
symmetryS S

Article

A Decomposition Method for a Fractional-Order
Multi-Dimensional Telegraph Equation via the
Elzaki Transform

Nehad Ali Shah 1,2,* , Ioannis Dassios 3 and Jae Dong Chung 4

����������
�������

Citation: Ali Shah, N.; Dassios, I.; Dong

Chung, J. A Decomposition Method

for a Fractional-Order Multi-Dimensional

Telegraph Equation via the Elzaki Trans-

form. Symmetry 2021, 13, 8. https://

dx.doi.org/10.3390/sym13010008

Received: 7 December 2020

Accepted: 14 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: c© 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 58307, Vietnam
2 Faculty of Mathematics & Statistics, Ton Duc Thang University, Ho Chi Minh City 58307, Vietnam
3 School of Electrical and Electronic Engineering, University College Dublin, D04 Dublin, Ireland;

ioannis.dassios@ucd.ie
4 Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea; jdchung@sejong.ac.kr
* Correspondence: nehad.ali.shah@tdtu.edu.vn

Abstract: In this article, the Elzaki decomposition method is used to evaluate the solution of fractional-
order telegraph equations. The approximate analytical solution is obtained within the Caputo
derivative operator. The examples are provided as a solution to illustrate the feasibility of the
proposed methodology. The result of the proposed method and the exact solution is shown and
analyzed with figures help. The analytical strategy generates the series form solution, with less
computational work and a fast convergence rate to the exact solutions. The obtained results have
shown a useful and straightforward procedure to analyze the problems in related areas of science
and technology.

Keywords: adomian decomposition method; Elzaki transformation; telegraph equations; Caputo op-
erator

1. Introduction

Fractional differential equations (FDEs) have appeared as a new branch of applied
mathematics and have been utilized in several mathematical systems in applied science.
In fact, FDEs are an alternative type to non-linear equations. Various forms play an
essential role and techniques, not only in mathematics but also in mechanics, process
control, complex schemes and technology, to produce mathematical modelling of several
natural processes. These calculations, of course, need to be overcome. A number of
experiments on fractional and FDEs involving various operators, such as Erdelyi-Kober,
Riemann-Liouville, Caputo, Weyl Riesz and Grunwald-Letnikov operators, have emerged
over the past three centuries with implementations in other areas [1–5].

The communication process plays a critical role in the global community in this mod-
ern world. High-frequency communication technologies continue to profit from important
industrial attention, triggered by a host of microwave communication and radio frequency
schemes. Certainly, all transmission media have a signal loss. Signal losses need to be
determined to the transmission media. Telegraph equations are used for electrical signal
propagation in the signal analysis, wave propagation, transmission line cable, random walk,
and so forth. Heaviside has created a transmission line. This transmission can be classified
into two categories, unguided and guided. In the guided medium, the signal is transmitted via
the transmission system or copper wire. These guided media convey the higher frequencies
current and voltage waves. While in unguided media, electromagnetic fields carry the signal
over part or all communication channels through microwave communication and radiofre-
quency systems. Such electromagnetic waves are broadcast and processed by the antenna.
Specifically, cable transmission mediums are investigated in controlled transmission media
to resolve effective telegraph transmission. A link transmission medium can be delegated a
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guided transmission medium and speaks to a physical framework that legitimately prolifer-
ates the data between at least two areas. To improve the controlled communications system,
it is necessary to calculate or predict the power and signal losses in the system, as all systems
have these losses. Different analytical and numerical methods have been implemented to
solve time-fractional telegraph equations, such as the Homotopy perturbation transform
technique [6], the q-Homotopy analysis transform technique [7], the Adomian decomposition
technique [8], the Reduced differential transform technique [9], the Reproducing Kernel tech-
nique [10], the Variational iteration technique [11], Haar wavelet [12] and the Sinc-collocation
technique [13].

In this article, we implemented EDM to solve the time-fractional telegraph equations.

