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Abstract: Graph convolutional networks (GCNs) have made significant progress in the skeletal action
recognition task. However, the graphs constructed by these methods are too densely connected,
and the same graphs are used repeatedly among channels. Redundant connections will blur the
useful interdependencies of joints, and the overly repetitive graphs among channels cannot handle
changes in joint relations between different actions. In this work, we propose a novel relation selective
graph convolutional network (RS-GCN). We also design a trainable relation selection mechanism.
It encourages the model to choose solid edges to work and build a stable and sparse topology of
joints. The channel-wise graph convolution and multiscale temporal convolution are proposed
to strengthening the model’s representative power. Furthermore, we introduce an asymmetrical
module named the spatial-temporal attention module for more stable context modeling. Combining
those changes, our model achieves state-of-the-art performance on three public benchmarks, namely
NTU-RGB+D, NTU-RGB+D 120, and Northwestern-UCLA.

Keywords: human skeleton; action recognition; graph convolutional networks

1. Introduction

Action recognition is an essential computer vision topic. There are broad practical
applications like intelligent monitoring, human-computer interaction, video summary, and
healthy caring. For example, ref. [1] design a rehabilitation system based on a customizable
exergame protocol to prevent falls in the elderly population. In recent years, skeleton-based
human action recognition has attracted increasing attention from researchers. The skeleton
data is the coordinate sequence of each key point of the joints when the action occurs,
which has a small data size and robustness to variations of viewpoints, appearances,
and environmental change. Compared with the video, the skeleton sequence is a compact
and high-level description of actions.

In the literature, the methods for skeleton-based action recognition can be classified
as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph
convolutional neural networks (GCNs). The CNN-based and RNN-based methods tend to
represent the skeleton data with pseudo-image or vector sequences. However, the skeleton
sequence is not the regular Euclidean structure data. It inherently has the structure informa-
tion of the human body, which the vector or pseudo-image cannot fully express. To better
model the topology information in skeleton sequences, graph convolutional networks
are first introduced by [2]. They encode the skeleton sequence by the spatial-temporal
graph . They build the adjacency matrix for the joints on the basis of the physical human
body structure, making impressive progress. But the fixed adjacency matrix makes their
model unable to capture some critical correlation between joints that are not included in
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the human physical structure. Thus 2s-AGCN (two-stream adaptive graph convolutional
network) [3] proposes the adaptive adjacency matrix, which allows the generation of edges
between arbitrary joints. After that, many methods follow the idea and utilize adaptive
adjacency matrices to extract topology information.

Due to the excellent use of human body structure information and the continuous
enhancement of model’s representative power, GCN-based methods have made significant
progress. However, there are still limitations that exist in those methods. Firstly, the dense
adjacency matrices may generate many redundant connections. These connections do
not help extract discriminant features and may even disturb the capture of detailed local
information on the spatial dimension. Secondly, the correlation of the joints in different
actions is diverse. Those methods use the same adjacency matrices in every neuron of a
layer, which seriously limits the model’s ability to capture topology in skeleton sequences
of different actions.

To address such issues, we propose a trainable relation selection mechanism, which
can help the model choose the most informative connection of the graph in a trainable
way. Therefore, the adjacency matrix can be sparsed, and the nodes can focus on the
most important neighbors. Then we propose the channel-wise graph convolution (CWG)
and multiscale temporal convolution (MTC) to strengthen the model’s representative
power. The CWG assigns adjacency matrices for channels, and diverse relations are
built in different channels. The MTC has several branches, and each has its kernel size
for assembling information from various temporal receptive fields. Furthermore, we
introduce the spatial-temporal attention module (STAM) to enhance the model’s ability
to capture context relations. Incorporating these improvements, we built a novel model
called relation selective graph convolutional networks (RS-GCN). In the experiments, our
proposed approach outperforms state-of-the-art methods on three large-scale skeleton
action benchmarks: NTU-RGB+D [4], NTU-RGB+D 120 [5], and Northwesten-UCLA [6].
The main contributions of this work are summarized as follows:

