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Abstract: The VIP-2 collaboration runs an apparatus in the Gran Sasso underground laboratories
of the Italian Institute for Nuclear Physics (INFN) designed to search for anomalous X-rays from
electron-atom interactions due to violations of the fundamental antisymmetry of multi-electron
wavefunctions. The experiment implements the scheme first proposed by Ramberg and Snow,
where a current source injects electrons into a metal strip (the experiment’s target). In this paper
we describe the structure of a Monte Carlo program to simulate a new upgrade of the experiment,
where the anomalous X-ray emission is modulated by an arbitrary time-varying input current.
A novel feature of the simulation algorithm is that the Monte Carlo program is based on a mixture
of analytical and numerical methods. We report preliminary, exploratory results on the expected
detection rate for different modulations of the injected current; these results are a starting point
on the way to optimize the modulation scheme and indicate a large potential improvement of the
detection sensitivity.

Keywords: pauli exclusion principle; X-rays; diffusion processes; fundamental symmetries

1. Introduction

The Pauli Exclusion Principle is one of the great guiding principles of modern physics,
and it helps explain a wide variety of phenomena, from the stability of ordinary matter [1]
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to the existence of neutron stars [2]. As is it was clearly shown by Pauli [3], the principle
lies at the crossroads of our most important theories, relativity and quantum physics, it is a
very robust feature of relativistic Quantum Field Theory [4], and therefore it is important
to test its validity [5].

The VIP-2 experiment [6,7] (a followup of the VIP experiment [8]) tests the validity
of the Pauli Exclusion Principle (PEP) for electrons—and therefore the fundamental an-
tisymmetry of the multi-electron wavefunctions—with the same conceptual setup first
introduced by Ramberg and Snow in 1990 [9]. The Ramberg and Snow setup derives from
the scheme of Goldhaber and Scharff-Goldhaber [10] and on its successive interpretation
by Reines and Sobel [11]. In that experiment, the injected electrons came from a β-ray
source that was placed in a vacuum and well separated from the target. The experiment
was meant to demonstrate that the particles from the β-ray source were indeed electrons: if
they had been even slightly different they would have been captured by an atom in the
target and would have produced an electromagnetic cascade as they moved to the atomic
ground level already occupied by two electrons (a practical example of such electromag-
netic cascades is provided by the process of muon capture in hydrogen, see, e.g., [12] for
a review). Reines and Sobel noticed that if we assume from the start that the β-rays are
electrons, the Goldhaber and Scharff–Goldhaber result (the identity between β-rays and
electrons) amounts to a test of PEP—the hypothetical electromagnetic cascade can only
be produced by electrons that violate PEP and have the wrong symmetry with respect to
the atomic electrons so that the resulting final ground state is an anomalous S-state with
three electrons. The final electron transitions in the electromagnetic cascade emit X-rays
with energies that differ from those of the characteristic X-rays of the target material and
provide a unique signature of the non-Paulian capture process (see [13] for a recent and
precise theoretical determination of the energies of the characteristic X-rays of Cu).

Ramberg and Snow modified the original setup of Goldhaber and Scharff–Goldhaber
by using an electric current source instead of the β-ray source to inject “new” electrons
into a copper strip (the “target” of the experiment), and bring them into the vicinity of the
bound atomic electrons in the strip. They conjectured that if any of the injected electrons
that drifted in the metal approached an atom where another electron had a “wrong” pairing
with it, it could undergo radiative capture and emit an X-ray, finally settling into the atomic
ground state.

By replacing the β-ray source with the current source, Ramberg and Snow obtained
a huge gain in the number of injected electrons. However, the model of the experiment
became more complicated because it has to account for electron transport, and Ramberg
and Snow chose the simplest approximation. They assumed that each conduction electron
moves along a straight line from the entrance to the exit of the copper strip, and they
computed the total number of scatterings from the elementary theory of conduction in
metals. However, in a solid, electrons do not move along a straight line, instead, each
one of them follows a complex path determined both by random scattering events and
by the drift due to the superimposed electric field. Moreover, the conduction electrons
mostly scatter off phonons and irregularities (impurities and dislocations) of the crystal
lattice. We have already discussed this approximation and its impact on the analysis of
the experimental data in [14], where we have also shown how taking the classical random
walk as the basic statistical model improves the physical description of the capture process
and leads to more stringent bounds on the magnitude of any possible violation. Here, we
take one further step and show how to estimate the expected rate of anomalous X-rays in a
dynamical context, where the injected electron current is modulated in time.

