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Abstract: Objective: 1. Interpretation of the variations of solute medicine amount in blood vessels and
TAF concentration with respect to the flow rates of injected drugs into liver and heart. 2. Description
of the alteration of tumor cell density versus the time and radius variations. Methodology: Step 1.
Compartmental analysis is adopted for the concentration of chemotaxis caused by injected substances
L and H based on the assumption: two different medicines I1 and I2 are injected into heart and liver to
recover the functions of each organ, respectively, without any side effects. Step 2. A partial differential
equation is derived for the growth of TAF considering the diffusion of TAF and the rate of decay
of TAF according to the disturbance of medicine M in blood vessels. Step 3. A partial differential
equation is derived for the motion of tumor cells in the lights of random motility and chemotaxis in
response to TAF gradients. Step 4. Exact solutions are obtained for the concentration of chemotaxis
caused by injected substances L and H under the assumption that the loss of mass is proportional
to mass itself. Step 5. Exact solution is obtained for the partial differential equation describing the
growth of TAF using the separation of variables. Step 6. A finite volume approach is executed to
search approximated solutions due to the complexity of the partial differential equation describing
the motion of tumor cells. Results: 1. The concentration of medicine (M) decreases as the ratio of
flow rate from heart into vessel to flow rate from liver into heart ( k1

k2
) increases. 2. TAF concentration

increases with the growth of the value of ratio k1
k2

and TAF shows the smallest concentration when
the flow rate of each injected medicine is similar. 3. Tumor cells react highly sensitive as soon
as medicine supplies and tumor cell’s density is decreased drastically at the moment of medicine
injection. 4. Tumor cell density decreases exponentially at an early stage and the density decrease is
developed in a fluctuating manner along the radius. Conclusions: 1. The presented mathematical
approach has the potential for the profound analysis of the variations of solute medicine amount in
blood vessels, TAF concentration, and the alteration of tumor cell density according to the functional
recoveries of liver and heart. 2. The mathematical approach may be applicable in the investigation
of tumor cell’s behavior on the basis of complex interaction among five represented organs: kidney,
liver, heart, spleen, and lung. A mathematical approach is developed to describe the variation of a
solid tumor cell density in response to drug supply. The investigation is progressed based on the
assumption that two different medicines, I1 and I2, are injected into heart and liver with flow rates
k1 and k2 to recover the functions of each organ, respectively. A medicine function system for the
reactions of tumor angiogenic factors (TAF) to medicine injection is obtained using a compartmental
analysis. The mathematical governing equations for tumor cells motion are derived taking into
account random motility and chemotaxis in response to TAF gradients and a finite volume method
with time-changing is adopted to obtain numerical solutions due to the complexity of the governing
equations. The variation of the flow rates k1 and k2 exerts profound influences on the concentration
of medicine, and similar flow rate of k1 and k2 produces the greatest amount of medicine in blood
vessels and suppresses strong inhibition in TAF movement. Tumor cells react very sensitively to drug
injection and the tumor cell density decreases to less than 20% at an early stage of administration.
However, the density of tumor cell diminishes slowly after the early stage of sudden change and the
duration for complete therapy of tumor cells requires a long time.
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1. Introduction

Cancer is the situation of abnormal cell growth in a specific part of the body and
spread to other parts beyond boundaries and is becoming the major death cause of the
world population. Most tumors undergo insufficient nutrition at an early avascular stage
and have difficulty in wastes disposal, and thus the transfer of nutrients and wastes has
been progressed through simple diffusion. Tumor cells stimulate endothelial cells located
in the interior surface of blood vessels to obtain solutes, such as oxygen, for growth. If the
tumor reaches dormant state, the cancer cells release a diffusible chemical substance called
tumor angiogenesis factor (TAF). Angiogenesis induced by tumor cells contains cancerous
cells that secrete a number of chemicals into surrounding tissues [1,2], and capillary sprouts
are formed in response to chemical stimuli. Anderson and Chaplain [3] analyzed the
formation of the capillary sprout network in response to chemical stimuli supplied by
a solid tumor using both continuous and discrete models. Macklin and Lowengrub [4]
investigate the effects of the interaction between the genetic characteristics of the tumor and
the tumor micro-environment, and mathematical analysis for the growths of non-necrotic
and necrotic tumors with time delays achieved by Cui and Xu [5].