(1) The one-dimensional fractional-order telegraph equation is defined by

∂2δµ

∂T1
2δ
1

+ 2α
∂δµ

∂T1
δ
+ β2µ =

∂2ρµ

∂X1
2ρ

+ g(X1, T1), 0 < δ, ρ ≤ 1,

with boundary and initial conditions

µ(X1, 0) = ϕ1(X1), µT1(X1, 0) = ϕ2(X1)

µ(0, T1) = ϕ1(T1), µX1(0, T1) = ϕ2(T1).

(2) The fractional-order two-dimensional telegraph equation is given as

∂2δµ

∂T1
2δ

+ 2α
∂δµ

∂T1
δ
+ β2µ =

∂2µ

∂X1
2 +

∂2µ

∂Y1
2 + g(X1,Y1, T1), 0 < δ ≤ 1, ρ = 1,

with boundary and initial conditions

µ(X1,Y1, 0) = ψ1(X1,Y1), µT1(X1,Y1, 0) = ψ2(X1,Y1).

(3) The fractional-order three-dimensional telegraph equation is defined by

∂2δµ

∂T1
2δ

+ 2α
∂δµ

∂T1
δ
+ β2µ =

∂2µ

∂X1
2 +

∂2µ

∂Y1
2 +

∂2µ

∂Z1
2 + g(X1,Y1,Z1, T1), 0 < δ ≤ 1, ρ = 1,

with boundary and initial conditions

µ(X1,Y1,Z1, 0) = κ1(X1,Y1,Z1), µT1(X1,Y1,Z1, 0) = κ2(X1,Y1,Z1).

Elzaki decomposition method (EDM) is the mixture of Elzaki transform and Adomian
decomposition technique. EDM is one of the straightforward and effective methods to
solve linear and nonlinear fractional partial differential equations. It is observed that the
proposed technique requires no pre-defined declaration size like RK4. EDM requires less
number of parameters, no discretization and linearization as compare to other analytical
methods. Elzaki transformation (ET) is a recent integral transform implemented in 2010 by
Tarig Elzaki. ET is a modified transformation of Laplace and Sumudu transformations. It is
worth noting that there are absolute differential equations with variable coefficients that
can not be achieved by Laplace and Sumudu transformations but can be easily handled
with the use of ET [14–16]. Many researchers have solved different equations with the help
of ET, such as Navier-Stokes equations [17], heat-like equations [18], hyperbolic equation
and Fisher’s equation [19].

In this article, the EDM is applied to solve time-fractional telegraph equations. The
EDM solution are determined for a particular model of fractional-order telegraph equations.
The higher efficiency and accuracy of EDM is observed, using graphs with compare to
exact solutions. The EDM solution for fractional-order telegraph equations have shown
the higher rate of convergence. Thus, the present technique solving other fractional-order
linear and non-linear PDEs.
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2. Preliminaries Concepts

Definition 1. The partial fractional-order derivatives [14–16]
Now consider that g(x) is a function of n variables xi, i = 1, · · · , j also of group C on D ∈ Rκ .

∂δ
xg =

1
Γ(j− a)

∫ xi

0
(xi − 1)j−δ−1∂δ

xi
g(xj)|xj=T1 dT1.

Definition 2. The Riemann-Liouville fractional-order δ > 0, of a function f ∈ Cj, δ ≥ −1, is
defined as [14–16]

Jδg(x) =
1

Γ(δ)

∫ x

0
(x− 1)δ−1g(T1)∂T1, δ, x > 0,

Jδg(x) = g(x)

Some properties of the operator:
For g ∈ Cj, δ ≥ −1, δ, β ≥ 0 and γ > −1

Jδ Jβg(x) = Jδ+βg(x)

Jδ Jβg(x) = Jδ Jβg(x)

Jδxγ =
Γ(γ + 1)

(δ + γ + 1)
xδ+γ.

