deleting the βth, β ∈ I, element of x. Similarly, we obtain the vector x̃0 ∈ Rm̃ of
initial concentrations of the equivalent network. The vector d̃(x̃) of the rational functions can
be derived from d(x) in the following way. For every β ∈ I, if the species Xβ is participating

in the substrate complex of jth reaction, then d̃j(x̃) = x
−Sβj
β dj(x), which ensures that the

reaction fluxes of the network obtained at this step still obey the Equation (6). For the network
(12), it is clear that the species X3 is participating in the substrate complex of the second
reaction. After rewriting the concentration function x3 in terms of concentrations of the other
species, we multiply d2 by x3. Thus, d̃2(x̃) = x3d2(x). Similarly, we have d̃3(x̃) = x5d3(x),
d̃4(x̃) = x6d4(x), and d̃5(x̃) = x8d5(x). We therefore write the reactions of the network (12) in
the following form.

X1 + X2 2X4

3X4 X7 (14)

5X7 X9 + X10

M2. After the elimination of species, the columns of Z corresponding to the complexes that share
species become multiples of each other. Consequently, in order to make these columns identical
to each other, we multiply each of them by the corresponding constant from (11). Likewise,
we divide each rate constant k j by the corresponding constant given in (11). In the case
of the network (12), the vector of rate constants of its corresponding equivalent network is
k̃ =

[
k1
15 , k−1

30 , k2
30 , k−2

10 , k3
10 , k−3

2

]
. We therefore rewrite the reactions (14) in the following form.

15X1 + 15X2 30X4

30X4 10X7

5X7 2X9 + 2X10

M3. We now delete the duplicate columns of Z and keep only one of them in order to find the
complex composition matrix Z̃ of the equivalent network. Suppose that Z̃ ∈ Rm̃×c̃, where m̃
and c̃ are the number of species and complexes in the equivalent model, respectively. It is
clear that, if n(I) = n1 and the number of duplicate columns is n2, then m̃ = m − n1 and
c̃ = c− n2 + 1.

Let the pth and qth complexes be a pair of identical complexes. We first replace the pthrow of
B with

B̃pj =

{
Bqj, if Bpj = 0 and Bqj 6= 0,

Bpj, otherwise,

and delete its qth row. We then repeat the same technique for all the pairs of identical complexes
to obtain the incidence matrix B̃ of the equivalent network. It is clear that B̃ ∈ Rc̃×r.
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The complex composition matrix Z̃ ∈ R6×4 and the incidence matrix B̃ ∈ R4×6 of the
equivalent network corresponding to the network (12) are

Z̃ =



15 0 0 0
15 0 0 0
0 30 0 0
0 0 10 0
0 0 0 2
0 0 0 2


, B̃ =


−1 1 0 0 0 0
1 −1 −1 1 0 0
0 0 1 −1 −1 1
0 0 0 0 1 −1

 .

Thus, the equivalent network corresponding to the network (12) becomes

15X1 + 15X2 30X4 10X7 2X9 + 2X10. (15)

Define K̃ := diag(k̃), where k̃ is the vector of rate constants of the equivalent network. Then,
the Laplacian matrix L̃(x̃) ∈ Rc̃×c̃ of the equivalent network is L̃(x̃) = B̃K̃D̃(x̃)∆̃>, where D̃(x̃) =

diag(d̃) and ∆̃ is the outgoing matrix of the equivalent network. The mathematical model of the
equivalent network is 

dx̃
dt

= −Z̃L̃(x̃)C̃(x̃),

x̃(0) = x̃0,
(16)

where C̃(x̃) = Exp(Z̃>Ln(x̃)).

Step 5: Independent subnetworks.