Nowadays, an active analysis of cancer cells is comprehensively performed to under-
stand the development processes of tumor cells and develop anticancer drugs. Successful
treatment of tumor depends on the efficient deliveries of anticancer drugs. Tumor cell
propagation creates an abnormal vascular structure causing an elevated interstitial fluid
velocity, and chaotic vascular structure appeared commonly in advanced tumor disturbs
the efficient drug delivery to solid tumors [6]. Vascular normalization using anti-angiogenic
factors, thus, reduces the interstitial fluid velocity and strengthens the vessel perfusion and
improves both drug and nutrients delivery to tumor cells [7,8]. By dint of complex and
unpredictable actions among various factors in tumor cell growth mathematical approach
has become an essential method in the study of drug delivery. E.M. Kashkooli et al. [9] in-
vestigates the effect of vascular normalization in executing efficient drug delivery through
computational and mathematical modeling approaches.

Moreover, the extensive dosage of chemical medicines to control cancer growth is a
discussing issue in diversified perspectives. Magni et al. [10] explored the cancer growth
dynamics in response to anticancer agent administration in xenograft models, using an
ordinary differential equation. Jackson and Byrne [11] used partial differential equations
to investigate vascular tumor behaviors against chemotherapeutic treatment. Maeda
et al. [12] suggested a tumor-targeted delivery strategy responding to anticancer medicines
for patients who are in the stage of aggravated cancer growth. They studied the patho-
physiological mechanisms for various tumor blood vessels containing properties such as
enhanced permeability, and different endurance and structure. The impact of apheresis
platelet supernatants of different storage periods on tumor cell growth was explored by
Fei et al. [13]. They optimized transfusion timing and provided a reference for reducing
the risks of platelet transfusion in cancer patients. Hang et al. [14] found that surrounding
neighbor cells in tumor induce non-cell autonomous autophagy, and tumor growth can
be suppressed significantly by genetic ablation of autophagy induction. A mathematical
approach was developed to investigate the growth of both tumor cells and microorganisms
expressing the influences of migrating cells, proliferating cells, and nutrient by Alpna [15].

Meanwhile, metabolism of human body is in close contact with the balanced functions
of five representative organs: kidney, liver, heart, spleen, and lung. The kidney is the
first generated organ in an unborn child and takes charge of water and salinity in human
body. The kidney is deeply related to joints in our body and the function of joints in the
knee and waist reacts sensitively to kidney conditions [16–18]. The liver is generated with
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the assistance of the matured kidney. The liver purifies corrupted blood and supports
the health of tendons in our body [19,20]. The heart organ is born with the help of the
liver and plays important roles in maintaining healthy blood and blood vessels [21]. The
spleen is generated by the virtue of the heart’s assistance and has jurisdiction for the
preservation of resilient skin in the human body [22]. The spleen assists in the creation of
the lung, which is the last generated among the five representative organs, and the lung
takes charge of the skin pores [10,23]. The interactions of five organs are critically key to
preserving good physical shape, and metabolism of the human body is controlled by the
co-existence, conflict, and contradiction of five organs. Harmonious interactions of the
five organs promote normal metastasis and cell divisions, and active cell divisions assist
in maintaining good metabolism, while conflict and contradiction in the functions of the
five organs interrupt solute delivery from blood vessels to cells [24]. Insufficient delivery
disturbs normal cell divisions, which is a cause of tumor cell growth.

Overdose of chemical medicine interrupts the balanced functions of the five organs
and physical condition gets worse because of abnormal metabolism. Thus, it is required to
control of the amount of medicines injected maintaining the harmonious balance of five
organs during treatment. Due to complex interactions among the five organs, the present
investigation is restricted to the variations of tumor cell density when medicines are injected
into two organs, the heart and liver. Since the functions of liver are to purify corrupted
blood and assist heart functions, only co-existence interactions between heart and liver
organs are taken into account for the simple analysis. The complex behaviors of tumor
based on the co-existence interactions among five organs will be followed. Mathematical
formulations are deployed based on the following assumptions: (i) Two different medicines
I1 and I2 are injected into heart and liver to recover the functions of each organ, respectively.
(ii) A compartmental analysis is developed for solute transport from liver to blood vessels
and no side effect appears in any compartment. (iii) Two factors, random motility and
chemotaxis in response to TAF gradients, are considered in tumor cell motion.