• We design a relation selection mechanism that helps the model choose the most helpful
connections of the graph. It allows the model to generate sparse adjacency matrices
and avoid redundant information transfer between nodes;

• We propose the channel-wise graph convolution and the multiscale temporal convolu-
tion. Those two operations significantly enhance the model’s adaptability to different
actions and different speeds of motion;

• We introduce a spatial-temporal attention module that has a symmetrical structure,
making our model more sensitive to complex context relations;

• We integrate the components, forming a novel model named RS-GCN. In experiments,
our model outperforms the state-of-the-art method on all three public skeleton-based
action recognition datasets, which illustrates its superiority.

2. Related Works

In dealing with the skeletal action recognition problem, researchers have attempt
many approaches. Early methods usually rely on the hand-craft features like a histogram
of 3D joints [7], histogram of oriented displacements (HOD) [8], and relative 3D rotations
between various body parts [9].

With the extensive application of deep learning technology, researchers begin to
address this task through convolutional neural networks (CNNs) or recurrent neural
networks (RNNs). The CNN-based methods usually encode the skeleton sequence into
a pseudo-image and use the CNNs as the classifier [10–13]. The RNN-based methods
view the skeleton data as the sequences of vectors, and various recurrent neurons are
applied to model the temporal evolution [14–16]. However, as we all know, the connections
between graph structure data nodes are complex and changeable. Neither convolutional
neural networks nor recurrent neural networks fully express the human body’s structural
information because of the grid-structured representation of features.
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On the contrary, graph convolutional networks (GCNs) can effectively capture and
represent this structural information using the adjacency matrix. The work of [2] first
introduced the graph convolution into the task and has gained an exciting improvement,
attracting extensive attention from researchers. Many methods solve the skeleton-based
action recognition problem using GCNs. Ref. [3] propose adaptive graph convolution,
and it can generate the connection between two arbitrary nodes to capture the relations
of joints not connected by the natural human skeleton. Ref. [17] propose a multi-stream
framework, each stream only focuses joints not activated by the previous streams, for more
discriminative features. Ref. [18] design a graph edge convolutional neural network to
explore the beneficial information in bones for skeleton-based action recognition. Ref. [19]
decompose graph convolution into feature learning components that evolve the features of
each graph vertex to learn the latent graph topologies. Ref. [20] propose a part-level graph
convolutional network to capture the part-level information of skeletons. Ref. [21] design a
split-transform-merge strategy in GCNs for skeleton sequence processing. Ref. [22] refine
the pose before recognizing the action of the skeleton to reduce the effect of pose mistakes.
Ref. [23] use two scales of graphs to explicitly capture relations among body-joints and
body-parts. Ref. [24] guide GCNs to perceive significant variations across local movements
by a tri-attention module. Ref. [25] attempt to fix the shortcomings of isolated temporal
information in spatial temporal graph convolutional networks by a two-stream network
called RNXt-GCN. Ref. [26] propose a graph pooling method, named Tripool, for a lower
computational cost and large reception field.

No matter how much progress has been made in these GCN-based methods, there is
still some room for improvement. Many of those methods focus on modeling the relation
in nodes by generating excessive graph edges. However, some of those are redundant, and
do not help extract discriminant features and may even disturb the capture of detailed
local information on the spatial dimension. Moreover, those GCN-based methods usually
share the same adjacency matrices among all neurons of a layer, which is low-efficient
to capture topology in different actions. In this work, we deploy channel-wise adjacency
matrices in the GCNs to strengthen the model’s ability to capture more abundant relations.
Furthermore, we propose a trainable edge-selective mechanism. It chooses the connections
really needed for action representation and reduces unnecessary ones. Therefore, our
model can focus more attention on potential discriminative parts in the skeleton.

3. Methods and Materials
3.1. Pipeline Overview

The pipeline of our framework is depicted in Figure 1 , which consists of 8 GCN
blocks, 2 STAMs, and a fully connected layer. Every GCN block contains a CWG and an
MTC for the spatial and temporal dimension, respectively. The CWG deploys the different
adjacency matrices for channels so that they can develop their topology independently.
The MTC can integrate the information from various temporal receptive fields, enhancing
the model’s adaptability to the speed of actions. STAMs are embedded behind the fifth and
seventh GCN blocks, and they help our model collect the most informative features along
spatial and temporal dimensions.