In some cases, the equivalent network may consist of independent subnetworks, which contain
sets of reactions that do not share any common species. In this situation, we determine all the
independent subnetworks of the equivalent network. First, we determine the linkage classes of the
equivalent network using its incidence matrix B̃. The index sets corresponding to the complexes of
the equivalent network are then used to determine the indices of the species participating in each
linkage class. More precisely, if Cj1 , Cj2 , · · · , Cjp are the complexes of the same linkage class L, then
the set of indices of L is IL =

⋃p
i=1 ICji

. It is clear that two linkage classes L1 and L2 are dependent, if
IL1 ∩ IL2 6= ∅. Mutually dependent linkage classes form an independent subnetwork of the equivalent
network.

LetNj, j = 1, · · · , l, be the independent subnetworks of a network having more than one reaction.
As they are independent, we can consider each of them as a separate network. Thus, we consider the
reduction of each of them separately. We note that in the case of the network (12), there is only one
subnetwork in the corresponding equivalent network.

Step 6: Selecting complexes for deletion.

In this step, we apply the reduction procedure of [5] to meaningfully delete certain complexes from
the equivalent network. The first step of this procedure is to determine the candidate (intermediate)
complexes for deletion. We note that the intermediate complexes are the ones that participate in more
than one reaction, with each reversible reaction considered as a single reaction. It is reasonable to
consider all the other complexes as important complexes. We consider the constituent species of the
important complexes as the important species. In [5], the candidate complexes for deletion have been
chosen manually. Here, we show how to determine such complexes in an automatic way. Let B̃out be
the incidence matrix of the equivalent network, with each reversible reaction considered as a single
reaction. B̃out can be found by deleting the columns of B̃ corresponding to the reverse reactions of
reversible reactions. The intermediate complexes can then be determined from B̃out by detecting the
rows that contain more than one nonzero element.



Symmetry 2020, 12, 1321 14 of 24

In the case of the network (15), we have

B̃out =


−1 0 0
1 −1 0
0 1 −1
0 0 1

 .

The candidate complexes for deletion from the linkage class (15) are 30X4 and 10X7. The important
species are X1, X2, X9, and X10, which are the constituent species of the important complexes 15X1 +

15X2 and 2X9 + 2X10.
Let Ji be the set of indices of the important species ofNi. As explained in [5], we rank the candidate

(intermediate) complexes according to the error integral Ei(Ti) defined in (9). Here, Ti = max
j∈Ji

τj is the

settling time of Ni. We delete from Ni the optimal combination of complexes, i.e., the combination
with the maximum value of Ei(Ti) that does not exceed the predefined threshold.

Step 7: Mathematical model of the reduced network.

Let Mi
del be the set of indices of complexes deleted fromNi, i = 1, · · · , l. Define Mdel =

⋃l
i=1 Mi

del.
In the final step, we show how to determine the mathematical model of the reduced network after
deleting the complexes with indices Mdel from the equivalent network. In order to obtain the complex
composition matrix Ẑ of the reduced network, we delete the columns of Z̃ corresponding to Mdel.
Define Mred = {1, · · · , c} \Mdel, which is the set of indices corresponding to the complexes remaining
in the reduced network. According to Proposition 1 in [5], the Laplacian matrix L̂(x̃) of the reduced
network is defined as the Schur complement of L̃(x̃) corresponding to Mred. The mathematical model
of the reduced network is then given by

dx̃
dt

= −ẐL̂(x̃)Ĉ(x̃),

x̃(0) = x̃0,
(17)

where Ĉ(x̃) = Exp
(

Ẑ>Ln(x̃)
)

.

5. Application to Real-Life Reaction Networks

In this section, we apply our automatic model reduction method to reduce two computational
models of biological processes that consist of several linkage classes, with common species shared
between at least two of them. These models have been retrieved from the BioModels database [10],
which is a repository of computational models of biological processes available online at https://
www.ebi.ac.uk/biomodels/. For both models considered throughout this section, the threshold value
of the error integral for stopping the iterative reduction procedure has been set to 0.15. In general,
this threshold can be chosen depending on the desired closeness of the reduced model to the original
model. Detailed explanations of the reduction procedure of these models are provided in Appendix A.