Lemma 1. If j− 1 < δ ≤ j, j ∈ N and g ∈ Cj, δ ≥ −1 then Dδ Jδg(x) = g(x) [20–22],

Dδ Jδg(x) = g(x)−
m−1

∑
j=0

g(j)(0)
xj

j!
, X1 > 0.

The Elzaki Transform of Fundamental Principle

For the exponential order function that we find in the A series, defined by the A set, a
new transform called the Elzaki transform represented by [14–16]:

A = {g(T1) :3 |M, k1, k2 > 0, |g(T1)| < Me
|T1 |
kj , i f (T1) ∈ (−1)j × [0, ∞).

For a given function in the set, the constant M must be a finite number, k1 and k2 must be
finite or infinite. The transformation of Elzaki, which is defined via the integral equation

E[g(T1)] = T(s) = s
∫ ∞

0
g(T1)e

−T1
s dT1, T1 ≥ 0, k1 ≤ s ≤ k2.

From the description and the basic analyses, we can achieve the following result.

E[T n
1 ] = n!sn+2

E[g′(T1)] =
G(s)

s
− sg(0)

E[g′′(T1)] =
G(s)

s2 − g(0)− sg′(0)

E[g(n)(T1)] =
G(s)

sn −
n−1

∑
k=0

s2−n+kg(k)(0).
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Theorem 1. If T(s) is an Elzaki transform of (T1), the Riemann-Liouville derivative’s Elzaki
transform can be taken into consideration as follows [14–16]:

E[Dδg(T1)] = s−δ

[
G(s)−

n

∑
k=1
{Dδ−kg(0)}

]
; −1 < n− 1 ≤ δ < n.

Proof. Let’s take the Laplace transformation

g′(T1) =
d

dT1
g(T1)

L[Dδg(T1)] = SδT(s)−
n−1

∑
k=0

sk[Dδ−k−1g(0)]

= sδG(s)−
n−1

∑
k=0

sk−1[Dδ−kg(0)] = sδG(s)−
n−1

∑
k=0

sk−2[Dδ−kg(0)]

= sδG(s)−
n−1

∑
k=0

1
s−k+2 [D

δ−kg(0)] = sδG(s)−
n−1

∑
k=0

1
sδ−k+2−δ

[Dδ−kg(0)]

= sδG(s)−
n−1

∑
k=0

sδ 1
sδ−k+2 [D

δ−kg(0)]

L[Dδg(T1)] = sδ

[
G(s)−

n−1

∑
k=0

(
1
s

)δ−k+2
[Dδ−kg(0)]

]
.

Therefore, when we put 1
s for s, thefractional-order Elzaki transformation g(T1) as

bellow:

E[Dδg(T1)] = s−δ

[
G(s)−

n

∑
k=0

(s)δ−k+2[Dδ−kg(0)]

]
.

Definition 3. The fractional-order Caputo operator is given as [20–22]:

E[Dδ
T1

g(T1)] = s−δE[g(T1)]−
j−1

∑
k=0

s2−δ+kg(k)(0), where j− 1 < δ < j.

3. The Methodology of EDM

In this section, we discuses the EDM producer for FPDEs.

Dδµ(X1, T1) + Lµ(X1, T1) + Nµ(X1, T1) = q(X1, T1), X1, T1 ≥ 0, m− 1 < δ < m, (1)

with the initial condition
µ(X1, 0) = k(X1), (2)

where is Dδ
T1

= ∂δ

∂T1
δ the Caputo fractional derivative of order δ, L and N are linear and

nonlinear functions, respectively and q is source term.
Using the Elzaki transformation to Equation (1),

E
[

Dδµ(X1, T1)
]
+ E[Lµ(X1, T1) + Nµ(X1, T1)] = E[q(X1, T1)]. (3)

Applying the differentiation property of Elzaki transformation, we have

1
sδ
E[µ(X1, T1)]− s2−δµ(X1, 0) = E[q(X1, T1)]− E[Lµ(X1, T1) + Nµ(X1, T1)],
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E[µ(X1, T1)] = s2µ(X1, 0) + sδE[q(X1, T1)]− sδE[Lµ(X1, T1) + Nµ(X1, T1)].

