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Abstract: We demonstrate the way to derive the second Painlevé equation P2 and its Bäcklund
transformations from the deformations of the Nonlinear Schrödinger equation (NLS), all the while
preserving the strict invariance with respect to the Schlesinger transformations. The proposed
algorithm allows for a construction of Jordan algebra-based completely integrable multiple-field
generalizations of P2 while also producing the corresponding Bäcklund transformations. We suggest
calling such models the JP-systems. For example, a Jordan algebra JMat(N,N)

with the Jordan product in
the form of a semi-anticommutator is shown to generate an integrable matrix generalization of P2,
whereas the VN algebra produces a different JP-system that serves as a generalization of the Sokolov’s
form of a vectorial NLS.

Keywords: Painlevé equations; Bäcklund transformations; Schlesinger transformations; JS-systems;
JP-systems

1. Introduction

The triumphant emergence of the Painlevé equations dates back to the very end of
the nineteenth century, when Emile Picard posed the following question [1]: what kind
of second order O.D.E.s contain no movable singularities except for poles? By 1910, Paul
Panilevé and his student Bertrand Gambier [2–4] proved that there are 50 types of second
order O.D.E.s with such a property. Six of them were shown to be irreducible to either
elementary or classical special functions. These interesting solutions have been dubbed the
Painlevé transcendents, and the corresponding six equations, the Painlevé equations I–VI.
The Painlevé equations have been extensively studied as isomonodromic deformations of
linear systems [5–9], and to this day, they remain one of the most important ingredients of
the integrable systems theory and the one most shrouded in mystery. The equations arise in
the problems that involve self-similar solutions of integrable hierarchies [10,11]; they helped
establish a (to this day not sufficiently understood) relationship between the integrability
and the problems of preservation of O.D.E.s’ monodromy [12,13]; and they positively
proliferate when one studies the dressing chains of discrete symmetries [14]. Additionally,
besides the multitude of articles that are dedicated to the equations themselves, there are
also many works on the various generalizations of said equations, running the gamut from
discrete to multiple-fields matrix models.

However, the importance of the Painlevé equations is not limited to the field of
mathematics, since many of them arise in a number of interesting physical problems. For
example, the solutions of Painlevé III emerge in the studies of the spin–spin correlation
function in the 2D Ising model [15] and occur in the scaling functions for two-dimensional
polymers [16,17]; Painlevé IV is a feature in generalizations of odd superpotentials when
one studies the exact nonsingular cosmological solutions on a 3D brain that interacts with
five-dimensional gravity and the bulk scalar field [18]; Painlevé V is necessary in the
descriptions of a density matrix of an impenetrable Bose gas [19]; and the conformal field
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theory was even shown to be intimately connected to Painlevé VI [20], as well as to V and
III [21] (see also [22]).

In this article, we will concentrate on Painlevé II, which for brevity we will henceforth
call P2:

w′′(x, α) = 2w3(x, α) + xw(x, α) + α. (1)

It, too, has a plethora of interesting applications, appearing, for instance, in the long
time asymptotics for the Kardar–Parisi–Zhang equation [23,24] and in the descriptions of
the one-dimensional asymmetric simple exclusion process (ASEP) on the integer lattice
[25]. In addition, the P2 equation arises in various physical problems: for example, during
the capture into resonance of two weakly connected nonlinear oscillators [26] and in the
framework of the electrostatic probe theory [27]. Thanks in part to all these applications,
ever since its inception in [2], P2 has been in a spotlight of many research projects, includ-
ing ones that concerned themselves with the task of constructing the exact solutions for
(1). It is known, in particular, that (1) has rational solutions as long as the parameter α
remains an integer [28,29]. It is also known that each of these solutions is represented by
a logarithmic derivative of a pair of certain polynomials, known in the literature as the
Yablonskii–Vorob’ev polynomials [30–33]. In [34], these polynomials were shown to crop
up in general solutions of soliton P.D.E.s, from the Korteweg–De Vries (KdV) equation
and NLS to Kadomtsev–Petviashvili (KP) equations (see also [33]), while in [29], it has
been demonstrated that any rational solution of P2 can be constructed via the Bäcklund
transformations (24)–(26) (we will proceed to explicitly derive these transformations later
in the article) from the solution to the homogeneous version of (1), i.e., the one with α = 0.

