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Abstract: When adopting cloud computing, cybersecurity needs to be applied to detect and protect
against malicious intruders to improve the organization’s capability against cyberattacks. Having
network intrusion detection with zero false alarm is a challenge. This is due to the asymmetry
between informative features and irrelevant and redundant features of the dataset. In this work, a
novel machine learning based hybrid intrusion detection system is proposed. It combined support
vector machine (SVM) and genetic algorithm (GA) methodologies with an innovative fitness function
developed to evaluate system accuracy. This system was examined using the CICIDS2017 dataset,
which contains normal and most up-to-date common attacks. Both algorithms, GA and SVM, were
executed in parallel to achieve two optimal objectives simultaneously: obtaining the best subset of
features with maximum accuracy. In this scenario, an SVM was employed using different values of
hyperparameters of the kernel function, gamma, and degree. The results were benchmarked with
KDD CUP 99 and NSL-KDD. The results showed that the proposed model remarkably outperformed
these benchmarks by up to 5.74%. This system will be effective in cloud computing, as it is expected
to provide a high level of symmetry between information security and detection of attacks and
malicious intrusion.

Keywords: intrusion detection system; genetic algorithm; support vector machine; machine learning;
fitness function

1. Introduction

Cloud computing is one of the latest service innovations in the field of IT. The primary
advantage of cloud computing is that it enables access without constraints of location and
time. Cloud computing supports mobile and collaborative applications/services, enables
the flexibility of controlling storage capacities, and provides lower costs. Moreover, cloud
services are multisource, permitting the end-users to use multiple service providers based
on their requirements. The use of cloud computing also reduces capital expenditures,
power usage, and physical space and maintenance requirements for on-site storage.

As cloud computing services become more and more common, a large number of
companies, banks, and governments have adopted this technology. This transition also
exposed these systems to many kinds of cyberattacks by hackers and intruders, warranting
robust security mechanisms. Many cloud service companies provide several security
services as applications. An example is the Amazon Web Services (AWS) store, which
provides services with limited validity and dates depending on the period of service license.

With increasing volumes of data, particularly important medical records, the need
for continuous backup and updates is evident. Healthcare data is confidential and is an
attractive target for hackers to manipulate or use for illegitimate purposes such as financial
gain or political motives [1]. Health data and medical records can include specific patient
history, information on prescriptive drugs and medical devices, and other confidential
patient information. The privacy of this information is of primary importance. Therefore,
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online attacks including identity theft should be avoided, as they lead to illegitimate access
to financial, social, and banking records [1].

When adopting cloud computing technologies, cybersecurity must be a priority aspect
for healthcare services because of the confidentiality of patient and operational data.
Existing intrusion detection systems (IDS) operate on the mechanism of signature or
anomaly detection. When the detection mechanism is not suitable, patient and operational
data may be stolen. Cybersecurity strategy helps to detect and protect against malicious
actors while helping to improve an organization’s defense against cyberattacks.

Existing studies in international hospitals have been limited to user awareness of the
importance of cybersecurity such as the use of strong passwords, deletion or filtration of
unwanted emails, data encryption, confidential treatment of credentials, careful access of
information, and swift reporting of any security breaches [2]. Intrusion detection systems
are also in place for health sectors, but their local infrastructure may not be free from
vulnerabilities. In contrast, the cloud provides a significantly useful and secure service to
manage the operations within hospitals or any other organization.

Sooner or later, all government IT operations are bound to be run on the cloud.
Currently, the Ministry of Health in Bahrain is switching its systems over to the cloud
environment [3]. The cloud provides specific types of security depending on the services
provided by the cloud service provider. In certain cases, highly confidential data cannot be
hosted on the cloud, while some operational data can be stored online. The data managed
on in-house servers must be protected at the same level of security when compared with
cloud security. This requires significant work to optimize cloud resource security, which
helps to build trust for deploying confidential and sensitive medical data on the cloud.

Several studies have been conducted on hybrid IDS applying different techniques,
some of which have proven to have high efficiency while others resulted in only acceptable
efficiency. In this research, the implementation of the hybrid IDS was developed by apply-
ing both improved genetic algorithm (GA) and support vector machine (SVM) techniques
to achieve the best possible results. The proposed system can be used to secure health data
in the cloud.

The dataset used in evaluating any IDS has a crucial role in identifying its effectiveness.
Therefore, a vast number of research studies have adopted the KDD CUP 99 dataset to
evaluate their systems. In this regard, a few examples include [4–7]. Another well-known
dataset used in this field is NSL-KDD, which was examined by [8–11]. These datasets are
relatively old and have a limited number of features, making them unreliable in simulating
current systems and environments.

This work is intended to be applied to cloud data for Bahrain hospitals, but because
of the difficulty in accessing their data to develop the intended system, a predefined
dataset that mimics the existing cloud data of hospitals, CICIDS2017, was used instead.
CICIDS2017 is one of the most recent datasets applied in machine learning applications.
The present study is significant because it aimed to:

1. Identify the set of optimal features in the new dataset CICIDS2017, which contains
normal and most up-to-date common attacks. This was done to find a set of selected
features that improved the performance of the detection mechanism.

2. Examine the effect of newly developed fitness functions on identifying intrusions.
The present study aimed to do this using a multifactor fitness function to measure the
performance of IDS.

3. Determine the best combination of parameter values for an SVM to produce the
maximum detection rate of intrusions within the CICIDS2017 dataset.

4. Conduct a comparative study between the CICIDS2017 dataset and the popular
KDD CUP 99 dataset. The outcome was used to generalize the efficiency of the
proposed system.

This system will be effective in cloud computing, as it is expected to provide a high
level of information security, which will protect data in the cloud environment against
several types of malicious attacks.
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The rest of this paper is organized as follows: Section 2 elaborates on the background
about IDS and related studies using GA and SVM. The proposed hybrid IDS is presented in
Section 3, and the proposed improved GA and SVM are explained thoroughly. Explanation
of the experiments and data processing along with the results are delineated in Section 4.
Finally, the conclusion and future work are the contents of Section 5.

2. Background and Literature Review

Intrusion detection systems (IDS) constitute a vital topic studied extensively by re-
searchers. The techniques applied to IDS are basically categorized into anomaly-based IDS,
signature-based IDS, and hybrid techniques. When manipulating huge amounts of data
related to IDS, the first step is dataset preprocessing. The main stage of preprocessing is
feature selection. Once features are selected, machine learning algorithms are applied to
classify the normal and abnormal behavior of intruders. In the following text, we high-
light the categories of IDS, followed by feature selection techniques, and afterwards, we
introduce the hybrid machine learning techniques used in the IDS in the present study.

2.1. Concepts of IDS and Related Work

An IDS is a system that monitors all outgoing and incoming requests in cloud com-
puting to detect any abnormal or normal activity and is a method of detecting anomalies
and misuse intrusion.

Infiltration and intrusions are the main problems in the network and cloud computing,
as all services are provided over the internet and are susceptible to cyberattacks. IDS
software should be scalable, dynamic, and self-adaptive, with high efficiency to use. The
intrusion detection process is divided into three steps [12]:

• collecting data from the monitored systems;
• analyzing the collected data to classify it as normal or intrusion;
• alerting the admin about the possibility of intrusion to the concerned system so that

they can take necessary action to prevent intrusion and protect the system.