In this case, it is not possible to obtain analytical estimates of the expected rate of
anomalous X-rays, because of the nonlinear nature of electron diffusion inside the target,
and we turn to Monte Carlo simulation. In this article, we describe the implementation of a
semi-analytical Monte Carlo scheme, where the injected electrons that belong to anomalous
pairs and their capture are simulated on an individual basis, as in standard Monte Carlo
simulations, while their diffusion and transport across the target are treated analytically.



Symmetry 2021, 13, 6 3 of 14

In this way, we achieve a huge computational gain over purely numerical brute-force
alternatives where one would simulate the random walk of each electron in full detail.
Finally, we can efficiently simulate the signal shape of X-ray emission for any current
modulation scheme and compute the corresponding frequency spectra.

We shall use the simulation work reported here to optimize future searches of PEP
violations with the VIP2 experiment.

2. Anomalous Electron Pairs

In their 1990 paper, Ramberg and Snow noted at the very beginning that: “...electrons
that enter from outside the Cu strip can be antisymmetric with respect to all the electrons
in the cable and transformer of the external circuit but still be of mixed symmetry with
respect to the electrons in the Cu strip, provided that a mixed symmetry state is allowed at
all. This source of electrons is equivalent to any other new electron source such as from a
battery. Any initial conduction electrons in the Cu strip that were in a mixed symmetry
state with respect to the other Cu electrons would have already cascaded down to the 1S
state and hence would be irrelevant to this experiment.”

Although no local, relativistic Quantum Field Theory can describe a violation of
PEP [15,16], we still need a theoretical frame for the interpretation of the experiment, and in
particular of the nature of the electrons in the mixed symmetry state. To this end, we turn
to the proposal of Rahal and Campa [17], who described a framework of PEP violation in
non-relativistic quantum mechanics where the symmetry of global electronic wavefunction
is described by a Young tableau as in Figure 1. This fits well with the Ramberg and Snow
experiment, most of the electrons are antisymmetric with respect to the others, while a
few (a fraction β2/2) have symmetric wavefunctions with respect to particle exchange. In
other words, there are anomalous electron pairs that have the wrong symmetry pairing,
that cannot be changed by any physical process with a Hamiltonian, which is symmetric
with respect to particle exchange (see also [18] for a more detailed discussion in the context
of the VIP experiment).

n rows

Figure 1. Young tableau for an electron system that violates the Pauli Exclusion Principle. The
number n of wrong-symmetry electrons is very small with respect to the total number N. (adapted
from Figure 2 in [17]).



Symmetry 2021, 13, 6 4 of 14

3. Structure of the Semi-Analytical Monte Carlo Simulation of the X-ray Signal

We have already discussed how the signal of VIP and VIP2 develops in time for a
fixed current in [14]. Here, we extend our treatment to time-varying currents with the aim
of using current modulation as a tool to improve the accuracy of our measurements. From
the calculations in [14], we know that the nonlinear nature of the problem leads to formulas
that cannot be treated analytically to extract the final X-ray signal, and we must turn to a
Monte Carlo simulation to find the average expected X-ray signal.

A simulation of the X-ray signal must take into account different sources of random-
ness: (1) The (small) number of anomalous conduction electrons (paired to corresponding
atomic electrons inside the VIP2 target, from now on simply called anomalous electrons);
(2) the arrival times of the anomalous conduction electrons; (3) the random motion of the
anomalous conduction electrons in the whole conductor (both within and without the
VIP2 target) that takes into account the time-dependent drift due to current modulation; (4)
the spatial distribution of the anomalous atomic electrons. Next, we discuss each aspect
in detail.