5.1. Neural Stem Cell Regulation

We consider a mathematical model of neural stem cell regulation (NSCR). The complex graph
corresponding to the model is given in the left-hand panel of Figure 1. For the corresponding detailed
mathematical model we refer to [23]. The concentrations of the important species participating in the
original model are represented in Figure 2.

We note that there is one linkage class with more than one reversible reaction. The remaining
linkage classes of the network contain only one reversible reaction. In this case, the method proposed
in [5] can be meaningfully applied to delete the intermediate complexes X7, X8, and X13. Further
reduction of the network using the same method would eliminate reactions from the network.

https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
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To overcome this shortcoming and to obtain a meaningful model reduction of the network, we apply
our new reduction technique.

Step 3 of our reduction procedure selects the species X5, X6, and X20 to be eliminated from
the mathematical model, which allows us to join three linkage classes into a single one. Detailed
explanation of the elimination procedure can be found in Appendix A.1. In particular, we use three
conservation laws to complete the aforementioned elimination of species. However, as a downside
of our elimination procedure, the obtained reduced model is valid only for trajectories for which the
three conserved quantities have fixed values as in (A2). For example, the first of these three conserved
quantities is the total concentration of the pool of Notch [24] and Notch transmembrane [25], and it is
reasonable to assume that in an experimental set-up this pool has a fixed concentration. The complex
graph corresponding to the equivalent network of NSCR is shown in the middle panel of Figure 1.

Figure 1. The left-hand panel is the complex graph corresponding to the original model of neural stem
cell regulation. The complex graph corresponding to the equivalent model obtained after eliminating
the species X5, X6, and X20 from the original model is given in the middle panel. Deletion of the
intermediate complexes X4, X8, X13, and X21 leads to a reduced network with the corresponding
complex graph represented in the right-hand panel. The difference between the original model and the
reduced model, as measured by the error integral, is 4.85%.

Finally, applying the procedure described in Step 6 to this equivalent network, we delete
the optimal combination of the intermediate complexes, which consists of X4, X8, X13, and X21.
The complex graph corresponding to the reduced network is given in the right-hand panel of Figure 1.
Even though 33.33% of the species have been deleted from the original model, the error integral is only
4.85%. The concentrations of the important species participating in the reduced model are represented
in Figure 2.

5.2. Hedgehog Signaling Pathway

Subsequently, we have used our new technique of model reduction to a very different
type of biochemical reaction network, namely, a model of hedgehog signaling pathway (HSP).
The corresponding detailed mathematical model can be found in [23].



Symmetry 2020, 12, 1321 16 of 24

Figure 2. Concentrations of the important species of neural stem cell regulation in the original model
and in the reduced model. The difference between these models, as measured by the error integral,
is 4.85%.

There are nine reversible and two irreversible reactions in the original network. The complex graph
corresponding to the original network is given in the left-hand panel of Figure 3. The concentrations
of the important species participating in the original model are represented in Figure 4. We observe
that it contains two linkage classes consisting of more than one reaction. The remaining six linkage
classes consist of only one reversible reaction. In this case, the reduction method proposed in [5]
can be meaningfully applied to delete four intermediate complexes, namely, X4, X15, X18, and X19.
Further reduction using the same procedure would lead to the deletion of reactions, which is not
desirable in the sense of preserving the original behavior. However, the use of our new approach results
in a meaningful reduction without causing a significant change in the original behavior. Detailed
explanation of the species elimination procedure is included in Appendix A.2.

Step 3 of our reduction procedure chooses the species X1, X11, and X12 to be eliminated from
the network, i.e., I = {1, 11, 12}. Similar to the model of NSCR, we use three conservation laws to
eliminate these species. Again, as a downside of our reduction procedure, our final reduced model
of HSP is valid only for trajectories for which the three conserved quantities have fixed values given
by (A6). For example, the first of these conserved quantities is the total concentration of the pool of
ADP (adenosine diphosphate) and ATP (adenosine triphosphate), and it is reasonable to assume that
in an experimental set-up this pool has a fixed concentration.The complex graph corresponding to the
equivalent network is shown in the middle panel of Figure 3.