2. Mathematical Modelling
2.1. Tumor Cell Mobility

Owing to the facts that the liver purifies corrupted blood and blood flows into heart,
liver state deeply influences the performance of heart functions. The injection of substances
such as medicine into the liver recovers liver function, and recovered liver activates heart
functions. The following assumptions: (i) substances L and H injected into liver and heart,
respectively, (ii) heart generates a solute M to interfere with the development of TAF in
the blood vessels is applied for mathematical modeling (see Figure 1). Compartmental
analysis adopts for the concentration of chemotaxis caused by injected substances L and H
under the assumption that the loss of mass is proportional to mass itself. The mathematical
equations for the compartmental analysis are

d[L]
dτ

= I2 − k2[L] (1)

d[H]

dτ
= I1 − k1[H] + k2[L] (2)

d[M]

dτ
= k1[H] (3)

The rectangular bracket in the above equations implies mass or concentration of each
substance, τ time variable, and k1 and k2 reaction rate coefficients.
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Figure 1. Diagram for medicine supplies: (i) I1 and I2 are medicines injected into heart and liver,
respectively, (ii) k1 and k2 are flow rates from heart to vessels and from liver to heart, respectively.

A tumor is centered on (0,0) with radius R
10 and a circle of radius R is chosen for the

domain. Let c be the concentration of TAF in the domain, then the growth of TAF can be
modeled by [25]

∂c
∂τ

= ∇· (Dc∇c) + g(M, c) (4)

The Dc is the TAF diffusion coefficient, and g is the rate of decay of TAF according
to the disturbance of M. Due to the assumption that the chemotaxis solute in the blood
vessels interferes with the development of TAF into the surrounding tissue, the function
g(M, c) = −Mc and the boundary condition c(τ, R) = 0 are selected for mathematical
approach. In the motion of tumor cells, random motility and chemotaxis in response to
TAF gradients are essential factors to be considered. Let ∅ be the tumor cell’s density per
unit area in the domain, then the variation of tumor cells can be expressed with

∂∅
∂τ

= ∇· (D∅∇∅) −∇·(µ∅∇c) (5)

The first term in the right side of Equation (5) represents diffusion motility of cells and
the second term is chemotaxis due to TAF gradients. The D∅ is the diffusion coefficient of
cell and µ > 0 is the chemotactic coefficient. No flux condition is assumed on the boundary
of domain, which yields the boundaries of the form

→
n · (−D∅∇∅) + µ∅∇c) = 0 (6)

The
→
n is an appropriate outward unit normal vector on the boundary of domain. With

the consideration of the initial concentration of injected medicine

I1(0) = 1− et1

I2(0) = 1− et2 , (7)

Medicine functions are represented with

I1(τ) = 1− eτ−t1

I2(τ) = 1− eτ−t2 (8)
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Note that each medicine affects until time level t1 and t2, respectively. The solutions
for the differential Equations (1)–(3) then are the followings:

L(τ) =
1
k2
− eτ−t2

1 + k2
+ c1e−k2τ (9)

H(τ) =
2
k1
− eτ−t1

1 + k1
+ c2e−k1τ +

c1k2e−k2τ

k1 − k2
− k2eτ−t2

(1 + k1)(1 + k2)
(10)

M(τ) =
2τ

k1
− eτ−t1

1 + k1
− c2e−k1τ

k1
− c1e−k2τ

k1 − k2
− k2eτ−t2

(1 + k1)(1 + k2)
+ c3 (11)

The initial conditions L(0) = 0, H(0) = 0, and M(0) = 0 yield the values of integral
constants c1, c2, and c2;

c1 = − 1
k1

+
e−t2

1 + k2

c2 = − 2
k2

+
e−t1

1 + k1
+

1
k1k2 − k2

2
+e−t2

(
1

(1 + k2)(k2 − k1)
+

k2

1 + k1 + k2 + k1k2

)

c3 =
e−t1

k1
+

e−t2
(
−1 + k1 + k1k2 − k2

2
)

k1(k1 − k2)(1 + k2)
+

k1 − k2
1 − 2k1k2 + 2k2

2
k2

1(k1 − k2)k2

For the simplicity of TAF concentration, mobility the movement of TAF is assumed
to be radially symmetric and the diffusion coefficient Dc is constant. By the setting the
r = r̃

√
Dc and dropping the tilde for clarity Equation (4) is expressed as

∂c
∂τ

= ∇2c−M(τ)c (12)