The article [35] has introduced a powerful new way to derive the Painlevé equations
from integrable evolution equations. Its gist was to utilize the deformations of NLS. First,
one introduces an auxiliary linear evolution equation and one auxiliary spectral problem,
in which the potential depends on the spectral parameter as a polynomial of either the
first or second order. While the former polynomial leads to KdV, the latter one produces
NLS, which is natural, since a quadratic dependence upon the spectral parameter is but
a linear Zakharov–Shabat problem, albeit written in some special gauge [36]. In the next
step, one performs a deformation of both the spectral problem and of the compatibility
equation. Finally, one looks for the travelling wave solutions of the resulting equations,
only to end up with the sought after Painlevé equation. It is a very attractive method, but
it is also admittedly somewhat overwrought. And as we shall see below, it is quite possible
to derive P2 from the (trivially) deformed NLS system in a more direct and natural way; it
appears that the key to this lies not in the auxiliary spectral problem, but in the famous
symmetries of NLS known as Schlesinger transformations (a term we use following the
seminal work [37]). Furthermore, it is these very transformations that end up serving as the
Bäcklund transformations for P2. Even better, this approach is versatile enough to be easily
generalizable to multiple-fields models. To be more precise, recall that all multiple-fields
integrable NLS generalizations can be embedded into one general formalism, associated
with a unital Jordan algebra [38]. For example, if one starts with a Jordan algebra JMat(N,N)

with the Jordan product in the form of an anticommutator divided by two, it will lead to a
system of matrix-valued NLS equations. Such systems are called the JS-systems (where
JS stands for Jordan–Shrödinger), and since we shall soon demonstrate that our approach
naturally leads to a matrix-valued analogue of P2 (and to its Bäcklund transformations),
we think it natural to introduce the term JP-systems for such equations (JP here stands for
Jordan–Painlevé). While the matrix-valued Painlevés themselves have been a subject of
many research papers, our method clearly delineates them as but the first and simplest
exhibit in a larger JP-systems menagerie. Other types of Jordan algebras will instead
produce their own distinct JP-systems.

Before we continue, let us briefly discuss the structure of this paper. Section 2 is dedi-
cated to a discussion of relevant symmetries, known as the Schlesinger transformations for
NLS, and to their relationship with the Toda chain equations. We delve deeper in Section 3,
where we study the NLS deformations, prove the invariance of the trivial deformations
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with respect to the Schlesinger transformations, and then derive the system of homoge-
neous split P2 equations. This system is equivalent to a single fourth order O.D.E., but its
order can be lowered, and it is exactly what we will do in Section 4. There, we derive the
complete P2 equation along with the corresponding Bäcklund transformations and show a
simple way to generalize the results for the matrix-valued analogue of P2. While we are
at it, we also demonstrate how a number of this equation’s properties, originally proven
only via rather difficult calculations, turn out to be essentially self-evident when viewed
through the lens of our approach. Similarly, deriving the Bäcklund transformations for the
matrix-valued P2 is very easy and is accomplished at the end of that Section. After that, we
move on to Section 5, where we describe a new JP-system which serves as a generalization
of a vectorial Sokolov model. In Section 6, we take a small step out of the confines of the
discussion focused on Painlevé II and very briefly describe the first few steps in a possible
application of our method to the task of Jordan generalizations of Painlevé IV (P4). Finally,
we conclude this paper in Section 7 by briefly discussing some of the most straightforward
and potentially interesting steps to further the subsequent development of this rich topic.

2. Schlesinger Transformation

Consider a split Nonlinear Schrödinger equation (NLS):

ut = uxx + 2u2v,

−vt = vxx + 2v2u,
(2)

where u = u(x, t), v = v(x, t). A Schlesinger transformation (ST) for (2) has the form

u→ u1 =
1
v

, v→ v1 = v(uv + (log v)xx), (3)

and
u→ u−1 = u(uv + (log u)xx), v→ v−1 =

1
u

. (4)

It is easy to see that

(u1)−1 = (u−1)1 = u, (v1)−1 = (v−1)1 = v, (5)

Hence (3) and (4) are explicitly invertible Bäcklund auto-transformations for (2).