Finally, the procedure described in Step 6 results in X4, X8, X13, and X18 to be the optimal
combination of the intermediate complexes for deletion, i.e., the maximal combination of complexes
with an error integral of at most 15%. Deletion of these complexes by the procedure of [5] leads to
the reduced network with the corresponding complex graph given in right-hand panel of Figure 3.
We remark that, even though 33.33% of the species have been eliminated from the model, the resulting
error integral is only 6.59%. The concentrations of the important species participating in the reduced
model are represented in Figure 4.
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Figure 3. The left-hand panel is the complex graph of the original model of hedgehog signaling pathway.
The complex graph corresponding to the equivalent model obtained after eliminating the species X1,
X11, and X12 from the original model is given in the middle panel. Deletion of the intermediate
complexes X4, X8, X13, and X18 leads to a reduced model with the corresponding complex graph
shown in the right-hand panel. The difference between the original model and the reduced model,
as measured by the error integral, is 6.59%.

Figure 4. Concentrations of the important species of hedgehog signaling pathway in the original model
and in the reduced model. The difference between these models, as measured by the error integral,
is 6.59%.

6. Conclusions and Discussion

In this paper, we have illustrated a new approach to the model reduction of CRNs, which extends
the method proposed in [5]. Our method is based on eliminating concentrations of certain species from
the mathematical model corresponding to the network using the conservation laws obtained from the
model. This elimination allows us to rewrite the complex graph of the network in a preferred form,
for which the model reduction method proposed in [5] becomes meaningfully applicable. Even though
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the procedure results in reducing the order of the corresponding mathematical model, new parameters
depending on the vector of initial concentrations are added to the model.

We have implemented an automated process for our model reduction method, which is divided
into seven steps. We created a MATLAB file corresponding to each step and all files are included in
a single MATLAB library. The information of a given CRN is provided by the user and subsequently
used to reduce the corresponding mathematical model in a fully automated manner. The error integral
defined in [5] is used to measure the difference between the behaviors of the original model and the
reduced model. An important tool in the definition of the error integral is the settling time of the
network, which was computed manually in [5]. We have shown how to automatically determine
the settling time of a given CRN using its steady state. We have also been able to determine the
intermediate complexes in a fully automated manner using the incidence matrix of the network.
The MATLAB library consisting of all the files corresponding to our step-wise reduction procedure is
provided as Supplementary Material.

We have successfully applied our model reduction method on two real-life examples: neural stem
cell regulation and the hedgehog signaling pathway. For each case, we have used our techniques to
enable the reduction method proposed in [5] to be applied to a significant extent. We have been able
to automatically join several linkage classes of the network by eliminating concentrations of certain
species from the corresponding mathematical model. Table 1 provides the percentage of deleted species
and the value of the corresponding error integral for each reaction network. The detailed explanation
of the reduction procedure corresponding to these models can be found in the Supplementary Material.

Table 1. The amount of deleted species and the value of the error integral (in%) corresponding to each
example after its model reduction using our method.

Model Deleted Species (%) Error Integral (%)

NSCR 33.33 4.85
HSP 33.33 6.59

The major tools in our automated reduction method are the linearly independent conservation
laws, which are used to eliminate the concentrations of species with index set I from the network.
The identification of the set I is straightforward. However, in some cases, not all the selected species
can be eliminated from the network because of the lack of suitable conservation laws, i.e, in the case
when the number of the linearly independent conservation laws is less than the number of elements in
I. In such cases, we select I in a way that the number of its elements is equal to the number of linearly
independent conservation laws of the network. This adjustment ensures that the species with index set
I can be eliminated from the network. Note that, even though this elimination rewrites the complex
graph of the network in a preferred form (i.e., increases the number of intermediate complexes in it),
new parameters (conserved quantities) are added in the corresponding mathematical model.

