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Abstract: Tubular flange composite beams are increasingly applied in modern bridge structures. In
order to investigate the overall stability behavior of doubly symmetric tubular flange composite
beams with lateral bracing under concentrated load, the analysis of elastic lateral-torsional buckling
is conducted by the energy variation method. The analytical solution of critical moment of doubly
symmetric tubular flange composite beams with lateral bracing is obtained. Meanwhile, the simplified
calculation formula of critical moment is fitted by 1stOpt software based on 26,000 groups of data,
and the accuracy is verified by the finite element method. It is found that, the critical moment rises
obviously with increasing lateral bracing stiffness, and adding lateral bracing to doubly symmetric
tubular flange composite beams is beneficial to improve the overall stability in engineering practice.
Finally, the influence of several parameters including concrete strength, span, steel ratio of flange and
height-thickness ratio of web are studied. The results show that the concrete strength and the web
height-thickness ratio have a weak influence on critical moment of elastic lateral-torsional buckling,
while the influence of span-depth ratio and flange steel ratio is very significant.

Keywords: doubly symmetric tubular flange composite beams; lateral bracing; lateral-torsional
buckling; critical moment; finite element method

1. Introduction

The tubular flange composite beam is a novel composite beam in highway bridges,
which replaces flat flange of traditional I-shaped steel beam with concrete-filled steel
tubular flange. This type of composite beam is advantageous for overall stability because
of its higher strength and greater torsional stiffness [1–3]. In recent years, the flexural
behavior and stability of doubly symmetric and monosymmetric tubular flange beams
have been concerned by many scholars [4,5]. Kim and Sause et al. [6–8] studied the lateral-
torsional buckling performance of tubular flange composite beams by carrying out flexural
experiments and finite element analysis. Cho [9] investigated the flexural resistance of
monosymmetric tubular flange composite beams by two-point loading tests on seven
specimens. Theoretical equations to estimate the flexural strength of new type composite
beams were presented, and their accuracy was examined by comparing the predictions
of the equations with the test results. Rana [10] researched mechanical properties of
monosymmetric tubular flange composite beams under the combined action of bending
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and tensile axial force. Based on the finite element analysis results, the moment-axial
force interaction relationship was revealed, and a simplified calculation formula was
presented. Yan [11] put forward a simplified formula for calculating the flexural capacity
of monosymmetric tubular flange composite beams based on the mechanical properties
and failure mechanism. Zhang et al. [12–15] proposed the calculation formulas of elastic
and plastic flexural capacity of four kinds of monosymmetric tubular flange composite
beams by the experimental and theoretical studies, and the formulas for calculating the
critical moment of lateral-torsional buckling were provided based on the plate-beam theory.
Wang et al. [16] deduced the simplified calculation formulas of yield moment and ultimate
flexural capacity of doubly symmetric and monosymmetric tubular flange composite
beams. Gao et al. [17] investigated lateral-torsional buckling behavior of high-strength steel
tubular flange composite beams by experimental and numerical methods. The research
suggested that the infilled concrete could improve the resistance to flange distortion and
the flange depth influenced on the lateral-torsional buckling strength remarkably.

In practical engineering, the steel beams as lateral bracings are connected between
the tubular flange composite beams, which can provide lateral constraints and improve
stability. Many studies on the stability of steel beams with lateral bracing have been carried
out. Taylor [18] and Tong [19] studied the stability performance of doubly symmetric
I-shaped simply supported steel beams with lateral bracing and proposed the analytical
solution of the critical moment of the elastic lateral-torsional buckling. Wu [20] and Zou [21]
discussed the influence of lateral bracing on the overall stability of doubly symmetric I-
beam under different loads. Zhang et al. [22,23] proposed the formulas for calculating
the critical moment of elastic lateral-torsional buckling of two-span doubly symmetric
steel beams and I-shaped cantilever steel beams with lateral bracing by energy variation
method. Based on the plate-beam theory, Deng [24] researched the stability performance
of monosymmetric tubular flange composite beams and fitted the calculation formula of
the elastic critical moment. At present, there are few studies on the stability of doubly
symmetric tubular flange composite beams with lateral bracing.