Remark 1. The article [39] has introduced the concept of the so-called Ablowitz-Kaup-Newell-
Segur (AKNS) hierarchy of nonlinear integrable P.D.E.s. The hierarchy starts with a (split) NLS,
then goes to the coupled modified Korteweg–de Vries (cmKdV) system, and the third entry is the
Lakshmanan–Porsezian–Daniel (LPD) equations. (For a detailed description of the AKNS hierarchy,
see [40].) It is possible to prove by induction that all nonlinear equations belonging to the AKNS
hierarchy are invariant with respect to the Schlesinger transformations (3) and (4). However, the
proof is quite cumbersome and lies out of scope of this work and, as such, will be the subject of a
follow-up article.

The STs are intimately related to the Toda chain equations. If we define

sn = log un, n = −1, 0, 1, u0 = u.

then the transformation
u→ u−1 = u(uv + (log u)xx),

coupled with the fact that
v = u−1

1 = e−s1
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leads to a welcome surprise in the shape of Toda lattice:

s′′0 = exp(s−1 − s0)− exp(s0 − s1), (6)

where the prime denotes the derivative with respect to the variable x. It is safe to say that
the relationship between Equations (3) and (4), on the one hand, and the Toda chain (6), on
the other hand, is truly one of most peculiar properties of ST.

There are many known ways to generalize the Schlesinger’s approach. For exam-
ple, one might jump from the (1 + 1) NLS (2) to the (1 + 2) Davey–Stewartson (DS)
equations [41]. Alternatively, one might instead utilize the Jordan generalizations of NLS,
introduced by Svinolupov and Yamilov [38]; this approach is known to produce a number
of non-trivial structures known as JS-systems and JT-systems. However, in this article
we will concentrate on the third avenue of research that couples ST with P2. In particu-
lar, we will demonstrate that the famous Bäcklund transformations for P2 are exactly the
Schlesinger transformations (3) and (4). We will perform it by starting out with the NLS
deformations.

3. The NLS Deformations

The NLS deformation can be written in the following form [35]:

ut =c1

[
x
(

uxx + 2u2v
)
+ 2ux + 2uD−1

x (uv)
]
+ c2

(
uxx + 2u2v

)
+

+ c3(xu)x + c4xu + c5ux,
(7)

vt =− c1

[
x
(

vxx + 2v2u
)
+ 2vx + 2vD−1

x (uv)
]
− c2

(
vxx + 2v2u

)
+

+ c3(xv)x − c4xv + c5vx,
(8)

where D−1
x denotes an indefinite integral with respect to the variable x. As has been noticed

by Shabat and Yamilov, these equations are related to four of the Painlevé equations: P2, P3,
P4, and P5.

Let c1 = 0, c2 6= 0. Then the deformations (7) and (8) are trivial and reducible to the
split NLS (via the shift- and Galilean point transformations). In this case, (7) and (8) are
invariant with respect to ST, coupled with the point transformations. The latter can be
taken care of by setting c3 = 0. This yields the following:

Proposition 1. Equations (7) and (8) with c1 = c3 = 0 are invariant with respect to ST (3), (4),
regardless of coefficients c2, c4, and c5.

Consider a travelling wave solution of (7) and (8):

u = u(x + c5t), v = v(x + c5t),

which abides by the following conditions:

c4 = −c2, c5 = 0,

in accordance with Proposition 1 (keep in mind that c1 = c3 = 0). After the point
transformation u→ −u and assuming that c2 6= 0, systems (7) and (8) reduce to

u′′ = (2uv + x)u, v′′ = (2uv + x)v, (9)

which can be called a split homogeneous P2 equation, because when u = v = w(x, 0) ≡ w, it
further reduces to a special case of (1) with α = 0.

Of course, the new split P2

u′′ = (2uv + x)u, v′′ = (2uv + x)v,
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is invariant with respect to ST (3) and (4), which, for this case, take the form

u→ u1 =
1
v

, v→ v1 =
v′2

v
− (uv + x)v, (10)

u→ u−1 =
u′2

u
− (uv + x)u, v→ v−1 =

1
u

, (11)

and, naturally, log un, log vn still satisfy the Toda chain (6).
At first glance, the results we have gained are less than spectacular. First of all, it is

easy to see that the new STs (10) and (11) do not preserve the reduction u = v, thus creating
the impression that the equation P2 (1) might, after all, be unrelated to both (10) and (11)
and the corresponding Toda chain. Secondly, the r.h.s. of (9) bears no constant terms and
thus might at best be reducible to a homogeneous P2 with α = 0. All of this is exacerbated
by the fact that, in general, the equation we end up with will be of a fourth order:

L[u] ≡ u2u′′′′ − 4uu′u′′′ − 3u(u′′)2 + 2u′′(3u′2 + xu2) + 2uu′(u− xu′) = 0. (12)

However, as we shall see below, the order of (12) can be reduced. Before we do that,
though, we shall point out a number of very interesting properties it possess.