2.1.1. Anomaly-Based IDS

Anomaly-based IDS detect misuse in the cloud environment or penetrations and
classify them into normal and abnormal user behavior through a system that collects all the
information on normal user behavior or action over a period of time. Then, a statistical test
is performed to check whether a suspected behavior is linked to a normal user’s behavior
or not. Figure 1 presents the general architecture of anomaly-based IDS. The difficulty in
maintaining this type of IDS is that it cannot be updated without losing the data that the
previous system was trained on. Also, the accuracy of identification is low, which gives
a high number of false positives for this type of system. Anomaly-based IDS has been
addressed by several researchers as follows.
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Figure 1. Anomaly-based IDS architecture [13].

Aljawarneh et al. [14] proposed an IDS based on anomaly detection using feature
selection, which resulted in an efficient hybrid model. This new hybrid model was useful
in estimating intrusions based on network activity and transaction of optimal data options
that were available for training. More optimizing techniques were required to create a
better IDS model that has a better accuracy rate.

In reference [15], a web application profile was developed by learning constants (e.g.,
to log in, the value for the user should be the same as the value when logging in). To verify
whether the constants were violated, the source code was used. If a static element violation
was observed, an anomaly was entered.

In reference [16], an anomaly-based IDS was developed by analyzing the workflow of
all web sessions. It consisted of small business groups of data objects. These groups were
used and applied to typical data access sequences for the workflow processes. The authors
used a hidden Markov model (HMM) application. The results showed that this approach
could detect anomalous web sessions and lent evidence to suggest that the clustering
approach could achieve relatively low FPR while maintaining its detection accuracy.

Le et al. [17] developed the double-guard framework, which tested both database and
web server logs to detect attacks that leaked information. They reported a 0.6% FP rate for
dynamic webpages and a 0% FP rate for static webpages.

Nascimento and Correia [18] studied an IDS in which they collected the dataset from
a scale web app and trained the dataset. They considered “GET” requests and did not
consider “POST” types of requests or response pages. They took logs from the T-Shark tool
and converted them to a common format. The filtered data was created by accessing the
subapplications. They used nine detection models.

Ariu [19] developed a host-based IDS to protect web applications from attacks by
using HMMs. This system was used to model a series of attributes and values received by
a web app. To calculate the different parameters and values, they used several HMMs and
combined them to arrive at a specific demand on the probability that was generated from
the training dataset.

In reference [20], a firewall was developed as a web application to detect any anoma-
lous request and capture the behavior through an “XML” file that defined the required
attributes of parameter values. Input values that deviated from the profile were considered
attacks. However, this approach produced FP warnings because it did not consider the
path information and page to be more accurate.
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2.1.2. Signature-Based IDS

In signature-based IDS, known threats previously discovered and identified from
the system help to identify threats in the future. This technique is used to compare the
incoming network pattern. An intrusion is detected when the incoming network pattern
matches the signature. The advantage of this type of detection method is that it is easy
to develop and understand by knowing the network behavior signatures. This technique
has very high accuracy and a minimum number of false positives in detecting known
attacks. Also, it can add new signatures into the database without changing or modifying
existing ones.

The main drawback issue of this IDS technique is that these types of intrusion detecting
systems are not able to detect new types of attacks or unknown attacks; a slight change
in the pattern or slight variation can fool it. Figure 2 presents the general architecture of
signature-based IDS. A few examples of related work that applied signature-based IDS are
listed here.

Figure 2. Signature-based IDS architecture [13].

Saraniya [21] developed a network intrusion detection system (NIDS) to secure the
network using a signature-based IDS algorithm. It succeeded in capturing packets sent
across the entire network using mixed mode and comparing traffic to designer attack
signatures. It secured the network and reduced the memory space in the environment.
Signature-based IDS are not able to detect emerging and unknown attacks because the
signature database must be manually reviewed for every new type of intrusion discovered.

Gao and Morris [22] presented a study on cyberattacks and signature-based IDS for
MODBUS based industrial control systems. The rules described were designed to detect
the attacks described earlier. The rules were divided into two types: independent and state-
based rules. Independent rules were those that analyzed one MODBUS packet, looking for
a specific signature match. Standalone rules were those that were enforced with the Snort
intrusion detection tool.

Uddin et al. [23] proposed a signature-based distributed IDS using a mobile agent, to
transfer the signature database from a large complementary database to a small signature
database, then update the databases regularly as new signatures are discovered. The results
of the proposed model indicated that IDS worked better than regular systems that used
only one database of chain signatures.

Kumar and Gobil [24] implemented a signature-based IDS. They used three tools to
develop this IDS system: SNORT, BASE, and TCP REPLAY. This system could detect and
analyze intrusions in the network traffic in real time.
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The main characteristics and limitations of anomaly-based, signature-based, and
hybrid IDS are listed in Table 1.

Table 1. Summary of intrusion detection techniques [17].

Anomaly-Based IDS

Characteristics Limitations

This technique can detect unknown attacks.
Low rate of false alarm for unknown attacks.
For IDS, collects the behavior of the network
for statistics on testing and performance.

This technique is time-consuming.
It needs many features to detect

attacks correctly.

Signature-Based IDS

Characteristics Limitations

The detection rate of this technique is very
high for known previous attacks.
This technique detects attacks by matching
detected packet patterns with previously
acquired patterns.

Very high rate of false alarm for
unknown attacks.

Cannot detect a variant of a known attack or
new attacks.

Hybrid Techniques for IDS

Characteristic Limitation

It is a combination of two or more techniques.
Detection accuracy is very high. Computational cost is very high.

2.2. Feature Selection

The continuous increase in the volume of data makes real-time intrusion detection a
difficult task. Feature selection (FS) is a technique used to reduce computation complexity
by selecting the relevant features and eliminating many redundant and needless features
from the data to produce effective learning model [25,26].

When dimensionality of a feature is high, the selection of meaningful features becomes
a difficult challenge. Bioinspired metaheuristic algorithms are efficient in addressing such
challenges. They provide high-quality solutions in a reasonable time and within affordable
resources. Moreover, they decrease the computational complexity of classification and
improve its accuracy [27].

Intelligent IDS work by collecting and analyzing large amounts of data from several
areas. These data contain various redundant and irrelevant features, which results in
increased overfitting and processing time and reduced detection rate. Therefore, feature
selection needs to be applied as a preprocessing step to improve system performance and
accuracy while reducing the dataset size [28].

Different approaches have been developed by researchers to reduce the number of
features while implementing IDS. In reference [29], a genetic algorithm was applied to
select the optimal set of features from KDD CUP 99 and UNSW-NB15. The authors applied
a new fitness function, which was composed of TPR, FPR, and the number of selected
features, with specific weights given for each factor. The selected features were then
passed to the classification stage, at which SVM was applied. The number of optimized
features ranged between 7 and 10 for different types of attacks. The maximum accuracy of
classification of normal traffic was 99.05%, while the accuracy of classification ranged from
98.25% for R2L to 100% for U2R.

Parimala and Kayalvizhi [30] developed a two-stage feature selection as a prestage
for an IDS that provided secure communication in a wireless environment. The first stage
applied a conditional random field (CRF) for the initial selection of features. In the second
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stage, spider monkey optimization (SMO) was applied to the selected feature to identify
the most useful features from the dataset. This model was applied to the NSL-KDD dataset,
which is a wireless dataset that has 41 features. This model extracted 16 features. The
authors did not provide exact figures of achieved accuracy, but the results outperformed
four existing works according to their experiments.