Figure 1. The pipeline of proposed RS-GCN (relation selective graph convolutional network).



Symmetry 2021, 13, 2275 4 of 13

3.2. Channel-Wise Graph Convolution

The channel-wise graph convolution (CWG) is proposed to build different correlation
in channels. The feature map of the network can be viewed as a C× T × N tensor, where
N is the number of nodes, T is the temporal length, and C is the number of channels.
Before the introduction of CWG, we briefly review the definition of channel-shared graph
convolution in our baseline (2s-AGCN [3]), which can be formulated as:

fout = ∑
k

Wkfin(Ak + Bk + Ck) (1)

where fin ∈ RCin×T×N is the input feature; fout ∈ RCout×T×N is the output feature;
Wk ∈ RCout×Cin is the weight vector of the 1× 1 convolution operation; and Ak ∈ RN×N

is the original normalized adjacency matrix defined by the skeleton’s natural structure.
Bk ∈ RN×N is an adaptive matrix that is optimized with the other parameters; and
Ck ∈ RN×N is a self-attention matrix to model relation in every two nodes.

In this work, we only use the Bk initialized by Ak as the adjacency matrix of CWG.
It is inspired by [19], they believe that Bk has higher freedom to learn and represents the
skeleton’s topology to improve network performance. Moreover, we extend it by channel
dimension to get our channel-wise adjacency matrix Gk ∈ RC×N×N , then Equation (1) can
be rewritten as:

fout = ∑
k

Wk([f
1
inG1

k , f2
inG2

k , · · · , fC
inGC

k ]) (2)

where [·] denotes the concatenation of tensors.
The diagram of the channel-shared and channel-wise adjacent matrix is shown in

Figure 2. The left half of the figure is the channel-shared graph convolution used in the
previous skeleton-based action recognition approach. We can see that the same adjacency
matrices are used in different channels. As we all know, the feature map in each channel is
diverse, as are their topological relations. It is not reasonable to apply the same adjacency
matrix to model dissimilar topological relations. The right half of the figure is the channel-
wise graph convolution (CWG). For each channel, we assign an independent adjacency
matrix to establish the topology with its feature map. In this way, the model’s ability to
model spatial correlation is greatly improved. As the channel-share graph convolution also
broadcasts the adjacency matrix to all channels, our method does not bring the additional
computational cost of the inference.

Figure 2. Diagram of the channel-shared graph convolution and the channel-wise graph convolution.

3.3. Relation Selection Mechanism

As mentioned in Section 3.2, we deploy the learnable adjacency matrices in our
model, which can add connections between two arbitrary nodes of the graph. It allows
the generation of edges between highly correlated points that are not connected by the
physical structure of the human skeleton. However, its ability to reduce edges is much
weaker than its ability to increase them. The edge of the graph eliminates only when its
corresponding element in the adjacency matrix is precisely 0. Eventually, the adjacency
matrix produces very dense connections, creating complex and confusing relations among
the nodes, which is detrimental to the extraction of discriminative features. Therefore, we
propose a relation selection mechanism to pick out meaningful connections in the graph.
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Specifically, we set a small threshold δ. Only the edge corresponding to the element
larger than the threshold in the adjacent matrix will take effect in the graph convolution
operation. It can be formulated as:

Ĝ(c, i, j) =

{
G(c, i, j), G(c, i, j) < δ,

0 , G(c, i, j) ≥ δ.
(3)

where c, i, j is the index of the adjacency matrix elements at three different axes. Then we
can represent our CWG as:

fout = ∑
k

Wk([f
1
inĜ1

k , f2
inĜ2

k , · · · , fC
inĜC

k ]). (4)

