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Abstract: The pairwise comparison (PC) matrix is often used to manifest human judgments, and
it has been successfully applied in the analytic hierarchy process (AHP). As a PC matrix is formed
by making paired reciprocal comparisons, symmetry is a striking characteristic of a PC matrix. It
is this simple but powerful means of resolving multicriteria decision-making problems that is the
basis of AHP; however, in practical applications, human judgments may be inconsistent. Although
Saaty’s rule for the consistency test is commonly accepted, there is evidence that those so-called
“acceptable” PC matrices may not be ordinally consistent, which is a necessary condition for a PC
matrix to be accepted. We propose an ordinal consistency indicator called SDR (standard deviation
of ranks), derive the upper bound of the SDR, suggest a threshold for a decision-maker to assess
whether the ordinal consistency of a PC matrix is acceptable, and reveal a surprising fact that the
degree of ordinal inconsistency of a small PC matrix may be more serious than a large one. We made
a comparative analysis with some other indicators. Experimental results showed that the ordinal
inconsistency measured by the SDR is invariant under heterogeneous judgment measurements with
a varied spectrum of scales, and that the SDR is superior to the two compared indicators. Note that
the SDR not only works for a multiplicative PC matrix but can also be used for additive and fuzzy
PC matrices.

Keywords: analytic hierarchy process; multiple criteria decision-making; ordinal consistency; pair-
wise comparisons; rank

1. Introduction

Since Thurstone’s eminent article was published, the pairwise comparison matrix
(PC matrix for short) has been a well-known method used to help decision-makers to
manifest experts’ subjective judgments [1]. The PC matrix has been successfully applied
in methodologies of multicriteria decision-making, such as the analytic hierarchy process
(AHP). AHP is a theory of measurement with ratio scales through pairwise comparisons
and relies on the judgments of experts to derive a priority vector [2,3]. Decision-making
is a mental activity that people often face. Sometimes, it is a complex and difficult task,
especially when we are confronted with multiple, usually conflicting, criteria, and when
we need to rank multiple alternatives in order to find the best one [4]. To simplify such a
complex problem, we may decompose it into smaller and more easily tractable ones; in
addition, due to the limit of our capability of handling multi-entities simultaneously, we
may compare two entities at a time and express the degree of our preference of one entity
over the other one.

The AHP perfectly provides us with a comprehensive framework that deals with
problem decomposition in a systematic way, and by using a PC matrix, it enables us
simultaneously to cope with the intuitive, the rational, and the irrational when we handle
real world decisions and complexities [3]. A debate about the main criticisms of the
AHP can be found [5]. Despite their long history, the PC and the AHP are still very
attractive subjects for research. There are some survey and review papers about the PC
and the AHP [6–8].
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A PC matrix is presented as a square matrix A = [aij], where aij > 0, for every i, j = 1,
n, manifest expert’s assessment based on relative comparisons of an entity i over another
entity j. Here, an entity could be a criterion or an alternative. Several scales have been
proposed to present subjective judgment [2,9–11]. It is worth noting that there is a general
unified framework for PC matrices where entry aij of the matrix can be a preference ratio,
i.e., multiplicative case, or a preference difference, i.e., additive case, or a value in the range
of [0, 1] that measures the distance from the indifference, i.e., fuzzy case [12]. By using a
logarithmic mapping and an exponential mapping, the multiplicative case and additive
case are interchangeable [13]. In this study, we focus on the multiplicative case, but the
results can also be used for additive and fuzzy PC matrices.

Since entry aij is an estimate of the underlying ratio (αi/αj), without surprising that
aii = 1 for all i. A PC matrix is called reciprocal if aij =1⁄aji, forall i, j = 1, 2, . . . , n, and is
called consistent if aijajk = aik, for all i, j, k = 1, 2, . . . , n. All PC matrices discussed here are
reciprocal because this is an essential and rational condition. As the pairwise comparisons
that we consider are formed by making paired reciprocal comparisons, symmetry is a
striking characteristic of a PC matrix. It is this simple, but powerful means of resolving
multicriteria decision-making problems that is the basis of the AHP [14]; however, they
are not necessarily consistent because this is a desirable property that is what we want
to achieve, not only from the academic perspective but also from the decision-maker’s
perspective. Although sometimes we need to deal with an incomplete PC matrix [15],
hereinafter, a PC matrix means a complete reciprocal PC matrix.