Based on this background, the elastic stability of doubly symmetric tubular flange
composite beams with lateral bracing are carried out and provide the critical moment
calculation formula in this paper. Firstly, the total potential energy equation of the elastic
lateral-torsional buckling for doubly symmetric tubular flange composite beams with
lateral bracing under concentrated load is established by the energy variation method. The
dimensionless parameters are introduced to calculate the analytical solution of the critical
moment. Furthermore, the critical moment calculation formula of elastic lateral-torsional
buckling is fitted through 1stOpt software, and the accuracy of the formula is verified by
finite element analysis, which can provide technical support for the subsequent research
and application of this type of beam. Finally, the effect of concrete strength, span, steel
ratio of flange and height-thickness ratio of web on the elastic lateral-torsional buckling
critical moment of doubly symmetric tubular flange composite beams are discussed.

2. Lateral-Torsional Buckling Equation
2.1. Basic Information

The calculation diagram of doubly symmetric tubular flange composite beams with
lateral bracing under concentrated load is shown in Figure 1. Lateral bracing is set at the
upper flange of mid-span. Where Py is the concentrated load acting on the upper flange, L
is the span of doubly symmetric tubular flange composite beams, h is the distance between
the upper and lower tubular flange centroid, and kL is the lateral bracing stiffness.
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Figure 1. Calculation diagram of doubly symmetric tubular flange composite beams with lateral 
bracing under concentrated load. 

The sectional geometric parameters of doubly symmetric tubular flange composite 
beams are shown in Figure 2a. The section of tubular flange composite beams is biaxial 
symmetry, where H is the cross-sectional height, bf is the width of the tubular flange, tf is 
the height of the tubular flange, t is the thickness of the tubular flange, tw is the thickness 
of web, and hw is the height of web. 
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Figure 2. Section size and lateral-torsional buckling deformation diagram of doubly symmetric 
tubular flange composite beams: (a) Section size. (b) Lateral-torsional deformation. 

The lateral-torsional deformation of doubly symmetric tubular flange composite 
beams with lateral bracing under concentrated load is shown in Figure 2b. The section of 
beam is doubly symmetric, then shear center S and centroid O is coincident. Where u is 
the lateral displacement of the shear center, θ is the torsion angle of the section around 
the shear center, a is the distance from the load point to the shear center. 

2.2. Basic Assumptions 
The following assumptions are adopted for the lateral-torsional buckling of tubular 

flange composite beams: 
1. The deformation shape of the cross section of the beam conforms to rigid periph-

eral assumption. 
2. The torsional deformation of webs can be decomposed into in-plane deformation 

and out-of-plane deformation, and the corresponding strain energy is determined by 
Euler beam model and Kirchhoff plate model respectively; 

3. The torsional deformation of concrete-filled steel tubular flange can be decom-
posed into in-plane deformation and out-of-plane deformation, and the corresponding 
strain energy is determined by the Euler beam mechanical model and Saint-Venant tor-
sional mechanical model separately. 

4. The relative slip between steel tube and concrete is not considered, and the de-
formation between them is coordinated. 

  

Figure 1. Calculation diagram of doubly symmetric tubular flange composite beams with lateral
bracing under concentrated load.

The sectional geometric parameters of doubly symmetric tubular flange composite
beams are shown in Figure 2a. The section of tubular flange composite beams is biaxial
symmetry, where H is the cross-sectional height, bf is the width of the tubular flange, tf is
the height of the tubular flange, t is the thickness of the tubular flange, tw is the thickness
of web, and hw is the height of web.

Symmetry 2021, 13, 2328 3 of 15 
 

 

 
Figure 1. Calculation diagram of doubly symmetric tubular flange composite beams with lateral 
bracing under concentrated load. 

The sectional geometric parameters of doubly symmetric tubular flange composite 
beams are shown in Figure 2a. The section of tubular flange composite beams is biaxial 
symmetry, where H is the cross-sectional height, bf is the width of the tubular flange, tf is 
the height of the tubular flange, t is the thickness of the tubular flange, tw is the thickness 
of web, and hw is the height of web. 

  
(a) (b) 

Figure 2. Section size and lateral-torsional buckling deformation diagram of doubly symmetric 
tubular flange composite beams: (a) Section size. (b) Lateral-torsional deformation. 

The lateral-torsional deformation of doubly symmetric tubular flange composite 
beams with lateral bracing under concentrated load is shown in Figure 2b. The section of 
beam is doubly symmetric, then shear center S and centroid O is coincident. Where u is 
the lateral displacement of the shear center, θ is the torsion angle of the section around 
the shear center, a is the distance from the load point to the shear center. 

