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Abstract: This study aims to achieve an efficient time-frequency representation of higher-dimensional
signals by introducing the notion of a non-separable linear canonical wavelet transform in L2(Rn).
The preliminary analysis encompasses the derivation of fundamental properties of the novel integral
transform including the orthogonality relation, inversion formula, and the range theorem. To extend
the scope of the study, we formulate several uncertainty inequalities, including the Heisenberg’s,
logarithmic, and Nazorav’s inequalities for the proposed transform in the linear canonical domain.
The obtained results are reinforced with illustrative examples.
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1. Introduction

The origin of the multi-dimensional linear canonical transform (LCT) dates back to
the early 1970s with the foundational work of Moshinsky and Quesne [1] in quantum
mechanics to study the linear maps of phase space. Soon after its inception in quantum
mechanics, the linear canonical transform has been exclusively studied both in theory and
applications [2,3]. The theory of multi-dimensional non-separable LCT involving a general
2n× 2n real, symplectic matrix M = (A, B : C, D) with n(2n + 1) independent parameters
offers a canonical formalism for the representation of several physical systems in a lucid
and insightful way. For any f ∈ L2(Rn), the non-separable LCT with respect to a real,
symplectic matrix M is given by [4,5]

FM[ f
]
(w) =

1
|det B|1/2

∫
Rn

f (t) eiπ
(

wT DB−1w−2wT BT−1
t+tT B−1 At

)
dt, |det B| 6= 0. (1)

The importance of the arbitrary real symplectic matrices involved in Equation (1) lies in
the fact that an appropriate choice of the matrix can be taken to inculcate a sense of rotation
and shift into both the time and frequency axes, resulting in an efficient representation of the
chirp-like signals, which are ubiquitous both in nature and man-made systems. Due to the
extra degrees of freedom, the non-separable LCT has been successfully employed in diverse
problems arising in various branches of science and engineering, such as harmonic analysis,
reproducing kernel Hilbert spaces, optical systems, quantum mechanics, sampling, image
processing, and so on [6,7].
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Undoubtedly, wavelet transforms have fascinated the scientific, engineering, and
research communities both with their versatile applicability and lucid mathematical frame-
work [8,9]. In recent years, the classical wavelet transform has been extended and employed
in different domains. The most prompt ones are the fractional wavelet transform [10],
linear canonical wavelet transform [11,12], special affine wavelet transform [13,14], quater-
nion linear canonical wavelet transform [15], and quadratic-phase wavelet transform [16].
Unfortunately, all these transforms only perform well at representing point singularities
and are incompetent at handling the distributed singularities, such as curves or edges
in higher-dimensional signals [17–20]. The intuitive reason for this inadequacy is that
wavelets are isotropic entities generated by isotropically dilating the mother wavelet, and
as such, they ignore the geometric properties of the structures to be analyzed. Therefore,
the conventional wavelet approach is inadequate while dealing with multi-dimensional
signals, wherein the primary interest is to efficiently capture the geometric features, such
as edges and corners, appearing due to the spatial occlusion between different objects. As
such, the key problem in multi-dimensional signal analysis is to extract and characterize
the relevant geometric information regarding the occurrence of curves and boundaries in
signals. Subsequently, a higher-dimensional variant of the standard wavelet transform
has been proposed, which serves as a potent tool for representing non-transient multi-
dimensional signals in the time-frequency domain. Mathematically, the multi-dimensional
wavelet transform of any f ∈ L2(Rn) is defined by [21]

Wψ

[
f
]
(a, b) =

1√
a

∫
Rn

f (t)ψ

(
t− b

a

)
e−iw·t dt, a ∈ R+, b ∈ Rn, (2)

where a is called the scaling parameter, which controls the degree of compression or scale,
and b is the translation parameter that determines the time location of the wavelet. The
multi-dimensional wavelet transform in Equation (2) has found numerous applications
across diverse fields of science and engineering, particularly in video image processing,
medical imaging, singular detection problems, fluid dynamics, shape recognition, and so
on [21,22]. In the context of higher-dimensional wavelet theory, the symmetry property
of wavelets is often desirable in practical applications, and as such, wavelets can reveal
different patterns and singularities of highly nonstationary signals, such as Brownian
motions, patterns on the water surfaces, fractal properties of the velocity field, computations
of Renyi dimensions, Hurst and H¨older exponents. Some prominent examples of the
symmetric wavelets include biorthogonal wavelets, quincunx wavelets, and carinal B-
splines.

Keeping in view the profound characteristics of the multi-dimensional wavelet trans-
form and more degrees of freedom of non-separable linear canonical transforms, we are
deeply motivated to intertwine these integral transforms into a novel integral transform
coined as a non-separable linear canonical wavelet transform. The novel integral transform
can efficiently localize any non-transient signal in the time-frequency plane with more
degrees of freedom. With major modifications to the existing multi-dimensional wavelet
transform in Equation (2), we propose the non-separable linear canonical wavelet transform
of any f ∈ L2(Rn) concerning the free symplectic matrix M = (A, B : C, D) as

WM
ψ

[
f
]
(a, b) =

1
|det B|1/2

∫
Rn

f (t)ψ

(
t− b

a

)
e−πi

(
ΛT

a DB−1Λa−2ΛT
a BT−1

t+tT B−1 At
)

dt, (3)

where Λa = (a a . . . a)T . Besides studying all the fundamental properties of the novel
wavelet transform, we derive some well-known theorems, including the Rayleigh’s the-
orem, inversion formula, and range theorem. In the sequel, we also formulate several
uncertainty inequalities such as the Heisenberg’s, logarithmic, and Nazorav-type inequali-
ties for the non-separable linear canonical wavelet transform in Equation (3).