By using the same dataset, NSL-KDD, Reference [31] examined the performance of
four feature selection methods: information gain, gain ratio, chi squared, and relief. Their
performance was analyzed by applying them on four machine learning algorithms: J48,
random forest, naïve Bayes, and k-nearest neighbor (KNN). The obtained results showed
that feature selection greatly improved the performance of the IDS but had a slightly
negative effect on accuracy.

In addition to information gain and chi squared, Reference [32] applied correlation-
based feature selection. These selection methods were applied to the NSL-KDD dataset.
The decision tree classifier was the ML algorithm adopted in their IDS model. Initially,
the dataset consisted of 41 features. During the preprocessing stage, the nonnumeric data
was converted to numeric data, producing a total of 122 features. Their proposed methods
selected 20 optimal features out of these 122. The maximum accuracy obtained was 81%.

Reference [33] developed a cloud IDS (CIDS) that started by feature selection. They
used an efficient correlation-based feature selection approach, which extended correlation-
based feature selection and mutual information feature selection. The feature selection
process consisted of two stages. The first stage was used to recognize important features,
so it reduced the dimensionality of the dataset. This was achieved by reducing the pairwise
calculations of the correlation between features. To distinguish all different classes, this
method was combined with the LIBSVM classifier. In the second stage, features were
selected such that they were highly relevant to a given class c but not relevant to the
selected features. This approach was applied to both the KDD CUP 99 and NSL-KDD
datasets. The proposed method enhanced the time required to obtain the optimum set of
features and reduced the number of selected features to 10.

Reference [26] proposed a hybrid IDS that consisted of feature selection, density-based
spatial clustering of application with noise (DBSCAN), K-Mean++ clustering, and SMO
classification. The feature selection adopted to be applied on the KDDCUP 99 dataset was
a genetic algorithm that selected 13 features for further processing. The average accuracy
achieved in this model was 96.92%.

The feature selection model implemented by [28] consisted of two parts. The first part
was the attribute evaluator, which evaluated each attribute separately. The second part
was the search method, in which different combinations were tried to obtain the selected
list of features. This model was applied to the NSL-KDD dataset. Feature selection was
performed on three classes: all attack types (23 types), main attack types (5 types), and
two attack types (normal and abnormal). This approach was then examined using three
classification models: random forest, J48, and naïve Bayes. The results obtained for the
two-attacks type ranged from 98.69 to 99.41%.

2.3. Hybrid Intrusion Detection System Based on Machine Learning

Researchers have implemented IDS using several ML techniques, among other tech-
niques. To focus, the discussion in this section is limited to two ML techniques: the
genetic algorithm (GA) and support vector machine (SVM). Before presenting related work
conducted using GA and SVM, it is worth shedding some light on these techniques.

2.3.1. Genetic Algorithm Overview

Genetic algorithms (GA) constitute a family of mathematical models that operate
on the principles of selection and natural evolution. This heuristic is routinely used to
generate useful solutions to optimization and search problems. Genetic algorithms work by
transforming selected problems using chromosome-like data and developing chromosomes
using selection factors, recombination, and mutations.
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The genetic algorithm process usually begins with a random set of chromosomes.
These chromosomes are representations of a problem that must be solved. Depending on
the attributes of a problem, the positions of each chromosome are encoded in numbers,
letters, or bits. These positions are referred to as genes and are randomly changed within
a range during development. The set of chromosomes during the evolution stage is
called a population. The evaluation function is used to calculate the GOODNESS of each
chromosome. There are two primary factors during the evaluation. Crossover is used to
simulate the transformation and the natural reproduction of the species. Chromosomal
selection for survival and synthesis is biased towards the fittest chromosomes. Genetic
algorithms can model virtually any type of constraint in the form of partial functions or by
using different chromosome coding schemes specifically designed for a specific problem.
Figure 3 shows the structure of a simple genetic algorithm.

Figure 3. Structure of a genetic algorithm.

Since GAs are best used for optimization, they can be used to generate the best rules
for a network connection that can be used to classify the network behavior as intrusive or
normal. In addition, GAs can be used to select the optimal set of features from a dataset
that can be used in the process of intrusion detection. They can also be used in computer
security applications to find optimal solutions to specific problems.

2.3.2. SVM-Based IDS and Related Work

The support vector machine is a machine learning technique known as the best
learning algorithm for classification. It is one of the most popular supervised ML algo-
rithms [4,34]. The SVM is a type of pattern classification and regression with a variety of
kernel functions. It has been applied to several pattern recognition applications. SVMs
have been used mainly for binary classification. The idea is to find a line or hyperplane
that separates two classes such that it is as far as possible from the closest instances of
each class. Instances of different groups are separated by an area called the margin. The
closest instances to the hyperplane are called support vectors. It is required to have the
margin as big as possible; this is important to enhance the efficiency of the classification of
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newly added instances. The boundary function of the largest margin can be computed as
follows [35]:

Minimize W (α)
1
2

N

∑
i=1

N

∑
j=1

XI XJαIαJk
(
yi, yj

)
−

N

∑
i=1

αi

where α is a vector of N variables, C is the soft margin parameter, C > 0, and k (yi, yj)
represents the kernel function of SVMs. Kernel functions are used in SVMs to classify
instances of the dataset into different categories. Four main types of kernel functions are
listed here [35]:

1. linear kernel: k (yi, yj) = yT
i . yj;

2. polynomial kernel: k (yi, yj) = (γ yT
i . yj + r)d, γ > 0;

3. radial basis function (RBF) kernel: k (yi, yj) = exp(−γ|| yi, yj
2 ||), γ > 0;

4. sigmoid kernel: yi, yj = tanh (γ yT
i . yj + r)

where γ, r and d are kernel parameters. The concepts of the margin, separation
hyperplane, and support vector are illustrated in Figure 4.

Figure 4. Classical example of SVM linear classifier [4].

This algorithm has been applied in information security to detect intrusion. The main
advantage of using a support vector machine for an IDS is its speed as a capability of
detecting intrusion in real time. SVMs have become a popular technique for detecting
anomalous intrusion because of their good circular nature and their ability to overcome
the curse of dimensionality. They are also useful for finding global minimum actual risk
using structural risk reduction, because they can generalize well with kernel tricks even in
high-dimensional spaces under small-training-sample conditions.

The support vector machine can determine the appropriate setting parameters because
it does not depend on traditional experimental risks such as neural networks and can learn
a wide range of patterns that can expand. Support vector machines can also dynamically
update training patterns whenever there is a new pattern during classification. Several
researchers have applied SVMs as part of intrusion detection, as discussed below.

2.3.3. Related Work on Existing Hybrid IDS Using GA and SVM

A set of research works have adopted GA as a base for IDS, while others have adopted
SVM. GA has been applied in IDS by several researchers, as follows. Neha Rai and Khushbu
Rai [36] proposed an intrusion detection system using genetic algorithm techniques. To
create a new population, they used rank selection for selection, single point for crossover,
and bitwise for mutation. Reference [34] proposed an intrusion alarm based on a genetic
algorithm and support vector machine. In the GA part, an accuracy fitness function was
applied, and to create a new population, tournament selection in the selection part, two-
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point crossover, and simple mutation in the reproduction part were used. Ojugo et al. [37]
proposed a genetic algorithm rule-based IDS. In this system, they applied the confidence
fitness function, and to create a new population, they used tournament selection and
two-point crossover. Bhattacharjee et al. [38] proposed an IDS using a vectorized fitness
function in a genetic algorithm and used uniform crossover. Prakash et al. [39] built an
effective IDS using GA-based feature selection. They applied an accuracy fitness function,
and to create a new population, they used tournament selection and uniform crossover.
Reference [40] proposed a GA-based approach to NIDS. In this system, a confidence fitness
function was applied, and to create a new population, two-point crossover was used.
Pawar and Bichkar [41] proposed a NIDS using GA with VLC; to create a new population,
they used single-point crossover.