The separation of variables for Equation (12) by proposing a solution of the form

c = T(τ)R(r)

Provides
1
r

R′(r)
R(r)

+
R′′ (r)
R(r)

= M(τ) +
T′(τ)
T(τ)

(13)

Since the right-hand side of Equation (13) has only one dependent variable τ and
the other terms has no τ dependence, the right-hand side is assumed to be equal to some
unknown constant, that is,

M(τ) +
T′(τ)
T(τ)

= −γ (14)

Then the following ordinary differential equation appears

r
d
dr

(
r

dR′(r)
dr

)
+ r2γR(r) = 0 (15)

The solutions of the ordinary differential Equations (14) and (15) are

T(τ) = c4e−γτ−
∫

M(τ)dτ ,
R(r) = c5 J0(

√
γr) + c6Y0(

√
γr),

(16)

where {J∗, Y∗} are Bessel functions of order ∗. Since Y∗(√γr) is unbounded at r = 0, the
setting c6 = 0 removes an infinite value in the solution. Thus, the general solution of
Equation (12) is, by superposition

c(τ, r) = c7 J0(
√

γr)e−γτ−
∫

M(τ)dτ (17)
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To determine the integral constant c7 in the solution (17), an initial TAF concentration
field is adopted of the form

c(0, r) =

{
1, 0 ≤ r ≤ R

10
J0
(√

γr
)
, R

10 ≤ r ≤ R

The value γ =
(

2.40483
R

)2
is determined to satisfy the boundary condition c(τ, R) = 0

and the integral coefficient c7 = 1
J0(
√

γ R
10 )

is obtained under the consideration of the

continuity of TAF concentration at r = R
10 .

2.2. Discretization for Finite Volume Method

The diffusion coefficient D∅ is assumed to be constant and let r = r̃
√

Dc. Equation (5)
in polar coordinates, after dropping the tilde, can be expressed as

d∅
dτ = D

[
∂2∅
∂r2 + 1

r
∂∅
∂r + 1

r2
∂2∅
∂θ2

]
− µ0

[
∂c
∂r

∂∅
∂r + 1

r2
∂c
∂θ

∂∅
∂θ

]
− µ0∅∇2c, (18)

where D = D∅
Dc

and µ0 = χ
Dc

. The assumption of radial symmetricity for the movement of
TAF in Equation (18) is reduced to

d∅
dτ

= D
[

∂2∅
∂r2 +

1
r

∂∅
∂r

+
1
r2

∂2∅
∂θ2

]
− µ0

∂c
∂r

∂∅
∂r
− µ0∅∇2c (19)

Since Equation (19) is too involved to obtain the analytical solution, a finite volume
approach is executed to search approximated solutions [26]. The typical arrangement of
the finite volume cells on the polar grid is presented in Figure 2.

Figure 2. A cylindrical cross section domain: (a) Discretization for approximate solutions using a
finite volume method, (b) Notations of finite control volumes.

After the multiplication of r on both sides in Equation (19), the integration over the
control volume and over a time interval from τ to τ + ∆τ provides∫ τ+∆τ

τ

∫
CV r d∅

dτ dVdτ =
∫ τ+∆τ

τ

∫
CV D[ ∂

∂r (r
∂∅
∂r ) +

1
r

∂2∅
∂θ2 ]dVdτ

−
∫ τ+∆τ

τ

∫
CV µ0[r ∂c

∂r
∂∅
∂r ]dVdr−

∫ τ+∆τ
τ

∫
CV µ0r∅∇2c dVdτ

(20)
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Using the first order backwards differencing in time and second order central differ-
encing in space, the following are derived:∫

CV
∂
∂r

(
r ∂∅

∂r

)
dV =

∫ [(
r ∂∅

∂r

)
n
−
(

r ∂∅
∂r

)
s

]
dθ = rn∆θn

(
∂∅
∂r

)
n
− rs∆θs

(
∂∅
∂r

)
s

= rn∆θn

[
∅N−∅P

δrPN

]
− rs∆θs

[
∅P−∅S

δrSP

]
= rn∆θn

δrPN
∅N + rs∆θs

δrSP
∅S − ( rn∆θn

δrPN
+ rs∆θs

δrSP
)∅P,∫

CV
1
r

∂
∂θ

(
∂∅
∂θ

)
dV = 1

rw
∆rw

(
∂∅
∂θ

)
w
− 1

re
∆re

(
∂∅
∂θ

)
e

= 1
rw

∆rw
δθWP

∅W + 1
re

∆re
δθPE

∅E − ( 1
re

∆re
δθPE

+ 1
rw

∆rw
δθWP

)∅P,∫
CV µ0

∂c
∂r r ∂∅

∂r dV = µ0

[
∆r∆θ

(
∂c
∂r r
)