The rest of the article is structured as follows: Section 2 is concerned with the prelimi-
nary aspects of the study and the formulation of the non-separable linear canonical wavelet
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transform. Section 3 is devoted to formulating several variants of the uncertainty princi-
ples, such as Heisenberg’s, logarithmic, and Nazorav-type inequalities, for the proposed
transform. Finally, a conclusion is extracted in Section 4.

2. Non-Separable Linear Canonical Wavelet Transform in L2(Rn)

In this section, we first provide a healthy overview of the non-separable linear canoni-
cal transform. Then, we introduce the notion of the non-separable linear canonical wavelet
transform in L2(Rn), followed by some fundamental properties of the proposed transform,
including the orthogonality relation, energy preserving relation, range theorem, and the
inversion formula.

2.1. Non-Separable Linear Canonical Transform

For typographical convenience, we shall denote a real 2n× 2n matrix

M =

(
A B
C D

)
=



a11 a12 . . . a1n b11 b12 . . . b1n
a21 a22 . . . a2n b21 b22 . . . b2n
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . ann bn1 bn2 . . . bnn
c11 c12 . . . c1n d11 d12 . . . d1n
c21 c22 . . . c2n d21 d22 . . . d2n
...

...
. . .

...
...

...
. . .

...
cn1 cn2 . . . cnn dn1 dn2 . . . dnn


(4)

as M = (A, B : C, D), where A, B, C, and D are n × n sub-matrices with real entries.
Moreover, the matrix M = (A, B : C, D) is said to be free symplectic if MTJM = J
and |det B| 6= 0, where J = (0, In : −In, 0), and In denotes the n-dimensional iden-
tity matrix. Furthermore, the sub-matrices corresponding to the free symplectic matrix
M = (A, B : C, D) satisfy

ABT = BAT , CDT = DCT , ADT − BCT = In, (5)

or equivalently

ATC = CT A, BT D = DT B, AT D− CT B = In. (6)

The transpose and inverse corresponding to the free symplectic matrix M = (A, B : C, D)
are given by MT =

(
AT , CT : BT , DT) and M−1 =

(
DT ,−BT : −CT , AT), respectively.

Moreover, we have

MM−1 =

(
A B
C D

)(
DT −BT

−CT AT

)
=

(
ADT − BCT −ABT + BAT

CDT − DCT −CBT + DAT

)

=

(
In 0
0 In

)
.

A typical example of a 4× 4 free symplectic matrix is given below

M =


1 2 −1/2 −1/2
−2 1 −1/2 1/2
−1 −3 1 1
−1 0 −1/2 1/2

.
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Definition 1. Given a free symplectic matrix M = (A, B : C, D), the non-separable linear canoni-
cal transform of any f ∈ L2(Rn) is denoted by FM[ f

]
and is defined as

FM[ f
]
(w) =

∫
Rn

f (t)KM(t, w) dt, (7)

where the kernel KM(t, w) is given by

KM(x, w) =
1

|det B|1/2 exp
{

πi
(
wT DB−1w− 2wT BT−1

t + tT B−1 At
)}

, |det B| 6= 0. (8)

The additive property of the non-separable LCT (Equation (7)) is very crucial for its
understanding and application and is given by

FM1
[
FM2

[
f (t)

]]
(w) = FM1M2

[
f (t)

]
(w).

The Plancheral and inversion formulae corresponding to Equation (7) are given by〈
f , g
〉

2 =
〈
FM[ f

]
, FM[g]〉

2
, ∀ f , g ∈ L2(Rn) and (9)

f (t) = FM−1
[
FM[ f

]
(w)

]
(x) =

∫
Rn
FM[ f

]
(w)KM−1

(w, t) dw, (10)

respectively, where M−1 =
(

DT ,−BT : −CT , AT). Furthermore, the kernel in Equation (8)
satisfies the following properties:

(i) KM−1
(w, t) = KM(t, w),

(ii)
∫
Rn
KM(t, w)KM−1

(t, z) dt = δ(z−w),

(iii)
∫
Rn
KM(t, w)KM−1

(z, w) dw = δ(z− t),

(iv)
∫
Rn
KM(t, w)KN(t, z) dt = KMN(w, z).

The non-separable linear canonical transform (Equation (7)) encompasses several
well-known integral transforms, including the Fourier transform (FT), fractional Fourier
transform (FrFT), linear canonical transform (LCT), and the Fresnel transforms (FrT) [4].
Table 1 shows some special cases of the non-separable linear canonical transform.

Table 1. Some special cases of the non-separable linear canonical transform.

Free Symplectic MATRIX M = (A, B : C, D) Free Metaplectic Transformation

• A = D = 0, B = −C = In n-dimensional FT
• A = diag(a11, · · · , ann),

B = diag(b11, · · · , bnn),
C = diag (c11, · · · , cnn),

D = diag (d11, · · · , dnn)
n-dimensional separable LCT

• A = D = diag (cos θ1, · · · , cos θn),
B = −C = diag (sin θ1, · · · , sin θn) n-dimensional separable FrFT

• A = D = In cos θ, B = −C = In sin θ n-dimensional non-separable FrFT
• A = D = In, B = diag (b11, · · · , bnn), C = 0 n-dimensional separable FrT

• A = D = In, C = 0 n-dimensional non-separable FrT

2.2. Non-Separable Linear Canonical Wavelet Transform

Wavelets act as window functions whose radius increases in time (reduces in fre-
quency) while resolving the low-frequency contents and decreases in time (increases in
frequency) while resolving high-frequency contents of a non-transient signal. Mathemat-
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ically, a doubly indexed family of wavelets ψa,b is generated by restricting the scaling
parameter a belonging to R+ and the translation parameter b belonging to Rn as [8]:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, a ∈ R+, b ∈ Rn. (11)

The scaling parameter a measures the degree of compression or scale, whereas the
translation parameter b determines the location of the wavelet. With major modifications
of the family (Equation (4)), we define a new family of functions ψM

a,b(t) with respect to a
free symplectic matrix M = (A, B : C, D) as:

ψM
a,b(t) =

1√
a

ψ

(
t− b

a

)
KM(t, a), (12)

where

KM(t, a) =
1

|det B|1/2 exp
{

πi
(

ΛT
a DB−1Λa − 2ΛT

a BT−1
t + tT B−1 At

)}
, (13)

where Λa = (a a . . . a)T . Having formulated a family of analyzing functions, we are now
ready to introduce the definition of the non-separable linear canonical wavelet transform
in L2(Rn).