Moukhafi et al. [4] proposed a new method of IDS that used an SVM optimized by
a GA to improve the efficiency of detecting unknown and known attacks. They used the
particle swarm optimization algorithm to select influential features. The detection rate (DR)
achieved was 96.38% when applied to 10% of the KDD CUP 99 dataset. The small size of
the dataset facilitated the process of the GA–SVM classifier.

Another hybrid IDS was developed in [5]. It used kernel principal component analysis
(KPCA), an SVM, and a GA. The kernel function of the SVM was RBF modified to include
additional two parameters to obtain better feature values. These parameters were the mean
value and the mean square difference values of feature attributes. The chromosome of
the GA had three representations. The KDD CUP 99 dataset was used. The DR produced
was 95.26%.

Al-Yaseen et al. [6] developed a hybrid IDS which uses K-means, SVM, and ELM. The
focus in this work lay on building a training set with high quality that required little time
for classification by using K-means. The KDD CUP 99 dataset was used. The DR produced
was 95.17%.

Feng et al. [7] developed a hybrid IDS that used an SVM and an ant colony network.
The hybrid system benefited from the high classification rate and runtime efficiency pro-
duced from the combination of these two algorithms. They used the KDD CUP 99 dataset
and managed to achieve a DR of 94.86%.

Tao et al. [34] proposed an improved intrusion detection algorithm based on the GA
and SVM methods. This paper proposed an alarm intrusion detection algorithm. Feature
selection and weight and parameter optimization of the support vector machine were
based on the genetic algorithm. The simulations and experimental results showed that
the intrusion detection technology based on the “GA and SVM” proposed increased the
intrusion DR, the Accuracy Rate, and the TPR while reducing the FPR. SVM training time
was also reduced.

Agarwal and Mittal [42] proposed a hybrid approach for the detection of anomaly
network traffic using data mining techniques. In this hybrid model, they applied entropy
of network and SVM techniques. This hybrid method worked well and gave high accuracy
for the detection of attack traffic with few false alarms. This method was not dynamic and
did not detect or decide whether there was an attack.

Serpen and Aghaei [43] proposed a host-based misuse IDS using PCA feature extrac-
tion and a KNN classification algorithm. This system used basic analysis Eigen traces to
extract data of the OS for a “trace data and k-nearest neighbor” algorithm for classification.
This design exhibited very high performance and the ability to detect intrusion and attack
plus the type of intrusion. This system worked on the Linux OS only.

Praveen et al. [44] proposed a hybrid IDS algorithm for private cloud services. They
applied anomaly intrusion and misuse intrusion, and they used the NET framework as
a front end and a SQL server as a back end to implement the algorithm. They conducted
an overall study to build a hybrid IDS that would help to detect all types of intrusion in
the cloud environment. According to the authors, the major characteristics that a hybrid
IDS must have are a dynamic nature, self-adaptiveness, and scalability by the OS in the
network and host.
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3. The Proposed Hybrid IDS

The proposed hybrid IDS is a combination of two machine learning techniques, the
GA and SVM, in which the GA is used for feature selection, which is considered as an
optimization problem. Since the used dataset consisted of 79 features, and some of these
featured had little to no effect on the identification of intrusion, a GA is applied to select the
optimum number of features to maintain the high performance of IDS while reducing the
overhead of the classification process. On the other hand, an SVM is applied to perform the
actual classification of network data into normal and abnormal behaviors. However, before
applying the algorithm to the dataset, it needs to be preprocessed so that the algorithm
works smoothly on clean and consistent data. The preprocessing is explained in the
following subsection.

3.1. Data Preparation

As mentioned in section one, one of the objectives of this work was to examine the
proposed IDS on a recent dataset rather than the commonly used old dataset, KDD CUP
99. The dataset used in this work was the Intrusion Detection Evaluation Dataset [45].
Data covering only 5 days between 3 July 2017 and 7 July 2017 were used in this study.
This data contained benign traffic and a limited number of several types of attacks such as
brute-force FTP, brute-force SSH, SQL injection attack, and cross-site scripting. The dataset
was known as CICIDS2017 and consisted of 170 K records and 79 features.

The first stage of preparation was to clean the data. Cleaning was done in terms of
unifying the data type to integers, since some numerical values were entered as “infinity”.
Second, the missing values were replaced with zeros. Third, two columns were eliminated,
as they were dramatically corrupted, causing the algorithm to fail. These columns were
Fwd_Packets_s and Bwd_Packets_s. Fourth, the data was scaled, as some columns had
one-figure values, while others had up to six-figure values. Scaling was performed using
the sklearn function StandardScaler, which normalizes data according to the formula:

z = x − mean
standard deviation

The remaining features are listed in Table 2.

Table 2. Features of the CICIDS2017 dataset [45].

No. Feature Name No. Feature Name No. Feature Name

1 Destination_Port 27 Bwd_IAT_Max 53 Avg_Bv/d_Segment_Size

2 Flow_Duration 28 Bwd_IAT_Min 54 Fwd_Header_Length

3 Total_Fwd_Packets 29 Fwd_PSH_Flags 55 Fwd_Avg_Bytes_Bulk

4 Total_Backward_Packets 30 Bwd_PSH_Flags 56 Fwd_Avg_Packets_Bulk

5 Total_Length_of_Fwd_Packets 31 Fv/d_URG_Flags 57 Fwd_Avg_Bulk_Rate

6 Total_Length_of_Bwd_Packets 32 Bwd_URG_Flags 58 Bwd_Avg_Bytes_Bulk

7 Fwd_Packet_Length_Max 33 Fwd_Header_Length 59 Bwd_Avg_Packets_Bulk

8 Fwd_Packet_Length_Min 34 Bwd_Header_Length 60 Bv/d_Avg_Bulk_Rate

9 Fwd_Packet_Length_Mean 35 Fv/d_Packets_s 61 Subflow_Fwd_Packets

10 Fwd_Packet_Length_Std 36 Bwd_Packets_s 62 Subflow_Fv/d_Bytes

11 Bwd_Packet_Length_Max 37 Min_Packet_Length 63 Subflow_Bv/d_Packets

12 Bwd_Packet_Length_Min 38 Max_Packet_Length 64 Subflow_Bv/d_Bytes

13 Bwd_Packet_Length_Mean 39 Packet_Length_Mean 65 Init_Win_bytes_forward

14 Bwd_Packet_Length_Std 40 Packet_Length_Std 66 Init_Win_bytes_backward

15 Flow_IAT_Mean 41 Packet_Length_Variance 67 act_data_pkt_fwd

16 Flow_IAT_Std 42 FIN_Flag_Count 68 min_seg_size_forward
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Table 2. Cont.