Unfortunately, after thresholding the adjacency matrix, we will face two new prob-
lems. The first problem is related to initialization. As we initialize using a pre-defined
adjacency matrix of the human skeleton, thresholding may prevent generating new edges.
Specifically, the new edges are initialized to a minimum value below the threshold, and the
threshold filters them out. Therefore, the gradients are always zeros, and the model can
not generate new edges. The second problem is about training. The edges that are deleted
by thresholding are permanently deactivated. If the deletions are incorrect, the model
can not reactivate these edges in later training. To address those issues, we design a
reactivation loss:

LR = −α ∑
k,c,i,j

min(Gk(c, i, j)− δ, 0) (5)

where α is the coefficient to control the speed of reactivation, blowing the threshold,
the deactivated edges slowly grow until it reaches the threshold. Then, the beneficial edges
will have a chance to grow continually, and the others will be affected by the gradient and
fall below the threshold again. The reactivation loss LR is added to our loss function Ltotal
during all of the training periods:

Ltotal = Lcross_entropy + LR. (6)

In this manner, we construct the sparse adjacency matrices, which focus on the most
valuable relations. Redundant edges that impair model performance are removed in
a learnable way, and the necessity of edges to be validated repeatedly throughout the
training process.

3.4. Multiscale Temporal Convolution

There is a difference in the speed with which people perform actions. Moreover,
the starting frames of each skeleton sequence are not uniform, and their discriminative
clues may span a great deal of time, even in different time ranges. The ideal skeleton-based
action recognition model needs to be adaptable to these changes in the position of velocity
and time.

Therefore, the MTC is proposed. The main idea is to divide the channels into several
groups, each corresponding to a scale, and then assemble the information from different
scales. As shown in Figure 3, we split the input feature into four groups and feed them
into four reciprocal symmetric branches, respectively. Each branch applies 2D convolution
with kernel size different from others, from 3× 1 to 9× 1. The outputs of all branches
are concatenated, then combined by a 1× 1 convolution. The operation of MTC can be
represented as:

Fout = W[Conv2D(F1
in, k1), Conv2D(F2

in, k2), · · · , Conv2D(FB
in, kB)] (7)

where W ∈ RCout×Cin is the weight matrix of the 1× 1 convolution; [·] denotes the concate-
nation of tensors; Conv2D(·) means the traditional convolution operation; ki is the kernel
of branch i; and B is the number of branches.
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Compared with the fixed 9× 1 temporal convolutional kernel size deployed in the
baseline (2s-agcn [3]), the proposed MTC has fewer parameters. It can also capture the mul-
tiscale temporal representation and enable our model to adapt to different action speeds.

Figure 3. Diagram of the multiscale temporal convolution.

3.5. Spatial-Temporal Attention Module

Since the adjacency matrices are learnable in the spatial dimension, the graph convolu-
tion is global. Nonetheless, it generates fixed correlations, which may be unreliable because
it can not adjust according to the data. Instead, the self-attention operation can build
correlations according to the input, giving it more universality. In the temporal dimension,
the convolution operation is still processing a local neighborhood, and the global depen-
dencies of the frames are neglected. Therefore, we propose the symmetry spatial-temporal
attention module to model the context relation both in space and time. In the module,
the part of spatial attention and temporal attention have the symmetry structure.

We can represent the input feature and output feature as a series of vector:
Fin = {x1, x2, · · · , xV}, Fout = {y1, y2, · · · , yV}, then xi ∈ RC×T , yj ∈ RC×T . The spa-
tial attention unit can be formulated by:

yi = ∑
j

so f tmax( f (θ(xi)
T , φ(xj)))g(xj). (8)

Here θ(xi) = Wθ(xi), φ(xj) = Wφ(xj), and g(xj) = Wg(xj) are three linear embedding,
f is a pairwise function , which produces the similarity scalar between i and j. We defined
the angle-based similarity function f as:

f (u, v) = 1/arccos(
uv
|u| · |v| ). (9)

When the angle between u and v is smaller, the two vectors are more correlated.
Therefore, we use the reciprocal of the angle computed by the arccos function to measure
similarity between vectors. We limit the range of the arccos function to [−1,1].