Definition 2. For any f ∈ L2(Rn), the non-separable linear canonical wavelet transform of f
with respect to an analyzing wavelet ψ and the free symplectic matrix M = (A, B : C, D) is defined
by

WM
ψ

[
f
]
(a, b) =

1√
a|det B|

∫
Rn

f (t)ψ

(
t− b

a

)
e−πi

(
ΛT

a DB−1Λa−2ΛT
a BT−1

t+tT B−1 At
)

dt. (14)

Definition 2 allows us to make the following comments:
(i) The non-separable linear canonical wavelet transform can be written in the inner-

product form as

WM
ψ

[
f
]
(a, b) =

〈
f , ψM

a,b

〉
,

where ψM
a,b(t) is given by Equation (12).

(ii) It is worth noticing that the proposed transform in Equation (7) encompasses
several existing integral transforms, such as the classical wavelet transform, fractional
wavelet transform, linear canonical wavelet transform, and so on [8,9]. The corresponding
wavelet transforms can be obtained by choosing an appropriate symplectic matrix M =
(A, B : C, D).

We now present an example for the lucid illustration of the proposed non-separable
linear canonical wavelet transform in Equation (14).

Example 1. (a) Consider the function f (t) = e(
12
11 t1− 30

11 t2)
2

and the 2D-Morlet function ψ(t) =
eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0. Then, the translated and scaled versions of ψ(t) are given by

ψ

(
t− b

a

)
= exp

{
−

i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2

}
exp

{
−

t2
1

2a2 +

(
iλ1

a
+

b1

a2

)
t1

}

× exp

{
−

t2
2

2a2 +

(
iλ2

a
+

b2

a2

)
t2

}
. (15)
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Consequently, the family of non-separable linear canonical wavelets ψM
a,b(t) is obtained as:

ψM
a,b(t) =

1√
a |det B|

ψ

(
t− b

a

)
exp

{
iπ
(

ΛT
a DB−1Λa − 2ΛT

a BT−1
t + tT B−1 At

)}
. (16)

To compute the non-separable linear canonical wavelet transform of f (t) with respect to the
window function ψ(t), Λ = (1, 1), and a real symplectic matrix

M =

(
A B
C D

)
=


1/6 1 −2 1/6

−5/6 −1/6 1/6 5/3

1 0 12/29 −31/29

−6/29 −36/29 36/29 0

,

we proceed as:

WM
ψ

[
f
]
(a, b) =

1√
a |det B|

exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2

}

×
∫
Rn

e(
12
11 t1− 30

11 t2)
2

exp

{
−

t2
1

2a2 +

(
b1

a2 −
i
a

)
t1

}
exp

{
− t2

2
2a2 +

(
b2

a2 −
i
a

)
t2

}
× exp

{
− πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

dt1 dt2. (17)

Moreover, we have

ΛT
a DB−1Λa = −

36
121

(
a a

)(12/29 −31/29

36/29 0

)(
5/3 −1/6

−1/6 −2

)(
a

a

)

= − 36
121

(
a a

)(5579/6786 1720/1131

60/29 −6/29

)(
a

a

)

= −756 a2

605
, (18)

ΛT
a BT−1

t = − 36
121

(
a a

)( 5/3 −1/6

−1/6 −2

)(
t1

t2

)

= − 6a
121

(9t1 − 13t2), (19)

tT B−1 At = − 36
121

(
t1 t2

)( 5/3 −1/6

−1/6 −2

)(
1/6 1

−5/6 −1/6

)(
t1
t2

)

= − 36
121

(
t1 t2

)( 5/2 61/6

59/6 1

)(
t1
t2

)

= − 36
121

(
5t2

1
2

+ 20t1t2 + t2
2

)
. (20)

Implementing Equations (18)–(20) in Equation (17), we obtain
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WM
ψ

[
f
]
(a, b) =

11
6
√

a
exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2 +
756πia2

605

}

×
∫
R

exp
{
−
(

1
2a2 −

90πi + 144
121

)
t2
1 +

(
b1

a2 −
i
a
− 12aπi

121

)
t1

}
dt1

×
∫
R

exp
{
−
(

1
2a2 −

36πi + 900
121

)
t2
2 +

(
b2

a2 −
i
a
− 156aπi

121

)
t2

}
dt2

=
11π

6

√
a
(

1
2a2 −

90πi + 144
121

)(
1

2a2 −
36πi + 900

121

)

× exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2 +
756πia2

605

}

× exp


(

b1

a2 −
i
a
− 12aπi

121

)2

4
(

1
2a2 −

90πi + 144
121

)
 exp


(

b2

a2 −
i
a
− 156aπi

121

)2

4
(

1
2a2 −

36πi + 900
121

)
. (21)

For different values of a and b, the corresponding non-separable linear canonical wavelet
transforms are plotted in Figures 1–3.