Now, µ(X1, 0) = k(X1)

E[µ(X1, T1)] = s2k(X1) + sδE[q(X1, T1)]− sδE[Lµ(X1, T1) + Nµ(X1, T1)]. (4)

EDM describes the solution of infinite series µ(X1, T1)

µ(X1, T1) =
∞

∑
j=0

µj(X1, T1), (5)

Adomian polynomials of non-linear terms of N is represented as

Nµ(X1, T1) =
∞

∑
j=0

Aj, (6)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjµj)

]]
λ=0

. j = 0, 1, 2 · · · (7)

Putting Equation (5) and Equation (6) into (4),

E

[
∞

∑
j=0

µj(X1, T1)

]
= s2k(X1) + sδE[q(X1, T1)]− sδE

[
L

∞

∑
j=0

µj(X1, T1) +
∞

∑
j=0

Aj

]
. (8)

Now using EDM, we have

E[µ0(X1, T1)] = s2k(X1) + sδE[q(X1, T1)].

E
[
µj+1(X1, T1)

]
= −sδE

[
Lµj(X1, T1) + Aj

]
, j ≥ 1. (9)

Implementing the inverse Elzaki transformation of Equation (9),

µ0(X1, T1) = k(X1) + E−1
[
sδE{q(X1, T1)}

]
µj+1(X1, T1) = −E−1

[
sδE
{

Lµj(X1, T1) + Aj
}]

. (10)

4. Main Results

Example 1. Consider the fractional-order one dimensional telegraph equation [9]:

∂2δµ

∂T1
2δ

+ 2
∂δµ

∂T1
δ
+ µ =

∂2µ

∂X1
2 , 0 < δ ≤ 1, T1 ≥ 0, (11)

with the initial conditions

µ(X1, 0) = eX1 , µT1(X1, 0) = −2eX1 . (12)

Using the Elzaki transformation of Equation (12),

E
[

∂2δµ

∂T1
2δ

]
= −E

[
2

∂δµ

∂T1
δ
+ µ− ∂2µ

∂X1
2

]
,

1
sδ
E[µ(X1, T1)]− s2−δµ(X1, 0)− s3−δµT1(X1, 0) = −E

[
2

∂δµ

∂T1
δ
+ µ− ∂2µ

∂X1
2

]
.
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Applying the inverse Elzaki transformation

µ(X1, T1) = E−1
[

s2µ(X1, 0) + s3µT1(X1, 0)− sδE
{

2
∂δµ

∂T1
δ
+ µ− ∂2µ

∂X1
2

}]
.

Implementing the ADM processes, we have:

µ0(X1, T1) = E−1
[
s2µ(X1, 0) + s3µT1(X1, 0)

]
= E−1

[
s2eX1 − s32eX1

]
µ0(X1, T1) = eX1(1− 2T1) (13)

µj+1 = −E−1

[
sδE

{
2

∂δµj

∂T1
δ
+ µj −

∂2µj

∂X1
2

}]
, j = 0, 1, 2, · · ·

for j = 0

µ1(X1, T1) = −E−1
[

sδE
{

2
∂δµ0

∂T1
δ
+ µ0 −

∂2µ0

∂X1
2

}]
µ1(X1, T1) = 4eX1

T1
δ+1

Γ(δ + 2)
.

(14)

µ2(X1, T1) = −E−1
[

sδE
{

2
∂δµ1

∂T1
δ
+ µ1 −

∂2µ1

∂X1
2

}]
= −8eX1

T1
2δ+1

Γ(2δ + 2)
,

µ3(X1, T1) = −E−1
[

sδE
{

2
∂δµ2

∂T1
δ
+ µ2 −

∂2µ2

∂X1
2

}]
= 16eX1

T1
3δ+1

Γ(3δ + 2)
.

...