P
1

δrNS
∅N − ∆r∆θ

(
∂c
∂r r
)

P
1

δrNS
∅S

]
,∫ τ+∆τ

τ

∫
CV r ∂∅

∂τ dVdτ = rP
(
∅P −∅0

P
)
∆θ∆r,∫ τ+∆τ

τ

∫
CV

∂
∂r

(
r ∂∅

∂r

)
dVdτ = rn∆θn

δrPN
∆τ∅N + rs∆θs

δrSP
∆τ∅S −

(
rn∆θn
δrPN

+ rs∆θs
δrSP

)
∆τ∅P,∫ τ+∆τ

τ

∫
CV

1
r

∂
∂θ

(
∂∅
∂θ

)
dVdτ = ∆rw

rw
∆τ

δθWP
∅W + ∆re

re
∆τ

δθPE
∅E −

(
∆re
re

∆τ
δθPE

+ ∆rw
rw

∆τ
δθWP

)
∅P,∫ τ+∆τ

τ

∫
CV µ0

∂c
∂r r ∂∅

∂r dVdτ = µ0∆θ∆r∆τ
(

∂c
∂r r
)

P
∅N − µ0∆θ∆r∆τ

(
∂c
∂r r
)

P
∅S,∫ τ+∆τ

τ

∫
CV µ0r∅∇2cdVdτ = µ0∆θ∆r∆τ

(
r∇2c

)
P∅P.

The discrete equation, thus, can be written as

ap∅p =
(
aN + aµN

)
∅N +

(
aS + aµs

)
∅s + aE∅E + aW∅W + b,

where

a0
P = rP∆r∆θ

∆τ ,aN = Drn∆θn
δrn

,aS = Drs∆θs
δrs

,aE = D∆re
reδθe

,

aW = D∆rw
rwδθw

, aµN = − µ0∆θ∆r
δrNS

(
∂c
∂r r
)

P,
aµS = µ0∆θ∆r

δrNS

(
∂c
∂r r
)

P,
a0

µP = µ0∆r∆θ
(
r∇2c

)
P,b = a0

P∅0
P, aP = a0

P + a0
µP + aN + aS + aE + aW .

The ∅0
P represents the density of cell at time τ and the density at time τ + ∆τ is not

superscripted. Note that δrNS = 2δr, δrPN = δrSP = δr, δθEW = 2δθ , δθPW = δθPE = δθ .
The boundary condition (Equation (6)) is written by

→
n ∆[− D∅√

Dc
∇∅+ χ√

Dc
∅∇c] =

→
n ∆[− D∅√

Dc
( ∂∅

∂r ur +
1
r

∂∅
∂θ uθ) +

χ√
Dc
∅( ∂c

∂r ur +
1
r

∂c
∂θ uθ)]

= ur∆[(− D∅√
Dc

∂∅
∂r + χ√

Dc
∅ ∂c

∂r )ur + (− D∅√
Dc

1
r

∂∅
∂θ )uθ ]

= − Dφ√
Dc

∂∅
∂r + χ√

Dc
∅ ∂c

∂r = 0,

where ur and uθ are directional unit vectors. Thus, the finite volume discretized form of
the boundary condition is

−
Dφ√

Dc

∂∅
∂r

+
χ√
Dc

∅∂c
∂r

=
D∅√

Dc

1
δrNS

∅N +
D∅√

Dc

1
δrNS

∅S +
χ√
Dc

(
∂c
∂r

)
P
∅P = 0

2.3. Validation of Numerical Results

For validation of numerical results, the results of Kashkooli et al. [27] are compared
with the outcomes of the present study (see Figure 3). SR in Figure 3 represents survival
rate. Kashkooli et al. considered a three-stage drug delivery system containing a primary
nanoparticle, a secondary nanoparticle, and the chemotherapy on a real image of a vas-
cularized tumor. As shown in Figure 3, the survival rate of tumor cells is close to 10% in
the present study, while Kashkooli et al. displayed around 30% at an early stage. Its value
is 20% different and the difference is due to the different transport method of the drug,
boundary conditions, tumor geometry, and capillary domain. The decreasing patterns are
similar except for the oscillation of [27], which is due to the growth rate.
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Figure 3. Validation of the results with the previously published articles [27] based on the fraction
killed cells along normalized time.