2.2. Basic Assumptions 
The following assumptions are adopted for the lateral-torsional buckling of tubular 

flange composite beams: 
1. The deformation shape of the cross section of the beam conforms to rigid periph-

eral assumption. 
2. The torsional deformation of webs can be decomposed into in-plane deformation 

and out-of-plane deformation, and the corresponding strain energy is determined by 
Euler beam model and Kirchhoff plate model respectively; 

3. The torsional deformation of concrete-filled steel tubular flange can be decom-
posed into in-plane deformation and out-of-plane deformation, and the corresponding 
strain energy is determined by the Euler beam mechanical model and Saint-Venant tor-
sional mechanical model separately. 

4. The relative slip between steel tube and concrete is not considered, and the de-
formation between them is coordinated. 
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tubular flange composite beams: (a) Section size. (b) Lateral-torsional deformation.

The lateral-torsional deformation of doubly symmetric tubular flange composite
beams with lateral bracing under concentrated load is shown in Figure 2b. The section of
beam is doubly symmetric, then shear center S and centroid O is coincident. Where u is
the lateral displacement of the shear center, θ is the torsion angle of the section around the
shear center, a is the distance from the load point to the shear center.

2.2. Basic Assumptions

The following assumptions are adopted for the lateral-torsional buckling of tubular
flange composite beams:

1. The deformation shape of the cross section of the beam conforms to rigid peripheral
assumption.

2. The torsional deformation of webs can be decomposed into in-plane deformation
and out-of-plane deformation, and the corresponding strain energy is determined by Euler
beam model and Kirchhoff plate model respectively;

3. The torsional deformation of concrete-filled steel tubular flange can be decomposed
into in-plane deformation and out-of-plane deformation, and the corresponding strain
energy is determined by the Euler beam mechanical model and Saint-Venant torsional
mechanical model separately.

4. The relative slip between steel tube and concrete is not considered, and the defor-
mation between them is coordinated.
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2.3. Total Potential Energy Equation

The total potential energy equation of doubly symmetric tubular flange composite
beam under concentrated load without lateral bracing can be expressed as [25–27]:

Π1 =
1
2

∫ L

0

[(
EIy
)

compu′′2 + (EIω)compθ′′2 + (GJk)compθ′2 − 2Mxu′′θ
]
dz− 1

2 ∑ Piaiθ
2
i (1)

where (EIy)comp is the flexural stiffness around weak axis of composite beam, (GJk)comp
is the free torsional stiffness, (EIω)comp is the restrained torsional stiffness, and Mx is the
moment of doubly symmetric tubular flange composite beam under concentrated load.

Due to the complexity of the open and closed cross-section, the existing theory cannot
solve this problem accurately. Therefore, according to the plate-beam theory proposed by
Zhang [12], the formulas of (EIy)comp, (EIω)comp and (GJk)comp can be expressed as [13]:

(EIy)comp = Es
1−µ2

s
( hwt3

w
12 ) + 2

[
Es(

tfb3
f

12 −
tfcb3

fc
12 ) + Ec(

tfcb3
fc

12 )
]

(EIw)comp = Es
1−µ2

s
( h3

wt3
w

144 ) + 2( h
2 )

2[
Es(

tfb3
f

12 −
tfcb3

fc
12 ) + Ec

tfcb3
fc

12

]
(GJk)comp = GJkw + 2GJkf

GJkw = Gs
hwt3

w
3

GJkf = t4
f Gs

[
0.8206 2s2

r2(r+s) − 0.3649 1
r2 +

3r4s3+32r2s5+3s7

9mr7+126mr5s2+126mr3s4+9mrs6

]
(2)

where GJkw is the free torsional stiffness of web and GJkf is the free torsional stiffness of
tubular flange, tfc = tf − 2t, bfc = bf − 2t, r = tf/t, s = bf/t, m = Gs/Gc, Es is the elastic
modulus of steel, Ec is the elastic modulus of concrete, µs is the Poisson’s ratio of steel, Gs
is the shear modulus of steel, and Gc is the shear modulus of concrete.