(15)

The EDM result for Problem 1 is

µ(X1, T1) = µ0(X1, T1) + µ1(X1, T1) + µ2(X1, T1) + µ3(X1, T1) + µ4(X1, T1) · · ·

µ(X1, T1) = eX1

[
1− 2X1 + 4

T1
δ+1

Γ(δ + 2)
− 8

T1
2δ+1

Γ(2δ + 2)
+ 16

T1
3δ+1

Γ(3δ + 2)
· · ·
]

.

When δ = 2, then the EDM result is

µ(X1, T1) = eX1

[
1− 2T1 +

(2T1)
2

2!
− (2T1)

3

3!
+

(2T1)
4

4!
...
]

. (16)

The exact result of Equation (12):

µ(X1, T1) = eX1−2T1 .

The EDM and the exact results of Problem 1 at δ = 2 are shown in Figure 1 by plots
(a) and (b) respectively. It can be seen from the given figures that both the precise and the
EDM outcomes are in near touch with each other. The EDM effects of Example 1 are also
measured in Figure 2a,b at separate fractional-order δ = 1.7 and 1.5. It is examined that the
outcomes of the example of fractional order are convergent as fractional-order analysis of
integer-order to an integer-order outcome. The same process of convergence of solutions
of fractional order into solutions of integral order is found.
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(a) (b)
Figure 1. (a) The graph of exact result of Problem 1. (b) The graph of analytical result of Problem 1 for δ = 2.

(a) (b)
Figure 2. (a) The graph of analytical result of Problem 1 for δ = 1.7. (b) The graph of analytical result of Problem 1 for
δ = 1.5.

Example 2. Consider the fractional-order two dimensional telegraph equation [9]:

∂2δµ

∂T1
2δ

+ 3
∂δµ

∂T1
δ
+ 2µ =

∂2µ

∂X1
2 +

∂2µ

∂Y1
2 , 0 < δ ≤ 1, t ≥ 0, (17)

with the initial conditions

µ(X1,Y1, 0) = eX1+Y1 , µX1(X1,Y1, 0) = −3eX1+Y1 . (18)

Applying the Elzaki transformation of Equation (18),

E
[

∂2δµ

∂T1
2δ

]
= −E

[
3

∂δµ

∂T1
δ
+ 2µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2

]
,
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sδE[µ(X1,Y1, T1)]− s2−δµ(X1,Y1, 0)− s3−δµX1 (X1,Y1, 0) = −E
[

3
∂δµ

∂T1
δ
+ 2µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2

]
.

Using the inverse Elzaki transformation

µ(X1,Y1, T1) = E−1
[

s2µ(X1,Y1, 0) + s3µX1 (X1,Y1, 0)− sδE
{

3
∂δµ

∂T1
δ
+ 2µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2

}]
.

Implementing the ADM process, we have

µ0(X1,Y1, T1) = E−1
[
s2µ(X1,Y1, 0) + s3µX1 (X1,Y1, 0)

]
= E−1

[
s2eX1+Y1 − s33eX1+Y1

]
,

µ0(X1,Y1, T1) = eX1+Y1(1− 3T1), (19)

µj+1(X1,Y1, T1) = −E−1

[
sδE

{
3

∂δµj

∂T1
δ
+ 2µj −

∂2µj

∂X1
2 −

∂2µj

∂Y1
2

}]
, j = 0, 1, 2, · · ·

for j = 0

µ1(X1,Y1, T1) = −E−1
[

sδE
{

3
∂δµ0

∂T1
δ
+ 2µ0 −

∂2µ0

∂X1
2 −

∂2µ0

∂Y1
2

}]
,

µ1(X1,Y1, T1) = 9eX1+Y1
T1

δ+1

Γ(δ + 2)
.