3. Results and Discussions

Based on the discretization of the finite volume method in Section 2.2, approximated
solutions for the tumor cells density ∅ are obtained combing the exact solutions of medicine
M in blood vessels and the TAF concentration c. An initial value ∅0 = 1000 is taken for
the tumor cells density, and the values of parameters in Reference [3] displayed in Table 1
are applied for numerical solutions. The step sizes of each variable are ∆θ = π

10 , ∆r = R
20 ,

∆T = 1, and the value R = 4√
Dc

is used.

Table 1. Values of parameters.

χ Dc D∅

2.6× 103 cm2 s−1 M−1 2.9× 10−7 cm2 s−1 1.0× 10−10 cm2 s−1

The values of parameters are adopted because the values are obtained in the investiga-
tion of the formation of blood vessels from a pre-existing vasculature. The representative
values k1

k2
= 2, 3, 4, 5 are chosen to investigate the ratio variation effects of flow rates k1 and

k2. The TAF concentrations are described in Figure 4 for the time values t1 = t2 = 10 and
the ratio value k1

k2
= 2. Exponential decay develops in TAF concentration with the increase

of r, which means that tumor angiogenic factors are condensed around the center. By that
behavior, TAF reacts sensitively to the injected medicines and TAF concentration decreases
exponentially as the time value τ grows explaining that administered meditation is mostly
fatal to tumor angiogenic factors. After the time value τ ≈ 10, the TAF concentration is
close to zero.

Figure 4. TAF concentration c along parameters the time τ and the radius r when the time values
t1 = t2 = 10 and the ratio value k1

k2
= 2.

Figure 5 exhibits the volume of medicine M in blood vessels for the time values
t1 = t2 = 10. The medicine solute amount grows linearly until around τ = 10 and
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decreases exponentially after the time value τ ≈ 10. The largest medicine concentration
appears near the time τ = 10 and is close to zero near the time τ = 13. The concentration of
M decreases as the ratio k1

k2
increases. The result explains that the medicine solute amount

shrinks with the reduction of medicine flow rate into liver when the flow rate into heart is
fixed, whereas the medicine solute amount expands as the medicine flow rate into heart
decreases for the fixed flow rate into liver. The rate of decline is getting smaller with the
increase of the ratio k1

k2
, which implies that similar flow rate of each injected medicine may

produce the greatest amount of medicine in blood vessels.

Figure 5. Concentration of medicine M in blood vessels along the time τ when the time values
t1 = t2 = 10.

The influences of the variation of ratio k1
k2

to TAF concentration are presented through
Figures 6 and 7, which describe the responses of tumor cells to medicines. The description
according to the time value variable τ is executed at r = R

2 when t1 = t2 = 10 (see Figure 6).
TAF concentration increases with the growth of the value of ratio k1

k2
. The result interprets

that the increase of the medicine flow rate into liver yields a profound effect to tumor
angiogenic factors when the flow rate into heart is fixed, whereas TAF reacts less to the
flow rate increment into heart with a fixed flow rate into liver. When the flow rate of each
injected medicine is similar, TAF shows the smallest concentration. The influences of the
ratio k1

k2
variation to tumor angiogenic factors along the radius are displayed in Figure 7.

The fixed time value τ = 5, t1 = t2 = 10 are chosen. TAF concentration decreases along the
radius and a parabolic shape appears in the diminution description. A similar phenomenon
occurs in TAF concentration expression, that is, TAF concentration diminishes along the
radius with a decay of the ratio k1

k2
value.

Figure 6. TAF concentration c for various ratio k1
k2

along the time τ at r = R/2 when the time values
t1 = t2 = 10.
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Figure 7. Concentration of TAF along the radius r when the time values t1 = t2 = 10 and τ = 5.