The total potential energy equation of lateral bracing can be expressed as:

Π2 =
1
2

kL

[
u(

L
2
) + aθ(

L
2
)

]2
(3)

2.4. Displacement Function

In the case of lateral-torsional deformation of doubly symmetric tubular flange com-
posite beams, the functions of lateral displacement u(z) and rotation angle θ(z) are chosen
in the form of six-term trigonometric series, which can be expressed as:

u(z) =
6

∑
i=1

Aih sin(
iπz
L

) (4)

θ(z) =
6

∑
i=1

Bi sin(
iπz
L

) (5)

where Ai and Bi are undetermined coefficients.
Obviously, the selected lateral displacement u(z) and rotation angle θ(z) functions

should satisfy the geometric boundary conditions of doubly symmetric tubular flange
composite beam:

u(0) = u(L) = 0 ; u′′(0) = u′′(L) = 0
θ(0) = θ(L) = 0 ; θ′′(0) = θ′′(L) = 0

(6)

2.5. Expression of Moment

The moment Mx of doubly symmetric tubular flange composite beams with lateral
bracing under concentrated load can be expressed as:

Mx(z) = 1
2 Pyz 0 < z ≤ L

2
Mx(z) = 1

2 Py(L− z) L
2 < z ≤ L

}
(7)
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By substituting Equations (4)–(7) into Equation (1), the total potential energy without
bracing can be expressed as:

Π1 =
1
2

[ (
EIy
)

comph2π4 A2
1

2L3 +
(EIw)compπ4B2

1

2L3 +
(GJk)compπ2B2

1

2L
+

hP(4 + π2)

8
A1B1 − aPB2

1

]
(8)

By substituting Equations (4) and (5) into Equation (3), the bracing potential energy
can be further expressed as:

Π2 =
1
2
[a(B1 − B3 + B5) + A1H − A3H + A5H]2kL (9)

Therefore, the total potential energy of doubly symmetric tubular flange composite
beam with lateral bracing under concentrated load can be expressed as:

Π = Π1 + Π2 = 1
2

[
(EIy)comph2π4 A2

1

2L3 +
(EIw)compπ4 B2

1
2L3 +

(GJk)compπ2 B2
1

2L +
hPy(4+π2)

8 A1B1 − aPyB2
1

]
+ 1

2 [a(B1 − B3 + B5) + A1 H − A3 H + A5 H]2kL

(10)

2.6. Dimensionless Buckling Equation

According to the stationary value principle of minimum potential energy [25]:

∂Π
∂Ai

= 0 (i = 1, 2, 3, 4, 5, 6) ;
∂Π
∂Bi

= 0 (i = 1, 2, 3, 4, 5, 6).
(11)

The definition of dimensionless parameters is introduced as [13,28,29]:

M̃cr =
Mcr[

π2(EIy)comp
L2

]
h

; ã = a
h ; k̃L = kLL3

(EIy)comp
; K =

√
π2(EIw)comp

(GJk)compL2 ;

S =
(EIy)comph2

(EIw)comp
; Py = 4Mcr

L .

(12)

where Mcr is the critical moment of doubly symmetric tubular flange composite beam with
lateral bracing under concentrated load; M̃cr is the dimensionless critical moment; ã is the
dimensionless position of load; kL is the lateral bracing stiffness; k̃L is the dimensionless
lateral bracing stiffness; K is the torsional stiffness parameter; S is the parameter introduced
to characterize the relationship between the bending stiffness around the weak axis and
the constrained torsional stiffness.

Multiplying Equation (11) by L3/[(EIy)comp h2] and substituting dimensionless pa-
rameters of Equation (12) into Equation (11), the dimensionless buckling equation can be
obtained, which can be expressed in the form of the matrix:[ 0R 0S

0T 0Q

]{
A
B

}
= M̃cr

[ 1R 1S
1T 1Q

]{
A
B

}
(13)

The minimum eigenvalue obtained from Equation (13) is the analytical solution of
critical moment of elastic lateral-torsional buckling of doubly symmetric tubular flange
composite beam with lateral bracing under concentrated load.

From the above derivation, a series of dimensionless critical moment M̃cr can be
obtained by calculating the parameters of ã, k̃L, S, and K, which are used in the regression
of critical moment formula.

3. Critical Moment Formula

In this paper, MATLAB software is applied to write a program to calculate the dimen-
sionless critical moment M̃cr of doubly symmetric tubular flange composite beams with
lateral bracing under concentrated load, and M̃cr can be calculated by inputting different
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values of ã, k̃L, and K. Through trial calculation, it is found that when the value of k̃L

reaches the dimensionless threshold stiffness k̃LT [30], the dimensionless critical moment
M̃cr does not increase any more. Because the threshold stiffness of each beam is different,
the change step of dimensionless lateral bracing stiffness k̃L is set as 5 in order to obtain
more accurate data. A total 26,000 data of dimensionless critical moment are obtained
through calculation for regression of the dimensionless critical moment formula.