No. Feature Name No. Feature Name No. Feature Name

17 Flow_IAT_Max 43 SYN_Flag_Count 69 Active_Mean

18 Flow_IAT_Min 44 RST_Flag_Count 70 Active_Std

19 Fwd_IAT_Total 45 PSH_Flag_Count 71 Active_Max

20 Fwd_IAT_Mean 46 ACK_Flag_Count 72 Active_Min

21 Fwd_lATStd 47 URG_Flag_Count 73 Idle_Mean

22 Fwd_IAT_Max 48 CWE_Flag_Count 74 Idle_Std

23 Fwd_IAT_Min 49 ECE_Flag_Count 75 Idle_Max

24 Bwd_1_AT_Total 50 Down_Up_Ratio 76 Idle_Min

25 Bwd_IAT_Mean 51 Average_Packet_Size 77 Label

26 Bwd_lATStd 52 Avg_Fv/d_Segment_Size

The second dataset used in this work was KDD CUP 99, which was used to benchmark
the performance of the proposed system. The dataset consisted of only 42 features, which
are listed in Table 3.

Table 3. Features of the KDD CUP 99 dataset [46].

No. Feature Name No. Feature Name

1 duration 22 is_guest_login

2 protocol_type 23 count

3 service 24 srv_count

4 flag 25 serror_rate

5 src_bytes 26 srv_serror_rate

6 dst_bytes 27 rerror_rate

7 land 28 srv_rerror_rate

8 wrong_fragment 29 same_srv_rate

9 urgent 30 diff_srv_rate

10 hot 31 srv_diff_host_rate

11 num_failed_logins 32 dst_host_count

12 logged_in 33 dst_host_srv_count

13 Inum_compromised 34 dst_host_same_srv_rate

14 Iroot_shell 35 dst_host_diff_srv_rate

15 Isu_attempted 36 dst_host_same_src_port_rate

16 Inum_root 37 dst_host_srv_diff_host_rate

17 Inum_file_creations 38 dst_host_serror_rate

18 Inum_shells 39 dst_host_srv_serror_rate

19 Inum_access_files 40 dst_host_rerror_rate

20 Inum_outbound_cmds 41 dst_host_srv_rerror_rate

21 is_host_login 42 label

3.2. Genetic Algorithm (GA)

As aforementioned, GAs constitute a family of mathematical models that operate on
the principles of selection and natural evolution. GAs have multiple parameters, each of
which can be implemented in several methods. GAs represent one of the best techniques for
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optimization problems and feature selection. The following is a description of GA operators:
initial population creation, crossover, mutation, and the proposed fitness function, which
was used in the feature selection stage. These operators are summarized in Algorithm 1.

Algorithm 1: GA process

1: Create randomly first generation.
2: Evaluate fitness of each chromosome in the first generation.
3: Loop
4: Create next generation following these steps:
5: selection;
6: crossover;
7: mutation.
8: Until stop criteria is met.
9: The result is the best chromosome’s content of the last generation.

3.2.1. Initial Population

The dataset utilized in this work consisted of 78 features, which was a relatively high
number and could affect the quality of the output. Therefore, among these 78, the GA
chose 25 features randomly to start the initial population. Knowing that the GA was tested
with different numbers of features, from 10 to 25, the results were close, and the training
and testing times of the data were adequate. After experimenting with 30 to 40 of the
selected features, a decrease in the performance of the system was observed, as the accuracy
percentage decreased and the times for training and testing data increased.

3.2.2. Crossover

The second operator of the GA is crossover, which was applied with a probability of
90%. In the crossover, we used single-point crossover, since it has frequently been used
by other researchers. The single point was selected randomly such that it was within the
first half of the chromosome length. Then the content of the chromosome to the left of the
crosspoint was copied, as was the similar position in the offspring, while the content to the
right of the crosspoint was switched between parent 1 and parent 2 to produce offspring 1
and offspring 2, respectively, as shown in Figure 5.

Figure 5. Crossover operation and its effects in generation of offspring.

3.2.3. Mutation

To avoid local convergence, mutation is performed with a very small probability,
which was 1% in the present work. In mutation, one gene is selected randomly from the
newly generated offspring and replaced with one from the search space, which in the
present study was one of the 77 features. During replacement, a check is made to make sure
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that the newly added gene is not duplicated in the offspring. This is to avoid redundancy
of features. An example of the mutation process is illustrated in Figure 6.

Figure 6. Mutation operation and its effects in generation of offspring.

3.2.4. Improved Fitness Function

The accuracy of classifying the test dataset was used to assess chromosome quality.
The fitness function was represented in terms of accuracy. Accuracy is the percentage of
the sum of true positive (TP) and true negative (TN) results divided by the sum of true
positive (TP), true negative (TN), false negative (FN), and false positive (FP) results. It has
been adopted by several researchers as a fitness function (as mentioned in the previous
section) to evaluate GA performance. Accuracy was calculated per the following formula:

Accuracy =
TP + TN

TP + FN + FP + TN
, (1)

Accuracy cannot be considered a sole metric with which to evaluate a system, since
it is not an accurate measure if the dataset is not balanced (both negative and positive
classes have a different number of data instances). Hence, the proposed fitness function to
be considered in this work was developed using several measures. These measures were
F1-score, accuracy, and false positive rate (FPR). F1-score is a metric that considers both
precision and recall and is defined as follows:

F1 score =
2 × Precision × Recall

Precision + Recall
(2)

where precision is the fraction of true positive results among all retrieved results and
calculated as follows:

Precision =
TP

TP + FP
(3)

On the other hand, recall, or true positive rate (TPR), is the fraction of true positive
results among all true positive samples in the dataset and calculated as follows:

Recall(true positive rate) =
TP

TP + FN
(4)

The proposed fitness function combined these three metrics in the following formula
with different weights for each metric:

f itness = α F1score + β × accuracy + γ × TPR (5)

where α, β, and γ are weighting factors that sum to 1. Since F1-score provides high
indication to the results, it was assigned the highest value, 0.6, while both accuracy and
TPR were considered as secondary measures and assigned 0.2 for each. The optimal value
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of the fitness function can be obtained through examining all possible combinations of
weighting factors, which sum up to 66 possible combinations.

3.2.5. Stopping Criteria

The process of the GA is repetitive. For each iteration, there is a generation, which
consists of a set of chromosomes that represent a solution. The maximum number of
iterations was set to 100. Therefore, the stopping criteria were either the GA running
for 100 iterations or a lack of improvement in the solution obtained. Improvement was
measured in terms of the fitness function defined above, so the stopping criterion was
a lack of improvement in the obtained accuracy. To define the improvement, we used a
threshold. If the difference of accuracy between two consecutive generations was less than
the threshold, then the process stopped. The threshold for this system was set to be 0.05.

3.3. Support Vector Machine (SVM)

The support vector machine (SVM) is one of the best machine learning algorithms
used for binary classification. IDS can be viewed as binary classification, since transactions
are classified as either normal or intrusions regardless of the type of attack.

This work adopted an SVM because of the following advantages. SVMs are highly
effective in high-dimensional spaces such as the case we studied here. Even if the number
of dimensions is greater than the number of samples, an SVM still produces effective results.
SVMs are memory efficient, because in the decision function, they use a subset of training
points. SVMs are also versatile, as the decision function can be specified using different
kernel functions [27].