Two theoretical issues relating to the usage of the PC matrix are of special interest: the
choice of a prioritization technique and inconsistency evaluating [16]. There are several dif-
ferent methods commonly used to derive the estimated priority vector α = (α1, α2, · · · , αn)
of a PC matrix [17–23]. It is well known that if a PC matrix A is inconsistent, different
prioritization methods may derive different estimates of priority vector α; however, if A is
consistent, different prioritization methods should derive the same estimate [18]. Unfortu-
nately, the judgments of decision-makers may be inconsistent, especially in the situation of
many entities involved.

This study is devoted to the second issue: inconsistency evaluating. The issue of
inconsistency has attracted increasing attention from inception to recent years and resulted
in various indicators of measurement have been proposed [16,24–33]; however, the usage
of the indicators is justified only by some heuristics, and it is still unclear what they really
“measure” [16]. Although a considerable number of studies have been performed, the
discussion on inconsistency indicators is far from being over, and the ground is still fertile
for debates [27]. Recently, there are some studies have been devoted to proposing a set of
properties to characterize the inconsistency indicators [29,34,35].

There are two types of inconsistency: cardinal and ordinal. While cardinal consistency
is a sufficient condition of a PC matrix to be considered acceptable, ordinal consistency
is a necessary condition [36]. In other words, cardinal consistency guarantees ordinal
consistency, and cardinal inconsistency does not imply ordinal inconsistency; however,
ordinal inconsistency guarantees cardinal inconsistency [37]. It seems that only one incon-
sistency indicator is insufficient for describing the inconsistency of a PC matrix; thus, the
improvement of the notion of inconsistency should be necessary [38]. Moreover, it has been
confirmed that a relatively high percentage of comparison matrices satisfying Saaty’s rule
of consistency test is ordinally inconsistent [37,39,40]. (Rule of “consistency ratio should be
less than 0.1.”) However, Saaty’s rule of consistency is a test that is still commonly accepted;
therefore, we focus on the ordinal inconsistency.

The remainder of this paper is organized as follows. In Section 2, a brief literature
review is introduced. In Section 3, we present the proposed ordinal inconsistency indicator
called SDR (standard deviation of ranks), derive the upper bound of the SDR that is a
function of the size of the PC matrix, and suggest a threshold for the decision-maker to
decide whether the ordinal consistency of a PC matrix is acceptable. In Section 4, some
inconsistency indicators are compared and results are presented. Further, two kinds of PC
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matrices called CPC matrix (the “corner” PC matrix) and FPC matrix (the “full” PC matrix)
are used to illustrate the superiority of the SDR [33]. Finally, the conclusion and discussion
are given in Section 5.

2. Literature Review

Ever since Saaty’s [2,14] development of the analytic hierarchy process (AHP), many
applications in practical decision-making have been reported [41–48]; however, the main
challenge of using pairwise comparison is its lack of consistency, which in practice is
very often the case; in other words, most PC matrices are inconsistent. There are several
causes of inconsistency, including psychological reasons, type errors, and an insufficient
model structure [49].

Detecting and rectifying the inconsistency of a PC matrix is an important and active re-
search area. Consequently, there are various suggestions have been proposed [13,36,37,40,50–54].
Several inconsistency indicators have been proposed to estimate the deviation of experts’
judgments from a situation of complete consistency [12,16,26,27]. Cavallo and D’Apuzzo
provided a consistency indicator that has a natural meaning, and it is easy to compute
in the additive and multiplicative cases [12]. Brunelli et al. proved the proportional-
ity between some consistency indicators [26]. Brunelli et al. investigated and analyzed
10 indicators from a numerical perspective. The results show that there is a strong or
weak correlation between these indicators, and since each indicator is, in fact, a different
definition, it has its own advantages and disadvantages. In addition, it also pointed out
that there is no recognized standard that can be used to measure the appropriateness of
different indicators. [26,27].