(b) Consider the constant function f (t) = K and the two-dimensional Morlet wavelet ψ(t) =
eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0. Then, the non-separable linear canonical wavelet transform of f (t)
with respect to the real symplectic matrix

M =

(
A B
C D

)
=


2 −1/8 1/4 −1

1/8 −2 1 1/4
−2/15 −31/30 1 0

1 2/3 −4/5 −14/15


is given by

WM
ψ

[
f
]
(a, b) =

1√
a |det B|

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2

}

×
∫
Rn

K exp

{
−

t2
1

2a2 +

(
b1
a2 −

iλ1
a

)
t1

}
exp

{
−

t2
2

2a2 +

(
b2

a2 −
iλ2
a

)
t2

}
× exp

{
−iπ

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

dt. (22)

Moreover, we have

ΛT
a DB−1Λa =

16
15
(
a a

)( 1 0

−4/15 −14/15

)(
−1/4 1

−1 1/4

)(
a

a

)
=

12 a2

25
, (23)

ΛT
a BT−1

t =
16
15
(
a a

)(−1/4 1

−1 1/4

)(
t1

t2

)
= −4a

3
(t1 − t2), (24)

tT B−1 At =
16
15
(
t1 t2

)(−1/4 1

−1 1/4

)(
2 −1/8

1/8 −2

)(
t1
t2

)
= −2

5

(
t2
1 + t2

2

)
. (25)
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Implementing Equations (23)–(25) in Equation (22), we obtain

WM
ψ

[
f
]
(a, b) = K

√
15
16a

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2 − 12πia2

25

}

×
∫
R

exp
{
−
(

1
2a2 −

2πi
5

)
t2
1 +

(
b1

a2 −
iλ1

a
+

8aπi
3

)
t1

}
dt1

×
∫
R

exp
{
−
(

1
2a2 −

2πi
5

)
t2
2 +

(
b2

a2 −
iλ2

a
− 8aπi

3

)
t2

}
dt2

=
Kπ(

1
2a2 −

2
5

) √ 15
16a

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2 − 12πia2

25

}

× exp


(

b1

a2 −
iλ1

a
+

8aπi
3

)2

4
(

1
2a2 −

2πi
5

)
 exp


(

b2

a2 −
iλ2

a
− 8aπi

3

)2

4
(

1
2a2 −

2πi
5

)
. (26)
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The non-separable linear canonical wavelet transforms shown in Equation (26) of f
corresponding to Λ = (1, 1) are plotted in Figures 4–6.
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Next, we shall derive a fundamental relationship between the non-separable linear
canonical wavelet transform (Equation (7)) and the non-separable linear canonical trans-
form (Equation (1)). With the aid of this formula, we shall study the fundamental properties
of the proposed transform.

Proposition 1. LetWM
ψ

[
f
]
(a, b) and FM[ f

]
(a) be the non-separable linear canonical wavelet

transform and the non-separable linear canonical transform of any f ∈ L2(Rn), respectively. Then,
we have

FM
[
WM

ψ

[
f
]]
(w) =

√
a |det B| KM(b, Λa) eπi a2wT DB−1wFM[ f

]
(w)FM

[
Ψ
]
(aw), (27)

where

Ψ(t, a) = eπi
(

2(aΛa)T BT−1
t−tT B−1 At

)
ψ(t). (28)

Proof. Applying the definition of the non-separable linear canonical transform, we have

FM
[
ψM

a,b(t)
]
(w)

=
∫
Rn

1√
a

ψ

(
t− b

a

)
1√
|det B|

exp
{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

× 1√
|det B|

exp
{

πi
(

wT DB−1w− 2wT BT−1
t + tT B−1 At

)}
dt

=

√
a

|det B|

∫
Rn

ψ(z) exp
{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

(b + az)
)}

× exp
{

πi
(

wT DB−1w− 2wT BT−1
(b + az)

)}
dz

=

√
a

|det B|

∫
Rn

ψ(z) exp
{

πi
(

wT DB−1w− 2(awT)BT−1
z + zT B−1 Az

)}
× exp

{
−πi

(
ΛT

a DB−1Λa − 2(aΛa)
T BT−1

z + zT B−1 Az
)}

× exp
{

πi
(

2ΛT
a BT−1

b− 2wT DB−1w
)}

dz

=

√
a

|det B|

∫
Rn

ψ(z) exp
{

πi
(
(aw)T DB−1(aw)− 2(aw)T BT−1

z + zT B−1 Az
)}

× exp
{

πi
(

wT DB−1w− 2wT BT−1
b + bT B−1 Ab

)}
× exp

{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

b + bT B−1 Ab
)}

× exp
{
−πi

(
(aw)T DB−1(aw)− 2(aΛa)

T BT−1
z + zT B−1 Az

)}
dz

=
√

a |det B| e−πi a2wT DB−1w KM(b, w)KM(b, Λa)

×
∫
Rn

eπi
(

2(aΛa)T BT−1
z−zT B−1 Az

)
ψ(z)KM(z, aw) dz

=
√

a |det B| e−πi a2wT DB−1w KM(b, w)KM(b, Λa)FM[Ψ](aw), (29)

where Ψ(t, a) = eπi
(

2(aΛa)T BT−1
t−zT B−1 At

)
ψ(t).

Invoking the Plancheral theorem for the non-separable linear canonical transform
and using Equation (29), we have
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WM
ψ

[
f
]
(a, b) =

√
a |det B| KM(b, Λa)

∫
Rn

eπi a2wT DB−1wFM[ f
]
(w)FM

[
Ψ
]
(aw)KM(b, w) dw

= FM−1
[√

a |det B| KM(b, Λa) eπi a2wT DB−1wFM[ f
]
(w)FM

[
Ψ
]
(aw)

]
(b).

Consequently,

FM
[
WM

ψ

[
f
]
(a, b)

]
(w) =

√
a |det B| KM(b, Λa) eπi a2wT DB−1wFM[ f

]
(w)FM

[
Ψ
]
(aw).

This completes the proof of Proposition 1.