Property 1. Equation (12) is invariant with respect to transformation u→ βu, with β = const:

L[βu] = β3L[u] = 0.

Property 2. Equation (12) is invariant with respect to three discrete transformations, generated by
the nonlinear operators P0, P1, P2:

P0u =
1
u

, (13)

P1u =
u′′ − xu

2u2 , (14)

P2u =
2u

2u′2 − uu′′ − xu2 , (15)

where u is a solution of 4th order Equation (12).

Property 3. The operators P0, P1, and P2 have the following properties:

P0
2 = P1

2 = P2
2 = E, (16)

where Eu = u and
P1P0 = P0P2,
P0P1 = P2P0.

(17)

Remark 2. The interweaving relations (17) are nontrivial because

[P0, P1,2] 6= 0.

For example,

[P1, P0] =
2u′2(u′′ − xu)− u(u′′2 + 4u2 − x2u2)

2u(u′′ − xu)
.

Using these properties one can construct an infinite set of exact solutions of (12), building
upon some simple seminal solution.
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Example 1. Let us begin by adopting a trivial solution u0 = 1 of (12). We obtain an infinite set of
progressively more complex solutions from it. Let us list some of them:

u1 = P1u0 = − x
2

,

u2 = P2P1u0 =
4x

x3 − 2
,

u3 = P1P2P1u0 = − x6 − 10x3 − 20
8(x3 − 2)

,

u4 = (P2P1)
2u0 =

16(x6 − 10x3 − 20)
x(x9 − 30x6 − 1400)

,

u5 = P1u4 = − x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000
32x(x9 − 30x6 − 1400)

,

u6 = (P2P1)
3u0 =

64(x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000)
x21 − 140x18 + 4620x15 − 78400x12 − 1078000x9 − 45276000x6 + 301840000x3 + 301840000

,

(18)

and so on.

Remark 3. If λ is constant, then

P0(λu) =
1
λ

P0u,

P1(λu) =
1
λ

P1u,

P2(λu) =
1
λ

P2u,

(19)

therefore
P0P1,2(λu) = λP0P1,2u.

4. Matrix P2 Reloaded

Now, let us explain how to lower the power of differential Equation (12). We begin by
noticing that the first integral of (9) would be its Wrońskian, i.e.,

W2(u, v) = C. (20)

After we remove function v from (20), we end up with a new third order equation:

u′′′ =
3u′u′′

u
− 2xu′ + (1− 2C)u (21)

and it is straightforward to show that any solution of (21) will serve as such for (12) as well.
We are not finished. The 3rd order equation is homogeneous with respect to combi-

nation {u, u′, u′′, u′′′}, which implies that the Cole–Hopf transformation q = (log u)′ will
further reduce it to a second order O.D.E.:

q′′ = 2q3 − 2xq− 2α, (22)

where α = C− 1/2. It is this equation which we will subsequently call P2, and for a good
reason: it is reducible to the canonic form (1) via two simple substitutions:

x → −2−1/3x, q→ −21/3w (23)

However, in order to prevent an unnecessary cluttering of our formulas by throwaway
coefficients, for now we will continue working with (22) under the assumption q = q(x, α).
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It is both important and interesting to note that the Pi symmetries are in fact the
famous Bäcklund transformations for P2. Since we have chosen to embrace a non-canonical
form of P2, it is instructive to show these transformations. Here they are:

q(x, α)→ P0q(x, α) ≡ q0(x,−α) = −q(x, α), (24)

q(x, α)→ P1q(x, α) ≡ q1(x, α + 1) = −q(x, α) +
2α + 1

q′(x, α) + q2(x, α)− x
, (25)

q(x, α)→ P2q(x, α) ≡ q2(x, α− 1) = −q(x, α)− 2α− 1
q′(x, α)− q2(x, α)− x

. (26)

The transformations (24)–(26) are well-known and well-studied, although they are
usually derived from the Bäcklund transformations for KdV equations with the aid of a
self-similar change of variables. We can see now that (24)–(26) serve as discrete symmetries
for P2, i.e., the explicitly invertible Bäclund transformations for (9), which are, in turn,
nothing but ST for the trivial NLS deformation. Additionally, their connection with the
Toda chain becomes very straightforward.