3.4. Integration between GA and SVM

The process starts by applying a genetic algorithm to select the needed number of
features. At this stage, the preprocessed data (explained later in Section 4.1) is fed into
the proposed GA to extract the proper set of features, since the original data consist of a
high-dimensional feature set with 77 features, out of which the best features are extracted.
In the next stage, the dataset of these features is divided into training and testing sets.
After that, a support vector machine is applied to the training set, and then the fitness
is calculated. If the fitness is not accepted, the SVM parameters are changed, and SVM
is applied again on the training set to calculate the new accuracy. What is meant by not
accepted is that the accuracy is less than the threshold. For this work, the threshold was
set to the minimum accuracy achieved by other researchers, which was 94.86% [7]. If
the results are accepted, they are saved for future comparison with results obtained from
other iterations of different feature selections. The next step is to check the total number of
iterations; if it is greater than the threshold, then these results, along with the parameters
that led to these results, are stored, and the process stops. If the iterations are less than
the threshold, the process loops again to the first step. Figure 7 shows the flowchart
of the proposed hybrid IDS. In the present work, the GA at the first stage was run for
100 generations. At each generation, a collection of features was examined using the fitness
function on that sample. The proposed Hybrid IDS algorithm is presented in Algorithm 2:

Algorithm 2: Hybrid IDS using GA and SVM.

1: Apply Algorithm 1 to select features.
2: loop
3: Create initial generation.
4: for i=1 to n /*n is the number of folds*/
5: Select 1/n of the population as a test set and (n−1)/n for training.
6: Apply SVM to the current training set with specific hyperparameters.
7: Evaluate the performance of the results using the fitness function.
8: end for



Symmetry 2021, 13, 2306 16 of 26

Algorithm 2: Cont.

9: performance of the current generation= average score of the results of n folds
10: Save the results of step 6.
11: until the stop criteria are met.
12: Display the best result, along with the hyperparameters for the SVM that produced it.

Figure 7. Flowchart of the proposed hybrid IDS.

4. Implementation and Results

This section explains the implementation process. It starts with data preparation, then
explains the measures used to evaluate the system performance. Finally, it discusses the
obtained results and how they were evaluated using different metrics so they could be
compared with existing techniques.
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4.1. Experiments Procedure and Results

The conducted experiments had two folds. The first was to find the optimal set of
features, while the second was to identify the set of parameters values for the SVM that
produce the maximum performance in terms of the proposed fitness function. For the
first fold, the GA started with a chromosome length equal to 10, which represents the
number of features. For the second fold, the SVA was applied to these 10 features with
different parameter values, which are listed in Table 4. The SVA has three basic parameters:
kernel, gamma, and degree. The kernel functions used in this work were linear, polynomial,
RBF and sigmoid. For linear, the degree is useless, but degree affects the results when
the kernel function is polynomial. The final parameter of the SVM that was applied in
the present experiment is gamma. It can be either Scale or Auto. The experiment was
conducted using 12 different combinations of these parameters, as illustrated in Table 5.
For each combination, the GA was executed with a different set of features for a maximum
predefined number of generations. The best result of the last generation was considered in
this study. The results of this experiment are shown in Table 5. The same type of experiment
was conducted for chromosome lengths of 15, 20, 25, 30, 35, and 40, producing the results
listed in Tables 6–11. Beyond 40 features, the system experienced unacceptable slowness;
hence, these results were not considered in the analysis.

Table 4. List of SVM parameters.

Kernel Gamma Degree

Linear Scale
AUTO 3

Poly Scale
AUTO 1, 2, 3

RBF Scale
AUTO 3

Sigmoid Scale
AUTO 3

Table 5. Results of 12 experiments on the proposed hybrid IDS using 10 features and different
SVM parameters.

SVM Parameters Fitness Value

svclassifier = SVC (kemel = ‘linear’, gamma = ‘scale’, degree = 3) 0.994302

svclassifier = SVC (kernel = ‘linear’, gamma = ‘auto’, degree = 3) 0.994302

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 0.994302

svclassifier = SVC (kemel = ‘poly’, gamma = ‘scale’, degree = 2) 0.994542

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.994542

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 0.994302

svclassifier = SVC (kemel = ‘poly’, gamma = ‘auto’, degree = 2) 0.994583

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.994542

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.994624

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.994624

svclassifier = SVC (kemel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.991761

svclassifier = SVC (kemel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.991947

Average 0.994031

Names of the selected features: Total Backward Packets, Bwd Packet Length Std, Fwd IAT Total, Bwd IAT Mean,
Fwd Header Length, URG Flag Count, CWE Flag, Count, Fwd Avg Packets Bulk, Subflow Fwd Bytes, Active Max.
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Table 6. Results of 12 experiments on the proposed hybrid IDS using 15 features and different
SVM parameters.

15 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘linear’, gamma = ‘scale’, degree = 3) 0.994562

svclassifier = SVQ (kernel = ‘linear’, gamma = ‘auto’, degree = 3) 0.994562

svdassifler = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 0.994281

svdasslfter = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 0.994583

svclassifier = SVC (kernel = ’poly’, gamma = ‘scale’, degree = 3) 0.994583

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 0.994302

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.994583

svdassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.994583

svdassifier = SVC (kernel = ’rbf’, gamma = ‘scale’, degree = 3) 0.994604

svdassifier = SVC (kernek = ‘rbf’, gamma = ‘auto’, degree = 3) 0.994604

svdassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.992954

svdassifier = SVC (kernel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.992954

Average 0.994263

Names of the selected features: Fwd Packet Length Std, Bwd IAT Max, Bwd I AT Min, Fwd PSH Flags, Fwd
Header Length, Fwd Packets_s, Bwd Packets_s, ECE Flag Count, Avg Fwd Segment Size, Avg Bwd Segment Size,
Fwd Avg Packets_Bulk, Bwd Avg Packets_Bulk, Subflow Fwd Bytes, Subflow Bwd Bytes, Min Seg_Size_Forward.

Table 7. Results of 12 experiments of the proposed Hybrid IDS using 20 features and different SVM parameters.

20 Features
Confusion Matrix

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘linear’, gamma = ‘scale’, degree = 3) 1
[[18758 551]

[ 411 79084]]

svdassifier = SVC (kernel = ‘linear’, gamma = ‘auto’, degree = 3) 1
[[18758 551]

[ 411 79084]]

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 1
[[18762 547]

[ 850 78645]]

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 1
[[19215 94]

[ 106 79389]]

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.997437
[[33494 193]

[ 47 340]]

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 1
[[33429 258]

[ 48 339]]

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 1
[[33487 200]

[ 47 340]]

svclassifier = SVC (kernel-‘poly’, gamma = ‘auto’, degree = 3) 0.999979
[[33686 1]

[ 368 19]]

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.994901
[[19228 81]

[ 61 79434]]

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.998482
[[33521 166]

[ 49 338]]
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Table 7. Cont.

20 Features
Confusion Matrix

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.998649 [[33399 288]

svclassifier = SVC (‘kernel-sigmoid’, gamma = ‘auto’, degree = 3) 0.99344 [ 233 154]]

Average 0.998574 [[33436 251]

Names of the selected features: Total Length of Bwd Packets, Bwd Packet Length Mean, Flow IAT Mean, Flow IAT Max, Fwd IAT Std,
Bwd IAT Mean, Bwd IAT Max, Bwd Header Length, Fwd Packets_s, PSH Flag Count, URG Flag Count, ECE Flag Count, Avg Bwd Segment
Size, Fwd Avg Bytes Bulk, Bwd Avg Packets Bulk, Subflow Bwd Bytes, Init Win Bytes Backward, Active Min, Idle Mean, Idle Max.