Since our aim is the estimate of the average signal, we adopt techniques that minimize
the fluctuations of the Monte Carlo runs and boost computational efficiency. Since the total
number of anomalous electrons only affects the amplitude of the signal, because of the
linearity of the diffusion equation, we can fix this number in a given simulation run—i.e.,
we take a fixed fraction of all the electrons in the electric wire and in the block of metal that
acts as “electron reservoir” (see Figure 2)—and thereby reduce the variability of the result.
Moreover, this assumption allows to perform simulations with large numbers of electrons,
and again it helps to reduce the relative fluctuation of the final result. We remark here
that while in normal conditions, such as in the study of conventional solid-state problems,
all the electrons in the material contribute to the physical effect being studied, and a
simulation that takes into account each individual electron would be utterly unfeasible,
in the present case we rely on the stringent existing bounds on the violation of the Pauli
Exclusion Principle, so that we need to follow only a tiny fraction of all the electrons to
simulate a realistic signal. Even with a bound as large as β2/2 . 10−28, close to that given
in [8] for copper, we find that the number of violating electron pairs in one mole of copper
is as small as∼ 10−4. Thus, taking a larger number of anomalous electrons, say of the order
of 102 or 103 in the conducting wire loop, reservoir, and target, we obtain results that are
suggestive of the expected signal fluctuations with reduced variability (which can still be
scaled to lower numbers of anomalous electrons as we expect the amplitude of fluctuations
to be proportional to the square root of the number of electrons).

The arrival times of the anomalous electrons correspond to different positions along
the conductive leads that take them to the target. In this case, it is not natural to assume
a priori that the spatial distribution is uniform and that the electrons are equally spaced
because the subsequent random motion produces a spatial shift from the starting position
that is a nonlinear function of time. Therefore, we take a uniform distribution of the
anomalous electrons along the electric circuit and we let this initial configuration evolve in
time while each anomalous electron performs a classical random walk in the circuit.
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vd

vd

Figure 2. Circuit scheme for the VIP2 experiment. Upper panel: the motion of the conduction
electrons is driven by a current source that produces a drift speed vd in the VIP2 target. The electrons
flow from a large copper reservoir into the target. The reservoir is designed to provide a sufficient
flow of “new” electrons so that the fraction of anomalous electrons (those with the wrong symmetry
pairing with electrons in the target) is not readily exhausted by running the same electrons again and
again through the target. Lower panel: for simulation purposes, the large bulk reservoir is replaced
by a very long wire, and the drift speed is uniform throughout the circuit.

With a driving voltage, each conduction electron performs a biased random walk
and—if simulated exactly—this random walk would also introduce an insurmountable
difficulty because of the huge number of steps that are taken in the target [14]. However,
as in [14], we can dispense with the full complexity of the process, and use the analytical
formulas for the classical random walk instead. This is the most important variance-
reduction choice in the simulation program—as the equations provide exact estimates of
the average probability density of the anomalous electrons at any point and any time inside
the VIP2 target. We also use the independence of motion along each direction, so that we
neglect the transverse components of the random walk and take only the longitudinal
component, with the corresponding one-dimensional estimate of the diffusion constant
(one-third of the 3D constant, as only the longitudinal projection of motion matters in our
formulation). Here we note that it is possible to take a 1D external circuit and ignore the
transverse dimensions because electrons behave like an incompressible fluid, maintaining
a constant current in the drift direction: an increase in the conductor section also means
a corresponding decrease in drift velocity to maintain the current constant through each
section of the conductor. We remark that this is the analytic step that makes the whole
simulation semi-analytic.

The equations of the analytic part are based on the 1D diffusion-transport model for
the classical random walk [19]. It is well-known that after injection a charge drifts and
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scatters (it undergoes transport and diffusion) so that the probability density of finding it
at position x = x(t) at time t—even the starting position x(0) = x0—is

p(x|t) = 1√
2πDt

exp
[
− (x− x0 − xS(t))2

2Dt

]
, (1)

which is the Green’s function of the diffusion equation for non-interacting classical random
walks, see, for example, [20], where

xS(t) =
∫ t

0
vd(t)dt, (2)

is the total shift from the initial position of the random walker (the anomalous conduction
electron), and where

vd(t) =
I(t)

nezw
(3)

is the time-dependent drift speed, which is related to the time-dependent current I(t) and
to the target properties (electron number density n; target thickness z; target width w). This
means that the probability of actually finding one such electron in the target at time t is
given by the integral

P(t) =
∫ L

0

1√
2πDt

exp
(
− (x− x0 − xS(t))2

2Dt

)
dx (4)

=
1
2

{
erf
[

L− x0 − xS(t)√
2Dt

]
− erf

[
−x0 − xS(t)√

2Dt

]}
. (5)

Then, the probability that an anomalous electron is in the target at time t and is
captured during a time span of duration ∆t is

PX(t, ∆t) =
∫ t+∆t

t
P(t′)

e−(t
′−t)/τC

τC
dt′ ≈ P(t)

(
1− e−∆t/τC

)
≈ P(t)

∆t
τC

(6)

where τC is the mean capture time (as defined in [18]), and where the approximation holds
as long as ∆t� τD, where τD is the shortest drift time across the target computed from the
maximum current amplitude in the modulation scheme. The capture probability PX(t, ∆t)
is also the probability of emitting an X-ray following the capture process.