2.3. Basic Properties of the Non-Separable Linear Canonical Wavelet Transform

In this subsection, we shall study some mathematical properties of the proposed non-
separable linear canonical wavelet transform (Equation (7)), including Rayleigh’s theorem,
inversion formula, and the range theorem. In this direction, we have the following theorem,
which assembles some of the basic properties of the proposed transform.

Theorem 1. For any f , g ∈ L2(Rn) and α, β ∈ R, k ∈ Rn, and µ ∈ R+, the non-separable linear
canonical wavelet transform as defined by Equation (7) satisfies the following properties:

(i) Linearity: WM
ψ

[
α f + βg

]
(a, b) = αWM

ψ

[
f
]
(a, b) + βWM

ψ

[
g
]
(a, b)

(ii) Anti-linearity: WM
αψ+βφ

[
, f
]
(a, b) = ᾱWM

ψ

[
f
]
(a, b) + β̄WM

φ

[
f
]
(a, b)

(iii) Translation:

WM
ψ

[
f (t− k)

]
(a, b) = e2πiΛaBT−1

kWM
ψ

[
f (t) eπi(kT B−1 Ax+xT B−1 Ak)

]
(a, b− k)

(iv) Scaling: WM
ψ

[
f (µt)

]
(a, b) = |µ|1− n

2 WM′
ψ f (µa, µb), M′ = (A/µ, B/µ : µC, µD)

(v) Conjugation: WM
ψ̄

[
f̄
]
(a, b) =

1√
a
WM′

ψ

[
f
]
(a, b), M′ = (A,−B : −C, D).

Proof. For the sake of brevity, we omit the proof of the theorem.

Next, we shall define the admissibility condition for a function ψ ∈ L2(Rn).

Definition 3. A function ψ ∈ L2(Rn) is said to be admissible with respect to a real free symplectic
matrix M = (A, B : C, D) if

Cψ =
∫
R+

∣∣FM[Ψ](aw)
∣∣2

a
da < ∞, a.e. w ∈ Rn, (30)

where Ψ(t, a) is given by Equation (28).

We are now in a position to derive the orthogonality relation for the proposed trans-
form defined in Equation (7). As a consequence of the orthogonality relation, we will
demonstrate that the non-separable wavelet transform is an isometry from the space of
square-integrable functions L2(Rn) to the space of transforms L2(Rn ×R+).

Theorem 2. LetWM
ψ

[
f
]
(a, b) andWM

ψ

[
g
]
(a, b) be the non-separable linear canonical wavelet

transforms of f and g belonging to L2(Rn), respectively. Then, we have∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2 = Cψ

〈
f , g
〉
, (31)

where Cψ is given by Equation (30).
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Proof. For any pair of square integrable functions f and g, Proposition 1 implies that

WM
ψ

[
f
]
(a, b) =

√
a |det B|

∫
Rn

eπi a2wT DB−1wFM[ f
]
(w)KM(b, w)KM(b, Λa)FM

[
Ψ
]
(aw) dw

and

WM
ψ

[
g
]
(a, b) =

√
a |det B|

∫
Rn

eπi a2xT DB−1xFM[g](x)KM(b, x)KM(b, Λa)FM
[
Ψ
]
(ax) dx,

where Ψ are given by Equation (28). Consequently, we have

∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2

= |det B|
∫
Rn×Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM[ f
]
(w)FM

[
g
]
(x)

×FM[Ψ](aw)FM
[
Ψ
]
(ax)KM(b, Λa)KM(b, Λa)KM(b, x)KM(b, w)

db dw dx da
a

=
∫
Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM[ f
]
(w)FM

[
g
]
(x)

×FM[Ψ](aw)FM
[
Ψ
]
(ax)

{∫
Rn
KM(b, x)KM(b, w) db

}
dw dx da

a

=
∫
Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM[ f
]
(w)FM

[
g
]
(v)

× FM[Ψ](aw)FM
[
Ψ
]
(ax) δ(w− x)

dw dx da
a

=
∫
Rn×R+

FM[ f
]
(w)FM

[
g
]
(w)

∣∣∣FM[Ψ](aw)
∣∣∣2 dw da

a

=
∫
Rn
FM[ f

]
(w)FM

[
g
]
(w)

{∫
R+

∣∣FM[Ψ](aw)
∣∣2

a
da

}
dw

= Cψ

〈
FM[ f

]
(w), FM[g](w)

〉
2

= Cψ
〈

f , g
〉

2.

This completes the proof of Theorem 2.

Remark 1. (i). For f = g, Theorem 2 yields the energy preserving relation associated with the
non-separable linear canonical wavelet transform (Equation (10)):∫

Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 db da
a2 = Cψ

∥∥ f
∥∥2

2. (32)

(ii). The operatorWM
ψ is a bounded-linear operator. Moreover, for Cψ = 1 and |det B| = 1, the

operatorWM
ψ becomes an isometry from L2(Rn) to L2(Rn ×R+).

In our next theorem, we demonstrate that the non-separable linear canonical wavelet
transformWM

ψ

[
f
]
(a, b) of any function f ∈ L2(Rn) is reversible in the sense that f can be

easily recovered from the transformed domain L2(Rn ×R+).

Theorem 3. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of an

arbitrary function f ∈ L2(Rn). Then, f can be reconstructed via

f (t) =
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 , a.e. (33)



Symmetry 2021, 13, 2182 13 of 21

Proof. According to Theorem 2, we can write

〈
f , g
〉
=

1
Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2

=
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)

{∫
Rn

g(t)ψM
a,b(t) dt

}
db da

a2

=
1

Cψ

∫
Rn×Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t) g(t)
dt db da

a2

=
1

Cψ

〈∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 , g(t)
〉

.

Since g is chosen arbitrarily from L2(Rn), using the elementary properties of inner products,
one can obtain

f (t) =
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 a.e.

This completes the proof of Theorem 3.