Likewise, if we unfold the input feature and output feature as: Fin = {x1, x2, · · · , xT},
Fout = {y1, y2, · · · , yT}, then xi ∈ RC×V , yj ∈ RC×V . The temporal attention unit can also
be formulated by Equation (8). Therefore, the temporal attention unit is symmetrical with
the spatial attention unit. The temporal attention unit can capture the temporal context,
and the spatial attention unit is used to model the spatial context. We first deploy the two
units separately to form the temporal attention module (TAM ) and the spatial attention
module (SAM). Collaborating the two units, we then design two different structures
of STAM, namely STAM-A and STAM-B. As shown in Figure 4, the temporal attention
unit and spatial attention unit are connected in series or parallel, respectively. Residual
connections are added to preserve the local features. A ReLU activation function filters the
output. The combination of temporal attention unit and spatial attention unit can establish
the temporal and spatial interdependencies in a data-driven manner, which is helpful for
skeletal action recognition. Structures of the four attention modules mentioned above are
shown in Figure 4. We will compare their performance in Section 4.
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Figure 4. Four different attention modules

3.6. Datasets

We use three public action recognition datasets in our experiments, namely NTU-
RGB+D [4], NTU-RGB+D 120 [5], and Northwesten-UCLA [6].

NTU-RGB+D is an indoor action recognition dataset that has been widely used. It
has 56,880 action clips in 60 classes. The 3D coordinates of the subject’s 25 joints captured
by Kinect depth sensors are provided. Each action is performed by 40 subjects. Three
cameras capture actions with horizontal angles at −45◦, 0◦ , and 45◦. The dataset has two
benchmark protocols: (1) Cross-subject (CS): samples are split into two parts, 40,320 samples
for the training set and 16,560 samples for the test set, according to the subjects. (2) Cross-
view (CV): Samples are split into two parts, 37,920 samples for the training set and
18,960 samples for the test set, according to the camera angle. Following the two protocols,
we evaluated our model with the top-1 accuracy on both benchmarks. For each benchmark,
the top-1 accuracy is reported.

NTU-RGB+D 120 is an extended version of the NTU RGB+D. Therefore, it is the
largest indoor action recognition dataset currently. The dataset contains 114,480 videos in
120 classes. Each action is performed by 106 subjects. The author capture the videos from
155 viewpoints. Similarly, the dataset has two benchmark protocols: (1) Cross-subject (CS):
samples are split according to subjects. The training set contains 63,026 samples, while
the test set contains 50,922 samples. (2) Cross-setting (CE): Samples are split according
to camera setting. The training set contains 54,471 samples, while the test set contains
59,477 samples. Following the two protocols, we evaluated our model with the top-1
accuracy on both benchmarks. For each benchmark, the top-1 accuracy is reported.

Northwesten-UCLA is a multi-modality action recognition dataset, which provides
RGB data and depth video data. For each action, the author captures the data from three
different viewpoints. Therefore, three Kinect cameras correspond to the viewpoints. The
dataset has 1494 video clips in 10 action classes. Each action is performed by 10 actors.
The training set contains samples from the first two cameras, and the testing set has the
samples from the other camera. In this work, we only use the skeleton data for recognition
action and report the top-1 accuracy.

4. Experimental Results

In this section, we introduce the results and details of our experiments in the datasets
introduced in Section 3.6. To verify the effectiveness of the components of the RS-GCN, we
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first perform exhaustive ablation studies on NTU-RGB+D. Then, we compare the proposed
model with other state-of-the-art methods on all three datasets.

4.1. Implementation Details

We conduct all our experiments with the PyTorch deep learning framework. We train
our model for 60 epoches totally. We use the stochastic gradient descent (SGD) optimizer
with the momentum of 0.9 for training, and the batch size is set to 32. The initial learning
rate is set to 0.1 and decays with a factor of 0.1 at the 40th and 50th epoch. We set cross-
entropy as the objective function. The weight decay is set to 0.0002. For NTU-RGB+D,
and NTU-RGB+D 120, the relation selective threshold delta is set to 0.1, the coefficient
alpha is set to 2.2× 10−5. For Northwestern-UCLA, the relation selective threshold delta is
set to 0.01, and the coefficient alpha is set to 2.1× 10−5. We adopt the multi-stream fusion
strategy in [27], and we compute the weighted average of each stream’s output as the
final prediction.