The electrons perform their random walks along the circuit shown in Figure 2; the
upper panel of Figure 2 shows the circuit that includes a large “electron reservoir”—a block
of metal that is necessary to provide a sufficient supply of anomalous electrons—while the
lower panel shows the circuit that is simulated by the program and where the drift speed
is assumed to be uniform.

As shown in [14], close encounters between an anomalous conduction electron and
the corresponding anomalous atomic electron almost inevitably lead to the formation of
an anomalous pair in the target, with the emission of the corresponding tell-tale X-ray.
However, it takes time before an anomalous electron meets its match, and this is taken into
account by a proper absorption rate that translates into an absorption probability per time
step, as discussed below.

The structure of the simulation program is straightforward, and the main steps of
the C++ code are outlined in Algorithm 1. The generation of random numbers and the
evaluation of special functions is handled by calls to the GNU Scientific Library [21].
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Algorithm 1: Structure of the semi-analytical Monte Carlo for VIP2.

1 initialization;
2 for initial_configuration_number ≤ max_configuration do
3 generate initial electron configuration;
4 for current_time ≤ max_simulation_time do
5 compute drift of electron position due to current;
6 for nel ≤ max_electron_number do
7 if nel not yet captured then
8 compute capture probability from analytical formula;
9 if uniform_random_number < capture_probability then

10 electron is captured;
11 X-ray is emitted;
12 end
13 end
14 end
15 end
16 store results for current electron configuration;
17 end
18 cleanup arrays and random number generator;

3.1. Modulation Schemes

Possible modulation schemes include the usual rectangular, triangular, sine, and
sawtooth waves, and the numerical results of the Monte Carlo simulation can be used to
select the best scheme to detect a possible violation of the Pauli principle.

To evaluate the signal-to-noise ratio of the harmonics in the frequency spectra we
assume that the background noise is Gaussian. This assumption is reasonable, because
electronics contribute to Gaussian noise, and this adds to the statistical Poisson noise,
which can be regarded as Gaussian as well to a very good approximation level. In this
scheme, we detect a violation when we find that there is a statistically significant spectral
peak that corresponds to a harmonic of the current modulation frequency.

With the assumption of Gaussian noise we can use a well-known result in the theory of
signals to evaluate the statistical significance of a violation [22], namely, that the probability
density function (pdf) p(Sk) of the periodogram Sk = |Fk|2/N2, where Fk is the discrete
Fourier transform of the N samples xn taken at time tn = n× ∆t:

Fk =
N−1

∑
n=0

xne−2πnk/N ,

is the exponential pdf

p(Sk) =
e−Sk/(σ2/N)

σ2/N
, (7)

(here σ2 is the background noise variance). It is important to note that the mean value is
〈Sk〉 = σ2/N and that the standard deviation of Sk is σ2/N, i.e., the standard deviation
equals the mean value. Thus, a measurement of the mean value automatically yields also
an estimate of the spectral standard deviation, which can be used to evaluate the statistical
significance of a spectral peak.

4. Discussion

In this section we report preliminary, exploratory results from the simulation runs
with the set of parameters listed in Appendix A. As explained above, the program includes
a loop to average over the different initial configurations, which is iterated Nrepeats times,
but in addition to this, there is another parameter—nrepeat—that acts as if the same initial
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configuration were run over and over again. The reason for introducing this additional
option is that in exploratory runs there may not be enough X-ray events to allow an in-
depth analysis of the spectral features of the X-ray signal. Taking a large value of nrepeat
corresponds to assuming an unrealistically large data-acquisition time, but it provides a
clear view of the signal shape and of the resulting frequency spectra.

Figure 3 shows the time development of the sum of many (105) X-ray signals over
a data-taking time of 10 days, obtained with Nrepeats = 10 (10 different initial con-
figurations) and nrepeat = 104 (each configuration is used 10,000 times as the initial
configuration), for different initial conditions and modulation types. In these simulations,
we take T0 = 86,400 (a full current modulation period lasts 86,400 s, i.e., one day), so that
each plot displays a total of 10 full current modulation periods (i.e., 10 days). The resulting
total data-taking time of 106 days is clearly impossible to achieve with a single target like
the one simulated here; however, this points to a possible, very ambitious variant of the
experiment, where the single target—with its associated detector—is replicated many times
to produce summed signals such as those in Figure 3—with 10,000 replicas one could
obtain the same total data-taking time in just 100 days.