The (25) and (26) are well-studied in the literature, so we can now safely leave them
and move on to the Jordan generalizations. As a particular example, consider the following
matrix equation P2:

W ′′ = 2W3 + xW + α, (27)

where W(x, α) and α = const are N × N matrices. Our goal is to derive (27) in the same
manner as (22) before that. To this end, we write a matrix equivalent of (9):

U′′ = 2UVU + xU, V′′ = 2VUV + xV, (28)

where U and V are, again, N × N square matrices. The sought after analogue of ST
Equations (10) and (11) (the analogous symmetries for the Davey–Stewartson equation
have been studied in [41] by one of the authors) will be

U → U1 = V−1,

V → V1 = V′V−1V′ −VUV − xV,
(29)

U → U−1 = U′U−1U′ −UVU − xU,

V → V−1 = U−1.
(30)

Note that the symmetries (29) and (30) are mutually inverse:

(U1)−1 = (U−1)1 = U, (V1)−1 = (V−1)1 = V.

By removing V, we end up with a matrix analogue of (12):

U′′′′ − 3U′′U−1U′′ + 2U′U−1U′U−1U′′ + 2U′′U−1U′U−1U′ − 2U′U−1U′′′−
− 2U′′′U−1U′ + 2U′U−1U′′U−1U′ + 2U′ − 2xU′U−1U′ + 2xU′′ = 0,

(31)

whose order is reducible via the first integral

VU′ −V′U = A = const. (32)

Remark 4. One can also pick an alternative integral: U′V−UV′ = B. However, since the system
(28) is invariant with respect to inversion U ↔ V, this option simply means that B = −A.

Now, we define the matrix-valued function q as

q ≡ U′U−1. (33)
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such that it satisfies the condition

V = (2U)−1
(

q′ + q2 − xE
)

,

so after a few simple calculations (32), we obtain

q′′ = 2q3 − 2xq + E− 2UAU−1. (34)

Of course, if A is proportional to a unitary matrix A = cE, then (34) will be identical to
(22), except that q will be an N × N matrix, whereas 2α = 2c− 1 will be equal to a product
of E and a number. The equation then turns into (27) via the same point transformation as
the one used in the scalar case.

It has been previously pointed out by Balandin in [42] that the diagonality of A
might be a necessary condition for the integrability of matrix P2. We now see that the
non-diagonality actually leads to the integrability (for our purposes, the integrability of a
nonlinear equation means the existence of an explicitly invertible Bäcklund transformation—
an analogue of the Schlesinger transformations) of some non-local integro-differential
matrix analogue of P2. However, this equation might be rewritten in a completely local
form via a different substitution:

Q ≡ U−1U′.

which results in a different, and rather elegant, matrix O.D.E.:

Q′′ = 2Q3 − 2xQ + [Q′, Q] + E− 2A. (35)

In a scalar case, the commutator vanishes, delivering us P2.

Remark 5. This work was reaching its conclusion when we learned of a paper by Adler and
Sokolov [43], published in 2021. There, the authors introduced three matrix-valued integrable
generalizations of P2, denoted by Adler and Sokolov as P0

2 , P1
2 , and P1

2 . Out of these three, the
first one was (35) exactly, whereas the second generalization can be derived from (35) via a specific
matrix shift of an independent variable. Interestingly, the authors of [43] have introduced their
versions of equations mostly voluntarily (essentially acting on the principle of “in a scalar case
a term with the commutator vanishes; let’s add it to the mix!”), while in our approach, (35) is a
necessary outcome of previous calculations. Nevertheless, we admit that we cannot claim the honour
of discovering (35); it rightfully belongs to Adler and Sokolov.