Table 8. Results of 12 experiments on the proposed hybrid IDS using 25 features and different
SVM parameters.

25 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘linear’, gamma = ‘scale’, degree = 3) 0.994427

svclassifier = SVC (kemel = ‘linear’, gamma = ‘auto’, degree = 3) 0.994427

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 0.99426

svclassifier = SVC (kemel = ‘poly’, gamma = ‘scale’, degree = 2) 0.995953

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.996404

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 0.99426

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.995953

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.996341

svclassifier = SVC (kemel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.996762

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.996762

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.986537

svclassifier = SVC (kemel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.986537

Average 0.994052

Names of the selected features: Flow Duration, Total Fwd Packets, Fwd Packet Length Std, Flow IAT Min, Fwd
IAT Max, Fwd IAT Min, Bwd IAT Total, Fwd PSH, Flags, Max Packet Length, Packet Length Variance, SYN Flag
Count, RST Flag Count, URG Flag Count, CWE Flag Count, ECE Flag, Count, Fwd Header Length, Fwd Avg Bulk
Rate, Subflow Fwd Bytes, Init_Win_Bytes_Forward, Init_Win_Bytes_Backward, Act Data Pkt Fwd, Active Min,
Idle Mean, Idle Max, Idle Min.

Table 9. Results of 12 experiments on the proposed hybrid IDS using 30 features and different
SVM parameters.

30 Features

SVM Parameters Fitness Value

svclassifier = SVC (kemel = ‘linear’, gamma = ‘scale’, degree = 3) 0.994583

svclassifier = SVC (kernel = ‘linear’, gamma = ‘auto’, degree = 3) 0.994583

svclassifier = SVC (kemel = ‘poly’, gamma = ‘scale’, degree = l) 0.994583

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 0.994624

svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.994539

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 0.994583

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.994624

svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.996804

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.99458
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Table 9. Cont.

30 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.99458

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.987238

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.987363

Average 0.993557

Names of the selected features: Total Fwd Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,
Bwd Packet Length Max, Bwd Packet Length Min, Flow IAT Mean, Fwd IAT Total, Fwd IAT Std, Fwd IAT Max,
Bwd IAT Mean, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Bwd Header Length, Fwd Packets_s, Packet
Length Variance, SYN Flag Count, PSH Flag Count, CWE Flag Count, ECE Flag Count, DownJJp Ratio, Average
Packet Size, Avg Bwd Segment Size, Fwd Avg Packets_Bulk, Bwd Avg Bytes_Bulk, Bwd Avg Bulk Rate, Subflow
Bwd Bytes, Active Max, Active Min, Idle Mean.

Table 10. Results of 12 experiments on the proposed hybrid IDS using 35 features and different
SVM parameters.

35 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘linear’, gamma = ‘scale’, degree = 3) 0.992532
svclassifier = SVC (kemel = ‘linear’, gamma = ‘auto’, degree = 3) 0.992532
svclassifier = SVC (kemeI = ‘poly’, gamma = ‘scale’, degree = l) 0.996033
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 0.996951
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.996951
svclassifier = SVC (kemel = ‘poly’, gamma = ‘auto’, degree = l) 0.995778
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.992633
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.992574
svclassifier = SVC (kernel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.993822
svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.993808

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.986881
svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.992652

Average 0.993808

Names of the selected features: Total Length of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length Min,
Fwd Packet Length Mean, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Flow IAT Max, Flow
IAT Min, Fwd IAT Std, Bwd IAT Std, Fwd URG Flags, Fwd Header Length, Bwd Header Length, Fwd Packets_s,
Bwd Packets_s, Min Packet Length, Packet Length Variance, SYN Flag Count, Average Packet Size, Avg Bwd
Segment Size, Fwd Avg Bytes_Bulk, Fwd Avg Packets_Bulk, Fwd Avg Bulk Rate, Bwd Avg Bulk Rate, Subflow
Fwd Packets, Subflow Bwd Bytes, Init_Win_Bytes_Forward, Init_Win_Bytes_Backward, Min_Seg_Size_Forward,
Active Mean, Active Std, Active Min, Idle Mean, Idle Std.

These experiments produced the following observations: from 10 to 15 features the
results were very close, and the training and testing times of the data were adequate. From
25 to 40 features, a decrease in the performance of the system was observed, as the accuracy
percentage decreased, and the time of training and testing increased.

To benchmark the performance of the proposed system with other systems using the
KDD CUP 99 dataset, another experiment was conducted using the same 12 combinations
of SVM parameters. The results of this experiment are shown in Table 12. Analysis of these
experiments is presented in the next subsection.
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Table 11. Results of 12 experiments on the proposed hybrid IDS using 40 features and different
SVM parameters.

40 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel = ‘linear’, gamma = ‘scale’, degree = 3) 0.995964
svclassifier = SVC (kemel = ‘linear’, gamma = ‘auto’, degree = 3) 0.995964
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 0.989691
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 0.991477
svclassifier = SVC (kemel = ‘poly’, gamma = ‘scale’, degree = 3) 0.995303
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = l) 0.99463
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.995839
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 3) 0.999979
svclassifier = SVC (kernel = ‘rbf’, gamma = ‘scale’, degree = 3) 0.996609
svclassifier = SVC (kernel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.996547

svclassifier = SVC (kemel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.991734
svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.994776

Average 0.994876

Names of the selected features: Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd
Packet Length Max, Bwd Packet Length Max, Bwd Packet Length Std, Flow IAT Max, Flow lATMin, Fwd IAT
Max, Bwd IATTotal, Bwd lATStd, Bwd lATMin, Fwd PSH Flags, Bwd PSH Flags, Bwd URG Flags, Fwd Header
Length, Bwd Header Length, Fwd Packets_s, Bwd Packets_s, Packet Length Mean, Packet Length Variance, SYN
Flag Count, RST Flag Count, PSH Flag Count, URG Flag Count, CWE Flag Count, ECE Flag Count, Average
Packet Size, Fwd Avg Packets_Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes_Bulk, Bwd Avg Bulk Rate, Subflow Fwd
Packets, Act Data Pkt Fwd, Min Seg Size Forward, Active Std, Active Min, Idle Mean, Idle Max, Idle Min.

Table 12. Results of 12 experiments of the proposed Hybrid IDS using 15 features from (KDD
CUP99) dataset.

15 Features

SVM Parameters Fitness Value

svclassifier = SVC (kernel= ‘linear’, gamma = ‘scale’, degree = 3) 0.980213
svclassifier = SVC (kernel = ‘linear’, gamma = ‘auto’, degree = 3) 0.980213
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = l) 0.972088
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 2) 0.985217
svclassifier = SVC (kernel = ‘poly’, gamma = ‘scale’, degree = 3) 0.992792
svclassifier = SVC (kemel = ‘poly’, gamma = ‘auto’, degree = l) 0.972032
svclassifier = SVC (kernel = ‘poly’, gamma = ‘auto’, degree = 2) 0.985074
svclassifier = SVC (kemel = ‘poly’, gamma = ‘auto’, degree = 3) 0.991780
svclassifier = SVC (kernel = ‘rbf’, gamma = scale’, degree = 3) 0.992975
svclassifier = SVC (kemel = ‘rbf’, gamma = ‘auto’, degree = 3) 0.992650

svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘scale’, degree = 3) 0.893446
svclassifier = SVC (kernel = ‘sigmoid’, gamma = ‘auto’, degree = 3) 0.886727

Average 0.968767

Name of the selected features: service, flag, src_bytes, num_failed_logins, logged_in, lnum_file_creations,
lnum_outbound_cmds, count, srv_count, rerror_rate, same srv rate, dst_host_same_src_port_rate,
dst_host_srv_diff_host_rate, dst host rerror rate, dst host srv rerror rate.