The sine wave current modulation is shown in the bottom panel of Figure 3, while
the other two panels show a square wave modulation with different initial positions
(randomly distributed and equidistributed anomalous electrons; the equidistributed case is
not realistic but it has been included to display, by contrast, the effect of randomness in the
initial distribution of the anomalous electrons). The square wave plots are less symmetrical
than the one with the sine wave modulation and show a hint of a right tail after each peak.
This is confirmed by the close-ups shown in Figure 4. This tail is the remnant signal from
the anomalous electrons pushed into the target by the previous current-on cycle.

As discussed in the previous section, these signals are Fourier-analyzed and the result-
ing spectra are used to detect the physical signal and establish its statistical significance.
Figure 5 shows the spectra obtained with the signals shown in Figure 3. We have already
remarked that the time signals are somewhat distorted with respect to the driving current;
therefore, it is not unexpected to find that the sine wave modulation, in addition to the
expected first harmonic, displays peaks at the positions of the second and third harmonics
(the other harmonics are drowned in the background noise). The square wave modulation
is known to have only odd harmonics, and they are indeed well visible in both panels that
refer to the square wave modulation. The center panel–which refers to the initially equidis-
tributed anomalous electrons—has a slightly improved visibility for the odd harmonics. In
the case of the square wave modulation, the distortion produced by the remnant signal in
the current-off times shows up as small peaks at the even harmonics.

According to the discussion in Section 3.1, the mean background noise level also sets
the significance of the peaks of the modulation harmonics. Consider for instance the top
panel of Figure 5: in that case, the mean level is about 1.3× 10−9 Hz−1, and this is also
the standard deviation of the background noise. Then, from the figure we see that the 7th
harmonic is about five standard deviations larger than the noise background and that all
the odd harmonics, up to the 7th, plus the 2nd harmonic, could be used to detect a violation
with better than 5σ significance (note that this may be optimistic—here we consider only
the noise produced by the fluctuations of the very process that we wish to observe—we do
not expect to find much electronic noise at the modulation frequency, and this is further
decreased by averaging over many data-taking periods).
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Figure 3. Signals obtained with Nrepeats = 10, nrepeat = 10,000, and T0 = 86,400, for different
initial conditions and modulation types. All panels show the X-ray counts in 100 s time bins vs. time.
Top panel: randomly distributed electrons in the initial configuration; current is modulated with a
square wave between a maximum value of 180 A and a minimum of 0 A. Center panel: electrons
are initially equidistributed (fixed 1 m spacing), although the position of the first electron is random;
current is modulated with a square wave between a maximum value of 180 A and a minimum of 0 A.
Bottom panel: randomly distributed electrons in the initial configuration; the current is modulated
with a sine wave between a maximum value of 180 A and a minimum of 0 A.
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Figure 4. Zoom on the initial part of the signals shown in Figure 3. All panels show the X-ray counts
in 100 s time bins vs. time. Top panel: randomly distributed electrons in the initial configuration;
current is modulated with a square wave between a maximum value of 180 A and a minimum of
0 A. Center panel: electrons are initially equidistributed (fixed 1 m spacing), although the position
of the first electron is random; the current is modulated with a square wave between a maximum
value of 180 A and a minimum of 0 A. Bottom panel: randomly distributed electrons in the initial
configuration; the current is modulated with a sine wave between a maximum value of 180 A and a
minimum of 0 A.
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Figure 5. Power spectral densities (PSD, or periodograms) obtained from the Fourier analysis of the
signals (X-ray counts) shown in Figure 3. Top panel: randomly distributed electrons in the initial
configuration; current is modulated with a square wave between a maximum value of 180 A and a
minimum of 0 A. Center panel: electrons are initially equidistributed (fixed 1 m spacing), although
the position of the first electron is random; the current is modulated with a square wave between
a maximum value of 180 A and a minimum of 0 A. Bottom panel: randomly distributed electrons
in the initial configuration; the current is modulated with a sine wave between a maximum value
of 180 A and a minimum of 0 A. The red arrows show the expected positions of the most relevant
harmonics of the fundamental frequency (1.1574× 10−5 Hz).
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5. Conclusions