4.2. Ablation Study

This section investigates the contributions of different components in the proposed
RS-GCN, the effect of the relation selection mechanism, and the necessity of multi-stream
inputs. We conduct experiments on the NTU-RGB+D dataset under the CV benchmark
and only the joint-stream as the input.

4.2.1. Network Architectures

We first verify the necessity of the proposed components. We manually delete the
proposed component from RS-GCN to form the variants. We compare the performance
of those variants and the original RS-GCN on the NTU-RGB+D dataset, and the result
is shown in Table 1. This table shows that all STAM, CWG, MTC, and relation selection
mechanism benefit action recognition. Deleting any one of the components will harm
the performance. The variant without the relation selection mechanism get the lowest
accuracy, dropping by 0.6% compared to the original RS-GCN, verifying the effectiveness
of the relation selection mechanism. As the components retained in the variants still
improve performance, these variants are only marginally less accurate than RS-GCN.
By collaborating all those components, RS-GCN gets the best accuracy, and outperforms
the baseline [3] by 1.2%.

Table 1. Performance comparison of RS-GCN and its variants. w/o X means the variants deleting
the X module.

Method Accuracy (%)

baseline 93.72

w/o STAM 94.63
w/o CWG 94.46
w/o MTC 94.64
w/o relation selection mechanism 94.33

RS-GCN 94.93

4.2.2. Comparison of Attention Modules

Here we compare the performance of the proposed model with different attention
modules in Table 2. As we can see from the table, the TAM and SAM both get a low
accuracy. Due to the complementary relationship between temporal attention and spatial
attention, STAM-A and STAM-B have a clear improvement compared with the SAM and
TAM. The accuracy of STAM-A is slightly higher than that of STAM-B because connecting
in a series may be more beneficial for the integration of spatial-temporal information
than parallel.
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Table 2. Comparison of proposed model with different attention modules. w/X means the model
using the X module.

Method Accuracy (%)

w TAM 94.61
w SAM 94.44
w STMA-A 94.93
w STMA-B 94.69

4.2.3. Necessity of Multi-Stream Inputs

We adopt the multi-stream fusion strategy in [27], which includes four streams.
The joint stream’s input is the original skeleton coordinates. The bone stream’s input
is the differential of adjacent joints’ coordinates in the skeleton. The joint motion stream’s
and bone motion stream’s inputs are the time differential of the joint stream’s input and
bone stream’s input, respectively. The final output is obtained by the weighted average of
each stream’s prediction. We tested the performance of four streams and two combinations
between them. Here, J, B, J-M, and B-M denote the joint stream, bone stream, joint motion
stream, and bone motion stream. Moreover, 2s means the combination of joint stream and
bone stream, and 4s means combining all four streams. The result is shown in Table 3. We
can find in the table that the combination of the multi-streams method outperforms the
single-stream methods.

Table 3. Comparison of the proposed model with different inputs.

Method Accuracy (%)

J-RS-GCN 94.93
B-RS-GCN 94.79
JM-RS-GCN 92.97
BM-RS-GCN 92.95

2s-RS-GCN 95.92
4s-RS-GCN 96.45

4.2.4. Visualization of Adjacency Matrices

We visualized the adjacent matrix in the baseline and RS-GCN, respectively, and the
results are shown in Figure 5. It can be seen that the adjacent matrices in the baseline are
excessively dense, which may make redundant and chaotic connections between nodes.
It prevents the model from selecting the information effectively. The adjacent matrices
in RS-GCN are sparse, and their non-zero values are only distributed on a few crucial
connections. The sparsed adjacency matrics allow the node to select the most solid relations
and focus on the most informative adjacent nodes. Besides, the adjacency matrix in different
channels shows a clear distinction. We can infer that every channel evaluates and selects
the connections that are most suitable for its features. It provides enough adaptability for
the model’s aggregation of features.