(20)

µ2(X1, T1) = −E−1
[

sδE
{

3
∂δµ1

∂T1
δ
+ 2µ1 −

∂2µ1

∂X1
2 −

∂2µ1

∂Y1
2

}]
= −27eX1+Y1

T1
2δ+1

Γ(2δ + 2)
,

µ3(X1, T1) = −E−1
[

sδE
{

3
∂δµ2

∂T1
δ
+ 2µ2 −

∂2µ2

∂X1
2 −

∂2µ2

∂Y1
2

}]
= 81eX1+Y1

T1
3δ+1

Γ(3δ + 2)
.

...

(21)

The EDM result for Problem 2 is

µ(X1,Y1, T1) = µ0(X1, T1) + µ1(X1, T1) + µ2(X1, T1) + µ3(X1, T1) + µ4(X1, T1) · · ·

µ(X1, T1) = eX1+Y1

[
1− 3T1 + 9

T1
δ+1

Γ(δ + 2)
− 27

T1
2δ+1

Γ(2δ + 2)
+ 81

T1
3δ+1

Γ(3δ + 2)
· · ·
]

,

when δ = 2, then EDM result is

µ(X1,Y1, T1) = eX1+Y1

[
1− 3T1 +

(3T1)
2

2!
− (3T1)

3

3!
+

(3T1)
4

4!
· · ·
]

. (22)

The exact result of Equation (18):

µ(X1,Y1, T1) = eX1+Y1−3T1 .

The EDM and the exact results of Problem 1 at δ = 2 are shown in Figure 3 by plots
(a) and (b) respectively. It can be seen from the given figures that both the precise and the
EDM outcomes are in near touch with each other. The EDM effects of Example 1 are also
measured in Figure 4a,b at separate fractional-order δ = 1.7 and 1.5. It is examined that the
outcomes of the example of fractional order are convergent as fractional-order analysis of
integer-order to an integer-order outcome. The same process of convergence of solutions
of fractional order into solutions of integral order is found.
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(a) (b)
Figure 3. (a) The graph of exact result of Problem 2. (b) The graph of analytical result of Problem 2 for δ = 2.

(a) (b)
Figure 4. (a) The graph of analytical result of Problem 2 for δ = 1.7. (b) The graph of analytical result of Problem 2 for
δ = 1.5.

Example 3. Consider the fractional-order three dimensional telegraph equation [9]:

∂2δµ

∂T1
2δ

+ 2
∂δµ

∂T1
δ
+ 3µ =

∂2µ

∂X1
2 +

∂2µ

∂Y1
2 +

∂2µ

∂Z1
2 , 0 < δ ≤ 1, t ≥ 0, (23)

with the initial conditions

µ(X1,Y1,Z1, 0) = sinh(X1) sinh(Y1) sinh(Z1),

µT1(X1,Y1,Z1, 0) = − sinh(X1) sinh(Y1) sinh(Z1).
(24)
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Applying the Elzaki transform of Equation (24),

E
[

∂2δµ

∂T1
2δ

]
= −E

[
2

∂δµ

∂T1
δ
+ 3µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2 −

∂2µ

∂Z1
2

]
,

sδE[µ(X1,Y1,Z1, T1)]− s2−δµ(X1,Y1,Z1, 0)− s3−δµX1 (X1,Y1,Z1, 0) = −E
[

2
∂δµ

∂T1
δ
+ 3µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2 −

∂2µ

∂Z1
2

]
.

Using the inverse Elzaki transform

µ(X1,Y1,Z1, T1) =E−1
[
s2µ(X1,Y1,Z1, 0) + s3µX1(X1,Y1,Z1, 0)

]
− E−1

[
sδE
{

2
∂δµ

∂T1
δ
+ 3µ− ∂2µ

∂X1
2 −

∂2µ

∂Y1
2 −

∂2µ

∂Z1
2

}]
.