Finally, we investigate the characterization of the range for the proposed trans-
form (Equation (7)). As a consequence of the range theorem, we shall demonstrate that the
range of the non-separable linear canonical wavelet transforms; that is,WM

ψ (L2(Rn)) is a
reproducing kernel Hilbert space.

Theorem 4. If f ∈ L2(Rn ×R+), then f belongs to the rangeWM
ψ

(
L2(Rn)

)
if and only if

f
(
a′, b′

)
=

1
Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2 , (34)

where Cψ satisfies Equation (27).

Proof. Assume that f ∈ WM
ψ (L2(Rn)). Then, there exists a square integrable function g

such thatWM
ψ g = f . In order to show that f satisfies Equation (34), we proceed as

f
(
a′, b′

)
=WM

ψ

[
g
](

a′, b′
)

=
∫
Rn

g(t)ψM
a′ ,b′(t) dt

=
1

Cψ

∫
Rn

{∫
Rn×R+

WM
ψ

[
g
]
(a, b)ψM

a,b(t)
db da

a2

}
ψM

a′ ,b′(t) dt

=
1

Cψ

∫
Rn×R+

WM
ψ

[
g
]
(a, b)

{∫
R

ψM
a,b(t)ψM

a′ ,b′(t) dt
}

db da
a2

=
1

Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2 ,

which evidently verifies our claim. Conversely, suppose that the function f satisfies
Equation (34). To verify that f ∈ WM

ψ (L2(Rn)), it is sufficient to find out a function
g ∈ L2(Rn) such thatWM

ψ g = f . Therefore, the desired function g will be constructed as
follows:
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Let

g(t) =
1

Cψ

∫
Rn×R+

f (a, b)ψM
a,b(t)

db da
a2 . (35)

Then, it is straightforward to obtain
∥∥g
∥∥

2 ≤
∥∥ f
∥∥

2 < ∞; that is g ∈ L2(Rn). Further-
more, by virtue of the Fubini theorem, we have

WM
ψ

[
g
](

a′, b′
)
=
∫
Rn

g(x)ψM
a′ ,b′(t) dt

=
1

Cψ

∫
Rn

{∫
Rn×R+

f (a, b)ψM
a,b(t)

db da
a2

}
ψM

a′ ,b′(t) dt

=
1

Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2

= f
(
a′, b′

)
.

This completes the proof of Theorem 4.

Corollary 1. For any admissible wavelet ψ ∈ L2(Rn), the range of the proposed non-separable
linear canonical wavelet transform; that is,WM

ψ (L2(Rn)) is a reproducing kernel Hilbert space
embedded as a subspace in L2(Rn ×R+

)
with the kernel given by

KΛ
ψ

(
a, b; a′, b′

)
=
〈

ψM
a,b, ψM

a′ ,b′

〉
2
. (36)

3. Uncertainty Principles for the Non-Separable Linear Canonical Wavelet Transform

The uncertainty principle lies at the heart of harmonic analysis, which asserts that
“the position and the velocity of a particle cannot be both determined precisely at the
same time” [23]. The harmonic analysis version of this principle states that “a non-trivial
function cannot be properly localized in both the time and frequency domains at the same
time” [24]. This standard inequality has been extensively studied in numerous domains and
vistas [25–27]. Keeping in view the fact that the theory of uncertainty principles for the non-
separable linear canonical wavelet transform is yet to be explored exclusively; therefore, it
is both theoretically and practically fascinating to develop some new uncertainty principles,
including the Heisenberg’s, logarithmic, and Nazaros uncertainty principles for the non-
separable linear canonical wavelet transform 7.

Theorem 5. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of any

non-trivial function f ∈ L2(Rn) with respect to a real free symplectic matrix M = (A, B : C, D),
then the following uncertainty inequality holds:

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣dw
}1/2

≥
n σmin(B)

√
Cψ

4π

∥∥∥ f
∥∥∥2

2
, (37)

where σmin(B) denotes the minimum singular value of matrix B.

Proof. The classical Heisenberg–Pauli–Weyl uncertainty inequality for any f ∈ L2(Rn) in
the non-separable linear canonical domain is given by [7]:

{∫
Rn

∣∣b∣∣2∣∣ f (b)∣∣2db
}1/2{∫

Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣2dw
}1/2

≥ n σmin(B)
4π

{∫
Rn

∣∣ f (b)∣∣2db
}

. (38)



Symmetry 2021, 13, 2182 15 of 21

We shall identify WM
ψ

[
f
]
(a, b) as a function of the time variable b and then in-

voke Equation (38) so that{∫
Rn

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db
}1/2{∫

Rn

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2dw
}1/2

≥ n σmin(B)
4π

{∫
Rn

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db
}

. (39)

Integrating Equation (39) with respect to the da/a2, we obtain

∫
R+

{∫
Rn

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db
}1/2{∫

Rn

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2dw
}1/2 da

a2

≥ n σmin(B)
4π

{∫
Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 db da
a2

}
. (40)

As a consequence of the Cauchy–Schwartz’s inequality, Fubini theorem, and Equa-
tion (30), we can express Equation (40) as

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn×R+

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2 dw da
a2

}1/2

≥
n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
.

Using Proposition 1, we can rewrite the above inequality as follows

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn×R+

∣∣w∣∣2∣∣∣FM[ f
]
(w)FM[Ψ](aw)

∣∣∣2 da dw
a

}1/2

≥
n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
,

or equivalently,

{ ∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣2(∫
R+

∣∣FM[Ψ](aw)
∣∣2

a
da

)
dw

}1/2

≥
n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
.

Finally, using Equation (27), we obtain the desired result:

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣dw
}1/2

≥
n σmin(B)

√
Cψ

4π

∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 5.

Remark 2. The uncertainty inequality in Equation (37) embodies a wide class of uncertainty
relations including the ones corresponding to the separable linear canonical wavelet transform,
fractional wavelet transform, and classical wavelet transforms. The corresponding uncertainty
principles can be obtained by choosing an appropriate matrix parameter M = (A, B : C, D).