Although the procedure of elimination of species using conservation laws described in this
paper improves the extent of applicability of the model reduction method in [5], it is no longer valid
for all trajectories of the original model. As mentioned earlier, the reduced model is valid only for
trajectories with fixed values of these conserved quantities. This aspect is similar to the case of the
Michaelis–Menten approximation of enzyme kinetic networks which depends on a conserved quantity,
namely, the total enzyme concentration.

One of the main advantages of the model reduction procedure proposed in [5] is that it preserves
the governing laws of the CRN. For instance, if a CRN is governed by Michaelis–Menten kinetics,
then the reduced CRN by the approach in [5] will again be governed by Michaelis–Menten kinetics.
However, this is not the case for our automatic reduction method due to the rewriting procedure, as we
have explained in [8].
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In [5], the behaviors of the species’ concentrations participating in the reduced model are
compared with the ones participating in the original model using the error integral (9) defined over
a manually set timescale. In this paper, the same procedure has been adopted with the significant
modification that the time length of the trajectory is automatically determined for models with
unique steady state. We only consider CRNs that are asymptotically stable around a unique steady
state. The importance of asymptotically stability arises in determining the settling time automatically.
Note that for CRNs that are not asymptotically stable, the settling time cannot be automatically
determined. For instance, in the case of oscillatory networks, it is not clear what time frame should be
considered for comparing the dynamics therefore its automatic determination is not straightforward.
However, this does not mean that the application of our reduction procedure for such CRNs is not
possible. In the case of CRNs that are not asymptotically stable, the determination of the time-scale for
comparison of the dynamics of the reduced and the original CRNs can still be done manually based on
the user preference.

The error integral, as defined in [5], strictly depends on a particular trajectory. Considering an
ensemble of trajectories would seem a better choice for more robust reduction. However, in this
case it is not clear which subset of trajectories to choose from an infinite number of trajectories for
comparing the original model and the reduced models. Moreover, such a reduction requires a higher
computational effort, which is not desirable as we aim at using a model reduction method that is
computationally less intensive.

The main principle of our model reduction method is similar to the one of QSSA, which is
currently the state-of-the-art reduction technique for networks consisting of enzyme-catalyzed
reactions. Our method, as well as QSSA applied for deriving the Michaelis–Menten kinetics, make use
of combinations of conservation laws and the principle of complex balancing to reduce the number of
complexes from the corresponding complex graph. We use the conservation laws to join certain linkage
classes of a given network, which allows us to apply the procedure of [5] for complementary model
reduction. On the other hand, when applied for deriving the Michaelis–Menten kinetics, QSSA uses
the total enzyme (which is distributed between the enzyme and the intermediate enzyme complexes) in
terms of a conservation law to eliminate the concentrations of enzyme species from the corresponding
mathematical model.

Our approach to the model reduction is essentially QSSA applied to complexes rather than species.
It would seem as though the settling time of complexes would be another choice (rather than the error
integrals) for selecting the complexes to be deleted from the network. This could provide a more robust
ranking of candidate complexes to be deleted as such a ranking might be independent of the chosen
trajectory. However, even though the settling time can be used for ranking the candidate complexes
according to their speed of reaching steady state, it is not clear which subset of candidate complexes
should be considered ultimately for deletion because we still need a measure for quantifying the
difference between the reduced model and the original model.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-8994/12/8/1321/s1
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Abbreviations

The following abbreviations are used in this manuscript.

CRN biochemical reaction networks
HSP hedgehog signaling pathway
NSCR neural stem cell regulation
ODE ordinary differential equation
QSSA quasi-steady-state assumption
ADP adenosine diphosphate
ATP adenosine triphosphate

Appendix A. Detailed Explanation of the Reduction Procedure

We provide a detailed explanation of our automatic reduction procedure, which has been applied
to reduce the mathematical models of NSCR and HSP retrieved from the BioModels database [10].
The complete mathematical models can be found in [23].