Approximate solutions for the tumor cells density ∅ are obtained based on Equations
(18) and (19), and Figures 8 and 9 depict the tumor cells density ∅ for the values t1 = 10,
t2 = 10, and k1

k2
= 2. The representative radius values r= R

10 , R
5 , and 2R

5 are chosen to
investigate the density of tumor cells with time variable τ (see Figure 8) and the difference
of initial amount is due to the distance from the center of tumor cell density. Tumor cells
react sensitively as soon as medicines are injected and the mobility of tumor cells are
disturbed immediately. At the time τ = 1, tumor cells density ∅ decreases to around 20%
of the initial amount for the value r= R

10 , while the density ∅ is close to zero for the value
r= 2R

5 . After the rapid change at the moment of medicine injection, the variation of tumor
cells density is trivial until around the time τ = 20, and the density ∅ diminishes with the
increment of time value τ. The result evinces that the tumor cells show hypersensitivity
reaction at the moment of medicine injection. Figure 9 depicts tumor cell density in respect
of radius r for the representative time values τ = 0, 1, 20, and 22. Initial tumor cell density
∅0 = 1000 and angle value θ = 0 are taken for the numerical approach. Tumor cell density
decreases exponentially at the time value τ = 0, which implies that the reaction of tumor
cells is highly sensitive to the injected medicines. Owing to the repellence of tumor cells
to the injected medicines, the decrease of tumor cell density is developed in a fluctuating
manner along the radius. Similar aspects appeared in the tumor cell density variation
for time values τ = 1, 20, and 22, and the tumor cells density approaches zero near the
boundary of domain.

Figure 8. Variations of tumor cells density ∅ along the time τ for various values r at θ = 0
◦
.
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Figure 9. Variations of tumor cells density ∅ along the radius r for various values τ at θ = 0
◦
.

The variation of tumor cell density is analyzed through a mathematical approach
considering the recovery of liver and heart functions by drug injection. The functional
recoveries of liver and heart produce medicine in blood vessel to disable the activity of
TAF. The control of TAF activity influences the motility and chemotaxis of tumor cells and
the proliferation is restricted. The present work suggests a strong method to reduce the
tumor cell density at an early stage of medicine injection, and the survival rate of tumor
cells is lower in comparison to previous research [27]. In addition, the flow rate from each
organ plays an important role in determining the medicine concentration in blood vessel
even though only two organs, liver and heart, are taken into account. The extension to the
functional recoveries of five organs: kidney, liver, heart, spleen, and lung, evokes a great
curiosity in the study of tumor cell density characteristics. Even so, the consideration of
complicated reactions among the five organs in deciding medicine concentration in blood
vessel may be an interesting and challenging work.

4. Conclusions

In the present study, a mathematical model of drug supplies is proposed to investigate
the characteristics of tumor cell density. A compartmental analysis is developed for solute
transport from liver and heart into blood vessel ignoring any side effect in any compartment.
Random motility and chemotaxis in response to TAF gradients are considered in tumor
cell motion. The mathematical approach has been developed to interpret the variations
of solute medicine amount in blood vessel and TAF concentration with respect to the
flow rate of injected drugs into liver and heart and describe the alteration of tumor dell
density along the time and radius variables. The main results obtained are as follows: (i)
the concentration of M decreases with the growth of the ratio k1

k2
, (ii) TAF concentration

increases with the growth of the value of ratio k1
k2

and TAF shows the smallest concentration
when the flow rate of each injected medicine is similar, (iii) tumor cells react highly sensitive
as soon as medicine supplies and tumor cell density is decreased drastically at the moment
of medicine injection, (iv) tumor cell density decreases exponentially at an early stage and
the decrease of tumor cells density is developed in a fluctuating manner along the radius.

Throughout the results obtained the flow rate of medicine injected into representative
organ is a crucial factor to control the concentration of M and TAF concentration and
determine the amount of medicine in blood vessels. Since similar flow rate of each injected
medicine produces the greatest amount of medicine in blood vessels, harmonious balanced
function between liver and heart may contribute to control the proliferation of tumor cells.
Tumor cells react immediately after medication and the density decreases exponentially at
the time of drug injection. However, the tumor cell density is diminished in a fluctuating
manner along the radius implying that a sufficient period is required for complete treatment.
The presented mathematical approach has the potential for the profound analysis of
the variations of solute medicine amount in blood vessels, TAF concentration, and the
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alteration of tumor cell density according to the recovery of liver and heart functions. The
mathematical approach may be applicable in the investigation of tumor cells’ behavior on
the basis of complex interaction among the five represented organs: kidney, liver, heart,
spleen, and lung.
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