Figure 5. Visualization of adjacency matrices for the baseline (AGCN) and our proposed RS-GCN.
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4.3. Comparison with the State-of-the-Art

In this section, we compare the proposed model with the state-of-the-art methods on
the NTU-RGB+D dataset, NTU-RGB+D 120, and Northwesten-UCLA dataset. The methods
used for comparison mainly include three types: CNN-based method [11,28–31], RNN-
based method [4,14,15,32,33], and GCN-based method [2,3,17,27,34,35]. The results are
shown in Table 4–6, respectively. Our proposed model outperforms the baseline with a
large margin, and it almost achieves the state-of-the-art performance on all three datasets,
which verifies the superiority of our model.

Table 4. Comparisons with the state-of-the-art methods on the NTU-RGB+D dataset.

Method CS (%) CV (%)

Deep LSTM [4] 60.7 67.3
ST-LSTM [32] 69.2 77.7
Ensemble TS-LSTM [14] 74.6 81.3
VA-LSTM [33] 79.2 87.7
GCA-LSTM [15] 77.1 85.1
TCN [28] 74.3 83.1
Clips + CNN + MTLN [29] 79.6 84.8
Synthesized CNN [30] 80.0 87.2
3scale ResNet 152 [11] 84.6 90.9
HCN [31] 86.5 91.1
SLnL-rFA [36] 89.1 94.9
ST-GCN [2] 81.5 88.3
RA-GCN [17] 85.9 93.5
2s-AGCN (baseline) [3] 88.5 95.1
2s-SDGCN [34] 89.6 95.7
MS-AAGCN [27] 90.0 96.2
BPLHM [18] 85.4 91.1
Pose-refinement GCN [18] 85.2 91.7

2s-FGCN [35] 90.2 96.3
TA-GCN [24] 89.9 96.3
sym-GCN [24] 90.1 96.4
RNXt-GCN [25] 91.4 95.8

4s-RS-GCN (ours) 91.3 96.5

Table 5. Comparisons with the state-of-the-art methods on the NTU-120 RGB+D dataset.

Method CS (%) CE (%)

ST-LSTM [32] 25.5 26.3
GCA-LSTM [15] 61.2 63.3
ST-GCN [2] 72.4 71.3
RA-GCN [17] 81.1 82.7
2s-FGCN [35] 85.4 87.4
RNXt-GCN [25] 83.9 87.6
Tripool [37] 80.1 82.8

4s-RS-GCN (ours) 87.2 88.6
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Table 6. Comparisons with the state-of-the-art methods on the Northwesten-UCLA dataset.

Method Top1 (%)

HBRNN-L [38] 78.5
Synthesized-pre-trained [30] 86.1
Ensemble-TS-LSTM [14] 89.2
2s-AGC-LSTM 93.3
RNXt-GCN [25] 76.9

4s-RS-GCN (ours) 94.8

5. Discussion and Conclusions

In this work, we propose a trainable relation selection mechanism. It helps our model
choose the most informative connection of the graph and sparse the adjacency matrices.
Therefore, the nodes can focus on the most important neighbors. In addition, we propose
channel-wise graph convolution (CWG) and multiscale temporal convolution (MTC) to
strengthen the model’s representative power. Furthermore, we introduce the spatial-
temporal attention module (STAM) to enhance the model’s ability to capture context
relations. Incorporating these improvements, we built a novel model called relation
selective graph convolutional networks (RS-GCN). Comprehensive experiments on three
public datasets show our model’s overwhelming performance compared to the state-of-the-
art approaches, proving the effectiveness of our model. However, there are still some issues
that need further investigation. The CWG and MTC also bring some extra computational
cost, and when there is much noise in the skeleton sequence, the selection mechanism is
prone to remove some desired connections. Therefore, in our future work, we will look for
ways to enhance the model’s representation ability with less computational consumption
and improve our relation selection mechanism to make it more robust to noise.
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