Implementing the ADM procedure, we get

µ0(X1,Y1,Z1, T1) = E−1
[
s2µ(X1,Y1,Z1, 0) + s3µX1(X1,Y1,Z1, 0)

]
= E−1

[
s2sinh(X1) sinh(Y1) sinh(Z1)− s3sinh(X1) sinh(Y1) sinh(Z1)

]
,

µ0(X1,Y1,Z1, T1) = sinh(X1) sinh(Y1) sinh(Z1)(1− T1), (25)

µj+1(X1,Y1,Z1, T1) = −E−1

[
sδE

{
2

∂δµj

∂T1
δ
+ 3µj −

∂2µj

∂X1
2 −

∂2µj

∂Y1
2 −

∂2µj

∂Z1
2

}]
, j = 0, 1, 2, · · ·

for j = 0

µ1(X1,Y1,Z1, T1) = −E−1
[

sδE
{

2
∂δµ0

∂T1
δ
+ 3µ0 −

∂2µ0

∂X1
2 −

∂2µ0

∂Y1
2 −

∂2µ0

∂Z1
2

}]
,

µ1(X1,Y1,Z1, T1) = −2 sinh(X1) sinh(Y1) sinh(Z1)
T1

δ+1

γ(δ + 2)
,

(26)

µ2(X1,Y1,Z1, T1) = −E−1
[

sδE
{

2
∂δµ1

∂T1
δ
+ 3µ1 −

∂2µ1

∂X1
2 −

∂2µ1

∂Y1
2 −

∂2µ1

∂Z1
2

}]
,

µ2(X1,Y1,Z1, T1) = 4 sinh(X1) sinh(Y1) sinh(Z1)
T1

2δ+1

Γ(2δ + 2)
,

µ3(X1,Y1,Z1, T1) = −E−1
[

sδE
{

2
∂δµ2

∂T1
δ
+ 3µ2 −

∂2µ2

∂X1
2 −

∂2µ2

∂Y1
2 −

∂2µ2

∂Z1
2

}]
,

µ3(X1,Y1,Z1, T1) = −8 sinh(X1) sinh(Y1) sinh(Z1)
T1

3δ+1

Γ(3δ + 2)
.

...

(27)

The EDM result for Example 3 is

µ(X1,Y1,Z1, T1) = µ0(X1,Y1,Z1, T1) + µ1(X1,Y1,Z1, T1) + µ2(X1,Y1,Z1, T1) + µ3(X1,Y1,Z1, T1) · · · .

µ(X1,Y1,Z1, T1) = sinh(X1) sinh(Y1) sinh(Z1)

[
1 + T1 − 2

T1
δ+1

Γ(δ + 2)
+ 4

T1
2δ+1

Γ(2δ + 2)
− 8

T1
3δ+1

Γ(3δ + 2)
· · ·
]

.

The exact result of Equation (24):

µ(X1,Y1,Z1, T1) = e−2T1 sinh(X1) sinh(Y1) sinh(Z1).

The EDM and the exact results of Problem 1 at δ = 2 are shown in Figure 5 by plots
(a) and (b) respectively. It can be seen from the given figures that both the precise and the
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EDM outcomes are in near touch with each other. The EDM effects of Example 1 are also
measured in Figure 6a,b at separate fractional-order δ = 1.7 and 1.5. It is examined that the
outcomes of the example of fractional order are convergent as fractional-order analysis of
integer-order to an integer-order outcome. The same process of convergence of solutions
of fractional order into solutions of integral order is found.

(a) (b)
Figure 5. (a) The graph of exact result of Problem 3. (b) The graph of analytical result of Problem 3 for δ = 2.

(a) (b)
Figure 6. (a) The graph of analytical result of Problem 3 for δ = 1.7. (b) The graph of analytical result of Problem 3 for
δ = 1.5.

5. Conclusions

In this paper, we analyzed the time-fractional telegraph equations, using an Elzaki
decomposition technique. Using the proposed method, the solutions for certain illustrative
examples are clarified. The graphical analysis of the fractional-order solutions acquired
verified the convergence towards the integer order solutions. In addition, the present method
is simple, straightforward and less computational cost and the suggested method to solve
other fractional-order partial differential equations.
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