Example 2. For the sake of computational convenience, we restrict ourselves to the two-dimensional
space. From the inequality in Equation (37), we observe that the lower bound can be adjusted suitably
by choosing a real, free symplectic matrix M = (A, B : C, D) and the analyzing function ψ.
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(i). Consider the real, free symplectic matrix

M1 =

(
A1 B1
C1 D1

)
=


1/2 −3/2 1 −1
3/2 1/2 −1 −1

0 −1 1 −1
−1 0 1 1


and the two-dimensional Morlet wavelet ψ1(t) given by

ψ1(t) = eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0.

Then, by virtue of Equation (28), we obtain

Ψ(t, a) = exp
{

πi
(

2aΛT
a BT−1

t− tT B−1 At
)}

ψ(t)

= exp

{
πi

(
−2a2t2 +

t2
1 + t2

2
2

)}
exp

{
i(λ1t1 + λ2t2)−

t2
1 + t2

2
2

}

= exp
{
−
(

1− πi
2

)
t2
1 + λ1t1

}
exp

{
−
(

1− πi
2

)
t2
2 + (λ2 − 2a2)t2

}
.

Subsequently, we have

FM[Ψ](aw)

=
1

|det B|1/2

∫
R2

Ψ(t, a) exp
{

πi
(
(aw)T DB−1(aw)− 2(aw)T BT−1

t + tT B−1 At
)}

dt

=
1

|det B|1/2

∫
R2

exp
{
−
(

1− πi
2

)
t2
1 + λ1t1

}
exp

{
−
(

1− πi
2

)
t2
2 + (λ2 − 2a2)t2

}
× exp

{
πi

(
a2(ω2

1 −ω2
2
)
+ aω1(t2 − t1) + aω2(t1 + t2)−

t2
1 + t2

2
2

)}
dt1 dt2

=
√

2 eπia2(ω2
1−ω2

2)
∫
R

exp

{
−

t2
1
2
+
(
λ1 − aπi(ω1 −ω2)

)
t1

}
dt1

×
∫
R

exp

{
−

t2
2
2
+
(
λ2 − 2a2 + aπi(ω1 + ω2)

)
t1

}
dt2

= 2π
√

2a eπia2(ω2
1−ω2

2) exp

{(
λ1 − aπi(ω1 −ω2)

)2

2

}
exp

{(
λ2 − 2a2 + aπi(ω1 + ω2)

)2

2

}
.

Taking λ1 = aπi and λ2 = 2a2, we obtain∣∣∣FM[Ψ](aw)
∣∣∣2 = 8π2a exp

{
− a2π2(1 + 2ω2

1 + 2ω2
2 + ω2

)}
. (41)

Implementing Equation (41) in Equation (30) yields

Cψ = 8π2
∫
R+

exp
{
− π2(1 + 2ω2

1 + 2ω2
2 + ω2

)
a2
}

da =
4π3/2√

1 + 2ω2
1 + 2ω2

2 + ω2

.

In particular, for (ω1, ω2) = (1, 1), we obtain

Cψ =
4π3/2
√

6
. (42)
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Therefore, for any normalized function f ∈ L2(R2), an application of Equation (42) in Equation
(37) yields the lower bound for the Heisenberg’s inequality in Equation (37) of the form

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣dw
}1/2

≥
(

2
3π

)1/4
. (43)

(ii). Consider the real, free symplectic matrix

M2=

(
A2 B2
C2 D2

)
=


1/6 1 −2 1/6
−5/6/2 −1/6 1/6 5/3

1 0 12/29 −31/29
−6/29 −36/29 36/29 6

,

and the two-dimensional DOG wavelet ψ2 given by

ψ2(t) =
1

2α2 e−|t|
2/(2α2) − e−|t|

2/2, 0 < α < 1.

Similar to computations carried out in (i), we can show that

Cψ2 =
6π

11

√
1 + 3α2

1 + α2 , and, (44)

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣dw
}1/2

≥

√
101(1 + 3α2)

66π(1 + α2)
. (45)

(iii). Finally, for the real free symplectic matrix

M3=

(
A3 B3
C3 D3

)
=


2 −1/8 1/4 −1

1/8 −2 1 1/4
−2/15 −31/30 1 0

1 2/3 −4/5 −14/15


and the two-dimensional Maxican-hat wavelet ψ3

ψ3(t) =
(
2− |t|2

)
e−|t|

2/2.

The admissibility constant Cψ3 and inequality in Equation (37) turn out to be

Cψ3 =
π5/2

2

√
16
17

, and, (46){∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM[ f
]
(w)

∣∣∣dw
}1/2

≥
(

16π

17

)1/4√17
32

. (47)

The lower bounds of the Heisenberg’s uncertainty inequality in Equation (37) corre-
sponding to the aforementioned parametric symplectic matricies and analyzing functions
are summarized in Table 2.
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Table 2. Lower bounds associated with the Heisenberg’s inequality in Equation (37).

Symplectic Matrix Admissibility Constant Cψ Lower Bound

Cψ1 = 4π3
√

π

6

(
2

3π

)1/4

M1 = (A1, B1 : C1, D1)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2

1
21/4

√
1 + 3α2

1 + α2

Cψ3 =
π5/2

2

√
16
17

( π

32

)1/4

Cψ1 = 4π3
√

π

6

(
11π3

3

)1/4 √101
(12π)

M2 = (A2, B2 : C2, D2)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2

√
101(1 + 3α2)

66π(1 + α2)

Cψ3 =
π5/2

2

√
16
17

π1/4
√

101
88

Cψ1 = 4π3
√

π

6

(
17π3

8

)1/4 √17
8π

M3 = (A3, B3 : C3, D3)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2
1
8

(
16
17

)1/4
√

17(1 + 3α2)

π(1 + α2)

Cψ3 =
π5/2

2

√
16
17

(
16π

17

)1/4√17
32

In our next theorem, we shall establish the logarithmic uncertainty principle for the
non-separable linear canonical wavelet transform in Equation (14).