We have seen that the modulation method outlined in this paper solves some of the
problems of the original analysis method of Ramberg and Snow. Here, we also remark that
it allows overcoming yet another problem in the Ramberg and Snow experimental scheme,
where one must define a Region of Interest (ROI) in the X-ray energy spectrum. This ROI
critically depends on our estimate of the energy of the anomalous X-rays, and therefore on
a deep theoretical understanding of the nature of a violation of PEP. In the present scheme,
there is no need to be precise, since only the anomalous X-rays are modulated at the same
frequency as the current, and therefore one can widen the ROI to be much more inclusive,
and without critical hypotheses about the exact emission mechanism of the anomalous
X-rays.

Finally, we note that—as stressed above—the results obtained in this paper must be
viewed as a first exploratory glimpse into a landscape of possibilities. Several parameters
must be tuned to find the most efficient way of modulating the current, and this shall be
the goal of our future work, with the perspective of a large improvement in the accuracy of
the bound on PEP violation.
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Appendix A. Parameter List

The parameters are listed in homogenous groups, as they appear in the C++ computer
code. In the current version of the simulation program all parameters are hard-coded
(and the code must be recompiled at each parameter change) and they are defined as
nonmutable const types. Apart from modtype and sdtype, which define the modulation
type, all parameters are fixed in the runs reported in this paper.

// 1. physical constants
const double kBT = 1.38e-23 * 300.; // J
const double eC = 1.602e-19; // C
const double mc2 = 511e3; // electron mass, keV
const double me = 9.109e-31; // electron mass, kg
const double c = 3e8; // speed of light, m/s
const double h = 6.626e-34; // Planck’s constant
const double NA = 6.022e23; // Avogadro’s constant
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// 2. material constants (Cu)
const double density = 8.96e3; // density, kg/m**3
const double A = 63.546; // atomic weight
const double rho = 16.78e-9; // resistivity, Ohm*m
const double sigma = 1/rho; // conductivity *)
const double eF = 7.00; // Fermi energy, eV
const double n = 6.846e27 * (2 *pow(eF,1.5)/3); // electron density at 0K,m**-3
const double Dc = sigma*kBT/(n* eC*eC); // Diffusion coefficient
const double vF = 0.75*c*sqrt(2*eF/mc2); // Fermi velocity
// other derived constants
const double mfp = me*vF*sigma/(n*eC*eC);
const double tau = mfp/vF;
const double lambdae = h/(me*vF); // electron wavelength
const double mfpce = 1/(n*M_PI*(lambdae/2)*(lambdae/2) );
const double taue = mfpce/vF; // mean time between close encounters

// 3. experimental constants (VIP2, new target)
const double l = 0.071; // m
const double w = 0.03; // m
const double z = 5e-5; // m
const double V = l*w*z; // target volume
const double M = density*V; // target mass
const double Natoms = 1000*NA*M/A; // atoms in the target
const double taue = mfpce/vF; // mean time between close encounters

// 4. current modulation
const int modtype = 2; // modulation type (0 = constant; 1 = sine wave; 2 = square wave)
const double ItotMax = 180.; // max current (A)
const double ItotMin = 0.; // min current (A)
const double vdMax = ItotMax/( n*eC*z*w); // max vd (m/s)
const double T0 = 86400.; // modulation period (s)

// 5. MC setup
const int Nrepeats = 10; // number of iterations of main loop
const double tmax = 10.*T0; // max observation time (s)
const int nrepeat = 10000; // number of repetitions with exactly the same initial conditions
const int sdtype = 1; // initial spatial distribution (1=equidistributed; 2=random uniform)
const double len = vdMax*tmax; // max length associated with drift (m)
const double TraversalTime = l/vdMax; // shortest traversal time
const double dtT = TraversalTime; // "synonim" for TraversalTime
const double dt = 1.; // timestep
const double DecayFactor = nrepeat*(1 - exp(-dt/Ntau));
const int ntsteps = floor(tmax/dt); // number of timesteps

const double xstart = -len;
const double xstop = -0.010;
const double Ltot = xstop - xstart; // total depth of electron reservoir
const double dxe = 1; // anomalous electrons are evenly spaced 1 m apart
const int Nelettr = floor(Ltot/dxe);

const double Dcc = Dc/3.; // diffusion coefficient in the longitudinal direction only
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