Appendix A.1. Reduction of Neural Stem Cell Regulation

We consider a mathematical model of NSCR [23]. There are 21 species participating in the ten
reversible reactions of the network. The list of these reactions is given below.

R1 : X1 ←→ X4 + X5

R2 : X4 + X6 ←→ X7

R3 : X7 ←→ X8

R4 : X8 ←→ X13

R5 : X8 ←→ X21

R6 : X13 ←→ X2 + X12

R7 : X3 ←→ X20 + X21

R8 : X17 + X18 ←→ X19

R9 : X14 + X15 ←→ X16

R10 : X9 + X10 ←→ X11

The reaction rates with corresponding rate constants can be found in [23]. We note that there is
one linkage class with more than one reaction. This linkage class consists of the five reversible reactions
Rj, j = 2, · · · , 6, and contains three intermediate single-species complexes, X7, X8, and X13.

X2 + X12 ←→ X13 ←→ X8 ←→ X7 ←→ X4 + X6xy (A1)

X21

As there are three intermediate complexes, the model reduction method proposed in [5] can be
meaningfully applied to delete these species from the linkage class (A1). However, further reduction of
the model using the same method is not meaningful as explained in the main paper. We demonstrate
how to use our new approach of model reduction, which enables a complementary reduction in a
meaningful way.

Step 3 of our reduction procedure chooses the species X5, X6, and X20 to be eliminated from the
mathematical model using the following conservation laws.

x1 + x5 = 5,

x1 − x4 − x6 = 0, (A2)

x3 + x20 = 5.

Note that the conserved quantities, i.e., the constants given in the right hand side of the
Equation (A2), strictly depend on the vector of species’ initial concentrations, meaning that for
different values of initial concentrations’ we will have different values for these constants. After the
aforementioned elimination we can rewrite the reactionsR1,R2, andR7 in the following form.
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R1 : X1 ←→ X4 R2 : X4 ←→ X7 R7 : X3 ←→ X21

Similarly, we can rewrite the linkage class (A1) as

X2 + X12 ←→ X13 ←→ X8 ←→ X7 ←→ X4xy (A3)

X21

We therefore joinR1,R2,R7, and the linkage class (A3) into a single linkage class:

X2 + X12 ←→ X13 ←→X8←→ X7 ←→ X4 ←→ X1xy
X21 (A4)xy
X3

The equivalent network consists of four independent subnetworks, namely, R8, R9, R10,
and the linkage class (A4). We apply the reduction procedure of [5] to the linkage class (A4) to
eliminate the optimal combination of its intermediate complexes. We remark that the first three
independent subnetworks remain unchanged after reducing the linkage class (A4). There are five
intermediate complexes, namely, X4, X7, X8, X13, and X21, which are candidate complexes for deletion
using the method proposed in [5]. The iterative test described in Step 6 in the main paper selects
{X4, X8, X13, X21}, to be the optimal combination of intermediate complexes for deletion. Therefore,
the principle of complex balancing is used to delete these complexes from the linkage class (A4).
Even though seven species (33.33%) have been deleted from the original model, the error integral is
only 4.85%. From the structure of the Laplacian matrix L̂(x̃) (see Equation (15) of the main paper) we
derive the complex graph of the reduced linkage class:

X2 + X12 ←→ X7 ←→ X1

↖↘ ↙↗
X3

Table A1 provides a quantitative comparison of the original model of NSCR and the corresponding
reduced model. Comparison of concentrations of important species participating in the original model
and the reduced model is illustrated in Figure 4 of the main manuscript.

Table A1. Quantitative comparison of the original model and the reduced model of neural stem cell regulation.

Species Reactions

Original Model 21 10
Reduced Model 14 7

Appendix A.2. Reduction of Hedgehog Signaling Pathway

The second example considered for our model reduction procedure is a model of HSP. The model
contains nine reversible and two irreversible reactions. The list of these reactions is given below.