To conclude our discussion of Jordan generalizations, let us jot down the Bäcklund
transform for (35). Let

J ≡ Q2 + Q′ − xE,

Then, the direct Bäcklund transformation will have the form

Q→ Q1 = JQJ−1 − J′ J−1, A→ A1 = A + E, (36)

while its inverse

Q→ Q−11 = I−1QI + I−1 I′, A→ A−1 = A− E, (37)

where
I = Q2 −Q′ − xE = J − 2Q′.

5. The Vectorial Painlevé Equation

Now, let us take one more step and attempt to tackle a vectorial generalization of P2.
In order to do this, we will use the model of vector NLS originally introduced by Sokolov
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(and studied in [38]). Let U = {u1(x), u2(x), .., uN (x)}T and V = {v1(x), v2(x), .., vN (x)}T

be two N-dimensional vectors with a standard Euclidean scalar product

(UV) =
N

∑
i=1

uivi.

What kind of equation are we going to call an N-component vector P2? It will be a
system of 2N equations, with the following vector representation:

U′′ = 4(UV)U− 2(UU)V + xU,

V′′ = 4(UV)V− 2(VV)U + xV.
(38)

One might at first hesitate calling (38) the P2 equation, but it is in fact a literal general-
ization of P2. For example, in the case of N = 2, (38) has the form

u′′1 = 4(u1v1 + u2v2)u1 − 2(u2
1 + u2

2)v1 + xu1,

u′′2 = 4(u1v1 + u2v2)u2 − 2(u2
1 + u2

2)v2 + xu2,

v′′1 = 4(u1v1 + u2v2)v1 − 2(v2
1 + v2

2)u1 + xv1,

v′′2 = 4(u1v1 + u2v2)v2 − 2(v2
1 + v2

2)u2 + xv2,

(39)

and for N = 3,

u′′1 = 4(u1v1 + u2v2 + u3v3)u1 − 2(u2
1 + u2

2 + u2
3)v1 + xu1,

u′′2 = 4(u1v1 + u2v2 + u3v3)u2 − 2(u2
1 + u2

2 + u2
3)v2 + xu2,

u′′3 = 4(u1v1 + u2v2 + u3v3)u3 − 2(u2
1 + u2

2 + u2
3)v3 + xu3,

v′′1 = 4(u1v1 + u2v2 + u3v3)v1 − 2(v2
1 + v2

2 + v2
3)u1 + xv1,

v′′2 = 4(u1v1 + u2v2 + u3v3)v2 − 2(v2
1 + v2

2 + v2
3)u2 + xv2,

v′′3 = 4(u1v1 + u2v2 + u3v3)v3 − 2(v2
1 + v2

2 + v2
3)u3 + xv3.

(40)

Consider (39). Solve the first two equations for v1, v2 and substitute them into the
remaining equation. The result will be a system of two equations of fourth order for u1
and u2 that we will omit here owing to its cumbersomeness. However, if we assume that
u1 = u2 = u, both of these equations will be reducible to (12), which is just another form
of P2. In a similar vein, the system (40) can be coaxed into producing a system of three
equations of fourth order with a total of 92 terms in each; they are tamed by the conditions
u1 = u2 = u3 = u, contracting down to a single Equation (12).

The vector form of P2 permits an explicit self-transformation of the kind

U→ U(1) = − (UU)′

(UU)
U′ +

(UU)′′

2(UU)
U− (UU)V,

V→ V(1) = − U
(UU)

,
(41)

U→ U(−1) = − V
(VV)

,

V→ V(−1) = − (VV)′

(VV)
V′ +

(VV)′′

2(VV)
V− (VV)U.

(42)

which allows us to construct infinitely diverse families of exact solutions for (38) based on
the initial trivial offering. For example, if we take an arbitrary constant N-vector

w = {w1, w2, w3, ..., wN}
T ,
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then the simplest solutions of (38) will be of the form

V = w, U = − wx
2|w|2 , (43)

Applying to them our transformation (41), after the n-th iteration, we will gather the
following solution:

V(n) = wv(n), U(n) = u(n) w
|w|2 , (44)

where the scalar functions v(n) = v(n)(x), u(n) = u(n)(x) are derived with the aid of the
Schlesinger transformation:

u(n+1) = u(n)
(

log u(n)
)′′
−
(

u(n)
)2

v(n),

v(n+1) = − 1
u(n)

.
(45)