Saaty’s consistency indicator CI and CR rule of 0.1 have been widely debated [18,28,40,45,54–56].
For example, by using the numerical results of a simulation analysis, Xu et al. showed that
it is impossible to find some proper critical values of CR for different matrix sizes, and
argued that Saaty’s consistency test could be unreasonable [56]. Moreover, there is evidence
that those so-called “acceptable” PC matrices may not be ordinally consistent [37,39,40].

However, relative to cardinal consistency, there are seldom studies devoted to ordinal
consistency [36,54,57]. Genest and Zhang, based on a Gower plot [58], proposed a graphical
method to detect the elements in a PC matrix that cause major ordinal and cardinal
inconsistencies [57]. By using a Gower plot and two optimization models, Li and Ma
proposed an iterative method to assist a decision-maker in detecting/adjusting ordinal and
cardinal inconsistencies [54]. By using route matrices and digraphs, Yang et al. developed
an adjustment procedure to help decision-makers correct the inconsistency [36].

In the next section, we introduce an ordinal consistency indicator that is quite different
from the foregoing suggestions in that it is not only easy to understand but also easy to use
to measure the degree of ordinal inconsistency of a PC matrix. Moreover, the proposed
indicator not only works for multiplicative PC matrix but also can be used for an additive
and fuzzy PC matrix, as we use only ordinal information instead of cardinal information.

3. The Proposed Indicator SDR

For an n× n PC matrix A =
[
aij
]
, we first construct a corresponding rank matrix R:

Rn×n =
[
rij
]
, ∀ i, j = 1, 2, · · · , n.

Here, entry rij is the rank of aij in the i-th row of A. For example, a 4× 4 PC matrix A
as follows:

A =


1 2
1⁄2 1

4 5
3 6

1⁄4 1⁄3
1⁄5 1⁄6

1 3
1⁄3 1

.



Symmetry 2021, 13, 2183 4 of 11

We will have a corresponding rank matrix R as follows:

R =


4 3
4 3

2 1
2 1

4 3
3 4

2 1
2 1

.

Note that the proposed method is applicable to the additive and fuzzy PC matrices.
Evidently, entry rij belongs to {1, 2, . . . , n}. Then an ordinal inconsistency indicator SDR
(standard deviation of ranks) can be defined [59] as:

SDR[A] =
∑n

1 σj

n
.

The variable σj is the standard deviation of the j-th column of the corresponding rank
matrix Rn×n. For the 4× 4 PC matrix A mentioned above, we will obtain SDR[A] = 0.25,
as σ1 = σ2 = 0.5 and σ3 = σ4 = 0. It is obviously that for a PC matrix A of order n, the
minimum of SDR is 0, that is, A is completely ordinally consistent. Without surprise, the
greater the SDR[A], the greater the inconsistency of the PC matrix A. The worst situation of
inconsistency will occur when all entries of a column with a different rank and all entries
of a raw with a different rank, if without tie between two entities (When the result of a
comparison is a tie, we can use a more detailed judgment, for example, the numbers from
1.1 to 1.9 [60]). For example,

R4×4 =


1 2
2 1

3 4
4 3

3 4
4 3

2 1
1 2

.

Here, we have σj =1.29, for all j = 1, 2, 3, 4. Based on such an observation, it is easy to
derive the following proposition.

Proposition 1. For a PC matrix A of order n, the upper bound of SDR[A] is
√

n(n+1)
12 .

Proof. It is well known that the standard deviation σ of n observations is

σ =

√
∑n

i=1(xi − x )2

(n− 1)
.

Now, let xi = i, and use σ1∼n to stand for the standard deviation of these n numbers,
then we have

σ1∼n =

√√√√∑n
i=1 (i− n+1

2 )
2

(n− 1)
.

Thus, it iseasytoderivethefollowingresult: (Since ∑n
i=1 i = n(n+1)

2 , and ∑n
i=1 i2 = n(n+1)(2n+1)

6 ).

σ1∼n =

√
n(n + 1)

12
.