4.2. Analysis of Results

Different types of SVM kernel functions were applied. It was observed that if the
kernel was linear, then the accuracy did not depend on any other parameters (neither
gamma nor degree). If the kernel was polynomial and gamma was scale, then the accuracy
depended on the degree. When the degree was two or three, the SVM produced higher
accuracy than if the degree was one in most cases. In terms of the number of features,
it was noted that the highest ever scored fitness, which was 100%, was obtained when
the number of features was 20. This high performance was achieved when SVM kernel
function was linear, or when the kernel function was polynomial and the degree was either
one or two. In addition, the highest average of all 12 combinations was achieved when the
number of features was 20 as well. Graphically, this is illustrated in Figure 8. This showed
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that the optimal number of features was 20, which was 25.6% of features in the dataset.
These features are listed in Table 7. Achieving the optimal performance of 100% using
an only quarter of features proved that the proposed method could perform well using a
limited number of features. On the other hand, one could conclude that the dataset had
many low-value features that could be eliminated from the dataset safely. However, this
conclusion needs to be further examined using other ML techniques.

Figure 8. Average fitness per number of features.

Comparing the obtained results using the CICIDS2017 dataset with those of the other
hybrid IDS mentioned in Section 2, which used the KDD CUP 99 dataset, it was noted
that [4] achieved a 96.38% detection rate while our system achieved a maximum of 100%,
which means that the proposed system achieved an improvement of 3.32%. Reference [5]
achieved a 95.26% detection rate compared with the 99.50% achieved in the present study,
which means that the proposed system achieved an improvement of 4.74%. Reference [6]
achieved a 95.17% detection rate, which was lower than that obtained in the present study
by 4.83%. Reference [7] achieved a 94.86% detection rate, which was 5.14% less than that
obtained by the proposed hybrid IDS. These results are summarized in Table 13.

Table 13. Summary of results analysis using the CICIDS2017 dataset.

Authors Detection Rate (DR) Proposed Method (DR) Achieved Improvement (%)

M. Moukhafi et al., 2018 [4] 96.38%

100%

3.32

F. Kuang et al., 2018 [5] 95.26% 4.74

Al-yaseen et al., 2018 [6] 95.17% 4.83

W. Feng et al., 2014 [7] 94.86% 5.14

The proposed system was also tested with the KDD CUP 99 dataset to compare the
present results with previous works that used the same dataset in their works. It was
noted that [4] achieved a 96.38% detection rate, while our system achieved a maximum
detection rate of 99.3% using the same dataset, which means the proposed system achieved
an improvement of 3.03%. Reference [5] achieved a 95.26% detection rate, while the
proposed hybrid IDS system achieved a maximum detection rate of 99.65%, which means
that the proposed system achieved an improvement of 4.24%. Reference [6] achieved
a 95.17% detection rate, which is lower than that obtained by the proposed system by
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4.33%. Referenced [7] achieved a 94.86% of detection rate, which is 4.68% lower than that
obtained by the proposed hybrid IDS. Compared with other IDS systems that applied
fuzzy vectorized GA as a core technique, it was noted that [39] used a vectorized fitness
function on the NSL-KDD dataset with 42 features. The NSL-KDD dataset is the enhanced
version of KDD CUP 99. In the experiment in [39], six different models were applied, four
of which achieved accuracy ranging between 91.86 and 95.53%. On the other hand, two
models achieved accuracies of 99.18% and 99.02%. The last two scores were much closer
to the achieved results in this work; they were less by only 0.12% and 0.28%, respectively.
Another work that applied GA is [47]. The authors developed a GPSVM, which combined
both genetic programming and an SVM. The detection rate varied depending on the type
of attack. The maximum detection rate achieved was 97.59%, for detecting U2R attacks.
It was noted that this detection rate was 1.75% lower than that obtained by our system.
Considering the results obtained by a recent study, [48], in which intrusion was detected
using a real-time sequential deep extreme learning machine, said machine achieved a
maximum accuracy rate of 93.58% when applied on a fused dataset (NSL-KDD and KDD
CUP 99). One of the recent studies is [49]. The system therein used a deep extreme learning
machine (DELM) to identify any malice or intrusion. Its accuracy using KDD CUP 99 was
94.6%, which was better than its accuracy using NSL-KDD by 0.69%. It is worth pointing
that our proposed system outperformed the DELM by up to 5.47%. Table 14 summarizes
these results.

Table 14. Summary of results analysis using the KDD CUP 99 and NSL-KDD datasets.

Authors Accuracy Rate (%) Dataset Achieved Improvement (%)

Proposed Hybrid IDS (this work) 99.3

KDD CUP 99

—

M. Moukhafi et al., 2018 [4] 96.38 3.03

F. Kuang et al., 2018 [5] 95.26 4.24

Al-yaseen et al., 2018 [6] 95.17 4.34

W. Feng et al., 2014 [7] 94.86 4.68

Khan et al., 2021 [49] 94.6 4.97

Bhattacharjee et al., 2017 (f1) [39] 99.18

NSL-KDD

0.12

Bhattacharjee et al., 2017 (f2) [39] 99.02 0.28

Pozi et al., 2016 [47] 97.59 1.75

Khan et al., 2021 [49] 93.91 5.74

Khan et al., 2021 [48] 93.58 KDD CUP 99 and
NSL-KDD 6.11

5. Conclusions

In this work, we propose a novel hybrid intrusion detection system to secure data
in cloud computing based on an improved genetic algorithm (GA) and support vector
machine (SVM) algorithm to create an intelligent IDS model. The improved GA is charac-
terized by a newly developed fitness function that is used to evaluate the performance of
the hybrid IDS. The fitness function combines three measures: F1-score, accuracy, and TPR,
with different weights for each measure. This system was examined using two datasets:
the newly developed dataset CICIDS2017, which consists of normal and most up-to-date
common attacks, and the well-known dataset KDD CUP 99. The brilliance of the proposed
system is that the GA and SVM are executed simultaneously to achieve two objectives at
once, which are obtaining the best subset of 79 features with maximum accuracy. The SVM
is used to classify data into benign and abnormal using different values for its hyperparam-
eters, including the kernel function, gamma, and degree. Folding of the dataset is applied
to change the training and testing dataset to examine the behavior of the system on these
kinds of data. The results were analyzed and compared with similar works that applied GA
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and SVM for IDS. The results showed that the proposed model outperformed these works
in terms of accuracy by a maximum of 5.14% and a minimum of 3.32% using CICIDS2017,
a maximum of 4.97% and a minimum of 3.03% using the KDD CUP 99 dataset, and a maxi-
mum of 5.74% and a minimum of 0.12% using the NSL-KDD dataset. This system proved
its efficiency through the results obtained. To generalize the results, further experiments
must be conducted. These must include using even larger datasets, using different datasets,
trying different machine learning algorithms or combinations of ML algorithms, and trying
more hyperparameters and parameter values for these ML algorithms.
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