Here are the fruits of our labours. Applying (45) for (43) yields

u(1) =
2− x3

4x
, v(1) =

2
x

,

u(2) =
x6 − 10x3 − 20

8(2− x3)
, v(2) =

2x
x3 − 2

,

u(3) = − x(x9 − 30x6 − 1400)
16(x6 − 10x3 − 20)

, v(3) =
8(x3 − 2)

x6 − 10x3 − 20
,

u(4) = − x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000
32x(x9 − 30x6 − 1400)

,

v(4) =
16(x6 − 103 − 20)

x(x9 − 30x6 − 1400)
,

u(5) = − x21 − 140x18 + 4620x15 − 78400x12 − 1078000x9 − 45276000x6 + 301840000(x3 + 1)
64(x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000)

,

v(5) =
32x(x9 − 30x6 − 1400)

x15 − 70x12 + 700x9 − 9800x6 − 196000x3 + 196000
,

(46)

etc. Thus, we obtain a chain of exact solutions u(k), k ∈ N, which we shall recognize
straight away, because we have seen them before. In fact, they are almost identical to the
uk solutions (18) we procured in Section 3. A closer examination reveals the following
relationship between the old solutions uk and the new one:

v(k) = (−1)k · u(−1)k

k
, u(k) = (−1)k · u(−1)k

k+1
.

Another interesting starting point for generating new solutions would be the null-
vector V ≡ 0. This choice not only converts the system (38) into a linear equation, but it
also implies that every component uk of vector U satisfies the Airy equation:

u′′k = x uk. (47)

Two linearly independent solutions of (47) are the so-called Airy functions Ai(x) and
Bi(x), which for x ∈ R can be written as [44]

Ai(x) =
1√
π

∞∫
0

cos
(

t3

3
+ xt

)
dt

Bi(x) =
1√
π

∞∫
0

[
exp

(
− t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt.

(48)
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One can therefore write general solutions of Equation (47) as a linear combination of
Ai(x) and Bi(x):

uk = akAi(x) + bkBi(x), ak, bk ∈ R, (49)

and applying the transformations (41) and (42) to (49) (keeping in mind that vk ≡ 0),
we will end up with a rather different family of exact solutions that not only contains
2N arbitrary parameters {ak}N

k=1, {bk}N
k=1, but is also completely entirely determined via

the Airy functions and their derivatives. (This is but one of many examples where the
solutions of the integrable nonlinear differential equations can be written in terms of the
Airy functions; for instance, in [45], the Airy functions are shown to be an important
ingredient in the solution of the Cauchy problem for the Novikov–Veselov equation.)

Before the conclusion, let us emphasize the fact that (38) is a JP-system, whose Jordan
algebra VN is determined by the Jordan product

(e, x)y + (e, y)x− (x, y)e,

where e, x, and y are the elements of N-dimensional vector space; ( . , . ) is the scalar
product; and e = (1, 0, 0, ..)T is a unit in the VN algebra.

6. On a Way to the Painlevé IV

In the previous sections, we have succeeded in developing a technique for the con-
struction of solutions for the P2 equation, thus completing the main goal of this article.
Nevertheless, the success motivates us to at least take a short glance at the possibility of
extending our technique for the remaining five Panilevé equations. Thus, in this section we
will briefly explain how to do that for Painlevé IV. First of all, we have to point our that
NLS, whose deformations acted as a sort of a launchpad for our investigation, is tightly
related to yet another famous integrable equation known as the Kadomtsev–Petviashvili
equation (KP). This relationship, discovered and used in [46,47] to generate new rogue
wave soliton solutions (i.e., the solutions that are localized in both space and time; origi-
nally discovered by Howell Peregrine in 1983 for NLS [48], the rogue wave solutions have
been steadily cropping up in almost every field of mathematical physics, from the collapse
of intrathermocline eddies in the ocean [49] to a magnetic “impacton” arising during a
collision of two positon solutions in ferromagnetic nanowires [50]), can only be properly
understood in the framework of the AKNS hierarchy (see Remark 1 and article [40]). For
our purposes, it is important to single out the existence of an explicit relationship between
the solutions of (split) NLS and KP. The latter equation can be written as a compatibility
condition of two different linear equations; their shapes determine two types of dressing
chains of discrete symmetries. Say we choose a first one [51]:

α(s− f )y + (s + f )xx + s2
x − f 2

x = 0, (50)

with α2 = ±1. Let us add a periodic boundary condition

fn+N = fn + c(y),

where f = fn, s = fn+1. For a period N = 3, choose c = −2y/α and introduce new field
variables gn, n = 1, 2, 3 as follows:

f1 =
1
2
(g1 − g2 + g3 + c), f2 =

1
2
(g1 + g2 − g3 − c), f3 =

1
2
(−g1 + g2 + g3 + c).