R1 : X1 + X8 ←→ X2 + X9

R2 : X8 ←→ X10

R3 : X7 ←→ X3 + X6

R4 : X13 ←→ X21

R5 : X20 ←→ X10 + X21

R6 : X5 + X14 ←→ X15



Symmetry 2020, 12, 1321 22 of 24

R7 : X15 ←→ X4

R8 : X18 −→ X4

R9 : X18 ←→ X12 + X13

R10 : X11 + X20 ←→ X19

R11 : X16 + X17 −→ X19

The reaction rates with the corresponding rate constants can be found in [23]. We observe that it
contains two linkage classes having more than one reaction. These linkage classes consist of reactions
Ri, j = 6, · · · , 9, andRj, j = 10, 11, respectively, as shown below.

X12 + X13 ←→ X18 −→ X4 ←→ X15 ←→ X5 + X14

X16 + X17 −→ X19 ←→ X11 + X20 (A5)

The remaining five linkage classes consist of only one reversible or irreversible reaction. Clearly,
in (A5) there are four intermediate complexes, namely, X4, X15, X18, and X19. In this case, the reduction
method proposed in [5] can be meaningfully applied to delete the optimal combination of these
complexes. Further reduction using the same procedure would lead to the deletion of reactions,
which is not desirable in the sense of preserving the original behavior. However, we show how to use
our new reduction technique for a meaningful complementary reduction without causing a significant
change in the original behavior.

Step 3 of our reduction procedure selects X1, X11, and X12 to be eliminated from the network
using the following conservation laws.

x1 + x2 = 2,

x11 + x16 + x19 = 3, (A6)

x12 + x4 + x5 + x15 + x18 = 4.5.

Note that, similar to the case of the NSCR model, the constants given in the right hand side of
the Equation (A6) strictly depend on the vector of species’ initial concentrations, meaning that for
different values of initial concentrations, we will have different values for these constants. After the
aforementioned elimination, we can rewrite the reactionsR1,R9, andR10 in the following form.

R1 : X8 ←→ X2 + X9 R9 : X18 ←→ X13 R10 : X20 ←→ X19

Similarly, we rewrite the linkage classes (A5) in the following form.

X13 ←→ X18 −→ X4 ←→ X15 ←→ X5 + X14

X16 + X17 −→ X19 ←→ X20 (A7)

We therefore join the reactions R1 and R2; reaction R4 and the first linkage class of (A7);
and reactionR5 and the second linkage class of (A7). As a result, we obtain three linkage classes with
more than one reaction:

X2 + X9 ←→ X8 ←→ X10

X21 ←→ X13 ←→ X18 −→ X4 ←→ X15 ←→ X5 + X14 (A8)

X16 + X17 −→ X19 ←→ X20 ←→ X10 + X21

The equivalent network contains six intermediate complexes X4, X8, X15, X18, X19, and X20,
which form the set of candidate complexes for deletion from (A8) by the approach in [5]. Finally,
the procedure described in Step 6 in the main paper selects {X4, X18, X8, X13} to be the optimal
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combination of the intermediate complexes for deletion, i.e., the maximal combination of complexes
with an error integral of at most 15%. The reduced linkage classes are

X2 + X9 ←→ X10

X21 −→ X15 ←→ X5 + X14 (A9)

X16 + X17 −→ X19 ←→ X20 ←→ X10 + X21

Even though 33.33% of the species have been eliminated from the network, the resulting error
integral is only 6.59%. Table A2 provides a quantitative comparison of the original model of HSP and
the corresponding reduced model. A comparison of concentrations of important species participating
in the original model and the reduced model is illustrated in Figure 4 of the main manuscript.

Table A2. Quantitative comparison of the original model and the reduced model of hedgehog signaling pathway.

Species Reactions

Original Model 21 11
Reduced Model 14 7
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