�

Evidently, the upper bound of SDR[A] is a function of n, i.e., the size of a PC matrix A.
This property is important, because one of the reasons why Saaty’s consistency check is
criticized is that it cannot provide proper critical values for matrices of different sizes [29].
Table 1 lists the upper bounds of SDR[A] for a PC matrix A of size n from 3 to 15.
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Table 1. The upper bounds of the SDR[A] for PC matrix A of size n = 3 ∼ 15.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1∼n 1 1.29 1.58 1.87 2.16 2.45 2.74 3.03 3.32 3.61 3.89 4.18 4.47

Figure 1 reveals that the upper bound of SDR[A] steadily increases as the size of PC
matrix A increases.
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We use NSDR[A], which stands for the normalized SDR[A] (i.e., NSDR[A] =
SDR[A]

n );
thus, we will obtain the following proposition.

Proposition 2. For a PC matrix A with order n ≥ 3, the upper bound of NSDR[A] lies in the
range of

[
1√
12

, 1
3

]
.

Proof. By definition, the upper bound of NSDR[A] is
√

(n+1)
12n . Obviously, when n = 3, the

upper bound of NSDR[A] = 1
3 , and lim

n→∞

√
(n+1)

12n = 1√
12

. �

Figure 2 reveals a surprising fact that the upper bound of NSDR[A] declines as the
size of PC matrix A increases.

Strictly speaking, a PC matrix A can be called ordinally consistent only if SDR[A] = 0;
otherwise, it should be called ordinally inconsistent. However, in practice, we may use a
threshold to decide whether a PC matrix of order n is acceptable or not, according to the
following inequality:

SDR[A] ≤ δσ1∼n

Here, the Greek small letter δ stands for a threshold, where 0 ≤ δ ≤ 1, and the choice
of an adequate threshold depends on the decision-maker’s attitude. The more rigorous
attitude is, the higher (i.e., a smaller value of δ) the threshold is. Alternatively, we can
set the threshold, in a statistical manner, to be under a certain percentile (denoted by p)
of the distribution of SDR[A], for example, p = 0.05 or 0.1. Similarly, the choice of an
appropriate percentile also depends on the decision-maker’s attitude. To provide such a
threshold, we examined the distribution of SDR[A] by systematically generating possible

PC matrices. That is, a total of (2x− 1)∑n−1
i=1 i matrices, if we use an x-scales measurement
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for a PC matrix of size n. Here, the term of x-scales measurement means the decision-
maker can choose 2x − 1 symmetric reciprocal values to present his/her assessment about
the relative comparisons of two entities. (Saaty [2] suggested a widely used symmetric
reciprocal 9-scales

[
1
9 , 1

8 , · · · , 1
2 , 1, 2, · · · , 8, 9

]
with a neutral value of 1). Therefore, if we

use a 4-scale measurement for a 4× 4 PC matrix, there are a total of (117,639 = 76) matrices.
Experimental results show that there are only 1166 4× 4 PC matrices, which is less than one
percent (1166/117,639 = 0.00991) of all matrices, which are completely ordinally consistent,
i.e., SDR[A] = 0; therefore, it is reasonable to set the threshold as in 5th or 10th percentile.
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Table 2 summarizes the results of seven percentiles (p = 0.01~0.5) for 3× 3 PC matrix
using three different judgment scale measurements (S: Saaty’s [2], I: Inverse linear [10],
B: Balanced [11]) with varied spectrum of scales (from 3-scales to 9-scales). Note that we
conducted the simulation by systematically generating possible PC matrices, and that a tie
between two entities is allowed.
Table 2. The thresholds of the SDR[A] for a 3× 3 PC matrix A.

p= 0.01 0.05 0.1 0.2 0.3 0.4 0.5

3-scales
4-scales
5-scales
6-scales
7-scales
8-scales
9-scales

S 0.00 0.00 0.00 0.19 0.19 0.39 0.53

I 0.00 0.00 0.00 0.19 0.19 0.39 0.53

B 0.00 0.00 0.00 0.19 0.19 0.39 0.53

The results, presented in Table 2, show that the ordinal inconsistency of a PC matrix A
measured by the SDR[A] is invariant under different judgment scale measurements with
a varied spectrum of scales. This is because we use only ordinal information instead of
cardinal information.