This will result in three equations for our new functions gn; their forms have been
previously explicitly derived in [52]. Excluding g3 and using the compatibility condition
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∂y∂2
x g2 = ∂2

x∂y g2 will produce for us the nonlinear equation, which, after some simple
transformations, can be written as

zxx =
1
2

z2
x
z
+

3
2

z3 + 4xz2 + 2(x2 − 2)z +
β

z
+

+
3α2q2

2z
− 3αqz +

α

z
D−1

x

(
z3 + 2xz2 − 3αqz

)
y

, zy = qx.

(51)

where z = g1x and q = g1y. In a one-dimensional limit, the dependence on y vanishes
along with all the terms containing q and the derivatives with respect to y, so Equation (51)
ends up being the sought after P4.

If we repeat all these calculations, this time starting out from the Jordan generalization
of NLS, we shall arrive at the Jordan generalizations of P4, i.e., at the JP-systems. We will
return to this problem in a subsequent paper.

7. Conclusions

In this article, we have demonstrated how the coupling of NLS deformations with
the Schlesinger transformation naturally produces the Second Painlevé equation P2 and
its Bäcklund transformations. The resulting scheme is versatile enough to help generalize
the JS-system formalism for the JP-systems, by which we understand the multiple-fields
integrable generalization of P2, based upon the unital Jordan algebras. This opens up a
number of very promising avenues of research, including the ultimate goal of classification
and description of JP-systems. Another interesting possibility lies in applying the new
results to the task of constructing new discrete analogues of P2 (cf. [53]), associated with
the Jordan algebras. The novel approach developed herein is based on the invertible
Bäcklund transformations, which serve as a crucial part of the JP-systems theory. This
further reinforces our opinion that the process of the discretization of the JP-system will
see no substantial difficulties.

Now let us summarize the main results.

1. We have demonstrated how the trivial deformations of NLS, invariant with respect to
the Schlesinger transformations, can be reduced to a system of two split O.D.E.s of
second order that inherits this symmetry.

2. The resulting system is shown to be equivalent to a single fourth order O.D.E.; its
order can be reduced, producing a familiar equation: P2.

3. Inherent Schlesinger symmetries appear to be nothing more but well-known explicitly
invertible Bäcklund transformations for P2. Thus, we obtain a very simple and concise
method for the derivation of both P2 and its Bäcklund autotransformations.

4. The simplicity of the method paves the way for its generalization for multiple fields
models—a problem which is traditionally considered a difficult one. We demonstrate
how the new approach dispels the difficulties in establishing multicomponent P2
generalizations associated with arbitrary unital Jordan algebras. This implies that the
multicomponent integrable (in the sense of having an analogue of the Schlesinger
transformation) P2 generalizations can actually be classified, for example, by a set of
structural constants of a corresponding Jordan algebra. We have called such models
JP-systems.

5. Another interesting observation that needs to be emphasized is that existence of
explicitly invertible Bäcklund transformations opens a way to generalize the proposed
method to the discrete Painlevé equations. Taking into account the rapid growth of
interest in the discretization of Painlevé equations (see [53–56]), it would not be
unreasonable to expect the said method to be useful to the research.

One last question must be addressed before we wrap up. In this article, we have
developed a method of generalization for the Second Painlevé equation. What about the
remaining five? In the last Section, we briefly touched upon Painlevé IV and how it can
be naturally introduced into our considerations via the fascinating relationship between
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NLS and KP equations. As for the rest, at this stage we can only surmise that it might
be possible to construct a similar scheme for at last some of them, since these equations
also posses the Schlesinger symmetries and the chains of discrete symmetries [52]. This,
however, is of course a matter for another time and another article. For now, let us simply
conclude by stating out humble hope that the approach developed in this article might be
of use in both the theory of Painlevé equations and in mathematical physics in general.
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