Theorem 6. Let ψ be an admissible function and suppose thatWM
ψ

[
f
]
(·, b) ∈ S(Rn), then the

non-separable linear canonical wavelet transform (Equation (14)) of any f ∈ S(Rn) satisfies the
following logarithmic estimate of the uncertainty inequality:∫

Rn×R+
ln
∣∣b∣∣∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 + Cψ

∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣∣FM[ f
]
(w)

∣∣∣2 dw

≥
[

Γ′(n/2)
Γ(n/2)

− ln π

]
Cψ

∥∥ f
∥∥2

2. (48)

whenever the L.H.S of Equation (48) is defined.

Proof. For any f ∈ S(R) ⊆ L2(Rn), the logarithmic uncertainty principle for the non-
separable linear canonical transform (Equation (7)) is given by∫

Rn
ln|t|

∣∣ f (t)∣∣2dt +
∫
Rn

ln
∣∣∣wBT−1

∣∣∣ ∣∣FM[ f
]
(w)

∣∣2dw ≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn

∣∣ f (t)∣∣2dt.

(49)

IdentifyingWM
ψ

[
f
]
(a, b) as a function of the translation parameter b and then replace

f ∈ S(Rn) withWM
ψ

[
f
]
(a, b), we have

∫
Rn

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2db +
∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM[WM
ψ

[
f
]
(a, b)

]
(w)

∣∣2dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db. (50)
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Integrating Equation (50) with respect to the measure da/a2, we obtain

∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 +

∫
Rn×R+

ln
∣∣∣wBT−1

∣∣∣∣∣FM[WM
ψ

[
f
]
(a, b)

]
(w)

∣∣2 da dw
a2

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 . (51)

As a consequence of Proposition 1, we can simplify Equation (51) as:

∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 +

∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM[ f
]
(w)

∣∣2{∫
R+

∣∣FM[Ψ](aw)
∣∣2

a
da

}
dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

)
Cψ

∥∥ f
∥∥2

2. (52)

Equivalently,∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 + Cψ

∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM[ f
]
(w)

∣∣2dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

)
Cψ

∥∥ f
∥∥2

2. (53)

This completes the proof of Theorem 6.

Nazarov’s uncertainty principle measures the localization of a non-trivial function f
by taking into consideration the notion of support of the function instead of the dispersion
as used in the Heisenberg–Pauli–Weyl inequality (38). In this direction, we have the
following theorem.

Theorem 7. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of any

function f ∈ L2(Rn). Then, the following inequality holds:

CeC(T1,T2)

(∫
Rn\T1×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db
a2 + Cψ

∫
Rn\(T2BT)

∣∣FM[ f
]
(w)

∣∣2dw

)
≥ Cψ

∫
Rn

∣∣ f (t)∣∣2dt, (54)

where C(T1, T2) = C min
(
|T1||T2|, |T1|1/nW(T2),W(T1)T1/n

2

)
, W(T1) is the mean width of

T1, and |T1| denotes the Lebesgue measure of T1.

Proof. For an arbitrary function f ∈ L2(Rn) and a pair of finite measurable subsets T1 and
T2 of Rn, Nazarov’s uncertainty principle in the linear canonical domain reads [5]

CeC(T1,T2)

(∫
Rn\T1

∣∣ f (t)∣∣2dt +
∫
Rn\(T2BT)

∣∣FM[ f
]
(w)

∣∣2dw

)
≥
∫
Rn

∣∣ f (t)∣∣2dt, (55)

where C(T1, T2) = C min
(
|T1||T2|, |T1|1/nW(T2),W(T1)T1/n

2

)
, W(·) is the mean width of

the measurable subset, and | · | denotes the Lebesgue measure.
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By identifyingWM
ψ

[
f
]
(a, b) as a function of b followed by invoking Equation (55),

we obtain

CeC(T1,T2)

(∫
Rn\T1

∣∣WM
ψ

[
f
]
(a, b)

∣∣2db +
∫
Rn\(T2BT)

∣∣FM[WM
ψ

[
f
]
(a, b)

]
(w)

∣∣2dw

)
≥
∫
Rn

∣∣WM
ψ

[
f
]
(a, b)

∣∣2db, (56)

Upon integrating Equation (56) with respect to the measure da/a2, we have

CeC(T1,T2)
(∫

Rn\T1×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db
a2 +

∫
Rn\(T2BT)×R+

∣∣FM[WM
ψ

[
f
]
(a, b)

]
(w)

∣∣2 da dw
a2

)
≥
∫
Rn×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db
a2 .

Finally, as a consequence of orthogonality relation in Equation (31) and Proposition 1,
we obtain the desired result

CeC(T1,T2)

(∫
Rn\T1×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db
a2 + Cψ

∫
Rn\(T2BT)

∣∣FM[ f
]
(w)

∣∣2dw

)
≥ Cψ

∫
Rn

∣∣ f (t)∣∣2dt.

This completes the proof of Theorem 7.

4. Conclusions

In the present article, we introduced the notion of a kernel-based non-separable linear
canonical wavelet transform in L2(Rn) for obtaining an efficient time-frequency repre-
sentation of higher-dimensional non-transient signals that has more degrees of freedom.
Besides studying all the fundamental properties, such as Rayleigh’s theorem, inversion
formula, and range theorem, we have also formulated several uncertainty inequalities for
the proposed transform containing Heisenberg’s, logarithmic, and Nazarov’s inequalities
in the non-separable linear canonical domain.
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