4. Comparisons

In this study, we made three different comparisons between the proposed indicator
SDR and other indicators. Firstly, we examined the linear correlation via the Pearson

correlation coefficient (Correl(X, Y) = ∑n
i=1(xi−x)(yi−y)√

∑n
i=1(xi−x)2 ∑n

i=1(yi−y)2
), between pairs of some

consistency indicators suggested in the literature. The results are reported in Table 3. (Since
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we conducted simulations by systematically generating possible PC matrices, the results
are based on a 5-scale instead of Saaty’s 9-scale measurement). The notations used in
Table 3 are followed a study of Brunelli et al. [26]; however, we conducted simulations by
systematically generating possible PC matrices instead of generating random matrices or
perturbed consistent matrices the way they adopted.

Table 3. Linear correlation between pairs of consistency indicators.

CI SDR CI* GCI HCI RE GW KI ICD

CI 1 0.743 0.967 0.998 0.933 0.798 0.924 0.713 0.946
SDR 0.743 1 0.619 0.772 0.705 0.855 0.845 0.829 0.705
CI* 0.967 0.619 1 0.951 0.9 0.716 0.839 0.61 0.882
GCI 0.998 0.772 0.951 1 0.93 0.813 0.938 0.744 0.943
HCI 0.933 0.705 0.9 0.93 1 0.765 0.937 0.646 0.89
RE 0.798 0.855 0.716 0.813 0.765 1 0.842 0.696 0.734
GW 0.924 0.845 0.839 0.938 0.937 0.842 1 0.803 0.867
KI 0.713 0.829 0.61 0.744 0.646 0.696 0.803 1 0.619
ICD 0.946 0.705 0.882 0.943 0.89 0.734 0.867 0.619 1

In Table 3, via figures in boldface, we can find that there is a strong linear correlation
among the indicators of CI, CI*, GCI, and ICD. This result is consistent with the report of
Brunelli et al. [26]. Note that there is no indicator that has a strong linear correlation with
the SDR; this evidence makes the SDR unique among other indicators.

Secondly, to demonstrate the sensitivity of SDR in detecting ordinal inconsistency and
to examine Saaty’s consistency test, we conducted a simulation as follows. For 4× 4 PC
matrix, there are only 955,505 matrices out of all possible matrices (24,137,569 = 176) with
CI ≤ 0.1, i.e., only 3.96% of 4× 4 PC matrix satisfy Saaty’s rule; this result confirms a previ-
ous study [55]. Among these “acceptable” matrices, we further identified 1056 matrices
that with 0.0999 ≤ CI ≤ 0.09999, and compared their values of CI and SDR. Figure 3 shows
the results.
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Figure 3 indicates that these so-called “acceptable” PC matrices are ordinally incon-
sistent. This result coincides with several previous studies [37,40]; however, ordinally
consistent is a necessary condition of a PC matrix to be considered as “acceptable”.

Thirdly, we compared CI, SDR, and Dissonance in their capability of measuring ordinal
inconsistency of PC matrix. Dissonance is an ordinal consistency indicator suggested
by Siraj et al.; they also proposed a congruence measure used for cardinally inconsistent
judgments [40]. To make this comparison, we use two types of PC matrices that have been
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analyzed in literature [33]. Koczkodaj and Szwarc analyzed a kind of PC matrix called
“corner PC matrix or CPC,” that with all ones except for two corners as follows:

CPC(x, n) =


1 1
1 1

. . . x
· · · 1

...
...

x−1 1

...
...

· · · 1

.

Trivially, the only possibility of this matrix to be consistent is when x = 1. By using
a distance-based inconsistency reduction algorithm, Koczkodaj and Szwarc proclaimed
that x > 1.5 is suspiciously high and the PC matrix needs to be re-examined [29]. In fact,
by using the SDR, we find that a matrix CPC(x, n) even with a small value of x less than
1.5 would be inconsistent. Figure 4 shows the values of CI, SDR, and Dissonance of the
CPC(x, 5). Here, we set x from 0.5 to 1.5 with an increment of 0.05.
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Figure 4. Ordinal inconsistency of twenty-one CPC(x, 5) matrices with different values of x.

When x 6= 1, in contrast to the values of SDR and Dissonance (this refers to the overall
dissonance (Ψ) [40]; note that since these values fall on the x-axis, they will be visible only
in color). that are constants of 0.614738 and 0, respectively, the values of CI increasing
from 0 to 0.00496 or 0.014654 depends on the values of x is 1.5 or 0.5, respectively. Note that
the curve of CI asymmetric to x = 1. The results show that the indicator SDR is superior to
the two compared indicators in measuring the ordinal inconsistency of a PC matrix.

Koczkodaj and Szwarc analyzed another type of PC matrix, called FPC (the “full” PC
matrix or the PC matrix full of x). The matrix FPC(x, n), with x > 1, is defined as follows:

FPC(x, n) =



1 x
x−1 1

x · · · x
x · · · x

...
...

x−1

x−1

...
x−1

. . . ...
...

x−1

· · ·
1

x−1
x
1


Similarly, the only possibility of this matrix to be consistent is when x = 1; however,

unlike CPC(x, n), it has all erroneous triads. Figure 5 shows the values of CI, SDR, and
Dissonance of the FPC(x, 5). Here, we also set x from 0.5 to 1.5 with an increment of 0.05.
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Figure 5. Ordinal inconsistency of twenty-one FPC(x, 5) matrices with different values of x.

The values of CI increasing from 0 to 0.0165 or 0.0487 depends on the values of x
is 1.5 or 0.5, respectively. For indicator Dissonance, the values are zero, i.e., fall on the
x-axis, with respect to x from 1 to 1.5, and are 0.03333 with respect to x from 0.95 to 0.5.
All SDR[A], on the other hand, are 0.614738 except when x = 1, where SDR[A] = 0 as
expected. From the results presented above, we can conclude that the indicator CI is not
suitable for measuring ordinal inconsistency of a PC matrix, and that the proposed indicator
SDR functions appropriately what its name implies; that is, it measures exactly what ordinal
inconsistency means.

5. Conclusions

This study attempted to reinforce Saaty’s consistency test, as there is evidence that
those so-called “acceptable” PC matrices may not be ordinally consistent. We propose an
indicator called SDR[A] (standard deviation of ranks) to measure the ordinal inconsistency

of a PC matrix A. The upper bound of SDR[A],
√

n(n+1)
12 , is a function of size n of the PC

matrix A. This property is important, because it enables us to find proper values of ordinal
inconsistency for different PC matrix sizes. Then, we suggest a threshold for the decision-
maker to decide whether the ordinal inconsistency of a PC matrix is acceptable. Moreover,

we derive the range of the upper bound of normalized SDR[A] (namely, NSDR[A]),
√

n+1
12n ,

of PC matrix A with size of n. The range, from 1
3 . to 1√

12
,. reveals a surprising fact that the

degree of ordinal inconsistency of a small PC matrix may be more serious than a large one.
We made three different comparative analyses with some other indicators. The results show
that the indicator SDR measures exactly what ordinal inconsistency means and that the
SDR is superior to the two compared indicators. In practice, we suggest decision-makers
not only to follow Saaty’s rule of 0.1 but also to check the SDR.

Since we use only ordinal information instead of cardinal information of a PC matrix
in computing the SDR, it is worth noting that the ordinal inconsistency of a PC matrix
measured by using the indicator SDR is invariant under heterogeneous judgment measure-
ments with a varied spectrum of scales, and that the proposed SDR not only works for
multiplicative PC matrix but can also be used for additive and fuzzy PC matrices. Finally,
since it is somewhat difficult to analyze and derive the upper bound of SDR[A]. for a
PC matrix A that a tie between two entities is allowed, we leave it as a topic for future
research. Moreover, how we can use this ordinal consistency indicator to improve the
cardinal consistency of a PC matrix seems worth investigating.
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