Based on the data obtained above, it is found that the dimensionless critical moment
of doubly symmetric tubular flange composite beams with lateral bracing continuously
increases with the increase of the dimensionless lateral bracing stiffness. When the lateral
bracing stiffness reaches the dimensionless threshold stiffness, the critical moment does
not increase any more, and its relationship curve is shown in Figure 3.
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M̃cr = c1 M̃cr0 + c2(M̃crT − M̃cr0)(
k̃L

k̃LT
)

0.8
 1 + c3(

k̃L
k̃LT

)− c4(
k̃L
k̃LT

)
2

+c5(
k̃L
k̃LT

)
3
+ c6(

k̃L
k̃LT

)
4

+ c7 (0 < k̃L < k̃LT) (14)

where c1, c2, c3, c4, c5, c6 and c7 are coefficients and the values of coefficients are shown
in Table 1. M̃cr0 is the calculation formula of elastic lateral-torsional buckling of doubly
symmetric tubular flange composite beams under concentrated load without lateral bracing,
which can be expressed as [33]:

M̃cr0 = β1

[
β2 ã + β3K−1 +

√
(β2 ã)2 + S(1 + K−2) + β4K−1

]
(15)

where β1, β2, β3 and β4 are coefficients and the values are shown in Table 2.

Table 1. The values of parameters of Equation (14).

Parameter c1 c2 c3 c4 c5 c6 c7
Value 0.995 1.060 0.705 1.994 1.983 −0.735 −0.080

Table 2. The values of parameters of Equation (15).

Parameter β1 β2 β3 β4
Value 0.213 −4.086 1.153 1.127

M̃crT is the dimensionless critical moment when k̃L reaches the dimensionless thresh-
old stiffness k̃LT, which can be expressed as:

M̃crT = β1T

[
β2T ã + β3TK−1 + β4Tk̃LT

1
4 +

√
(β2T ã)2 + S(1 + K−2) + β5TK−1

]
(16)
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where the value of β1T, β2T, β3T, β4T, and β5T are shown in Table 3 and the calculation
formula of the dimensionless threshold stiffness k̃LT is:

k̃LT =
16π3(8 + α1)(4 + α2)

1.5

1.75
[
πα3(8 + α4)

√
4 + α5 + 32

] (17)

where α1 = γ1K−2, α2 = γ2K−2, α3 = γ3K−2, α4 = γ4K−2, α5 = γ5K−2. The value of the
coefficient γ1, γ2, γ3, γ4 and γ5 are shown in Table 4.

Table 3. The values of parameters of Equation (16).

Parameter β1T β2T β3T β4T β5T
Value 0.073 −26.073 17.619 8.096 −41.472

Table 4. The values of parameters of Equation (17).

Parameter γ1 γ2 γ3 γ4 γ5
Value −0.218 1.701 2.014 −0.218 1.285

4. Finite Element Verification

In order to verify the correctness of the above theoretical analysis formula, the elastic
lateral-torsional buckling analysis of the doubly symmetric tubular flange composite beams
with lateral bracing is carried out by ANSYS finite element software. The finite element
solutions of critical moment for the doubly symmetric tubular flange composite beams
with lateral bracing under concentrated load are obtained.

4.1. Establishment of Finite Element Model

The section of tubular flange composite beam is composed of concrete-filled steel tubes
and steel web. The materials include two types: steel and concrete. SHELL181 element
is used to simulate steel tubes and web of the beam. SOLID65 solid element is used to
simulate concrete in steel tube. CONTA173 element is selected as the contact element,
which is covered on the concrete solid element and the value of KEYOPT (12) option is set
to five, so as to realize the binding contact with the target surface and ensure that the outer
normal of the contact surface points to the target surface. TARGE170 element is selected
as the target element, which is used to describe the target surface related to the contact
element. In the model, the target surface is the inner surface of the steel tube [34]. In order
to acquire adequate accuracy, different mesh sizes are considered. The steel tube flanges
and web are divided into thirty parts along the span, the steel tube along the width is
divided into four parts, the steel tube along the height is divided into two parts, and the
meshing of internal concrete is coincident with steel tube flange, so that contact pairs can
be established at their interface. The web along the height is divided into eight parts.

COMBIN14 spring element is used to simulate the elastic lateral bracing and the
lateral bracing stiffness is defined by real constants. The finite element model (FEM) is
established, as shown in Figure 4. In order to satisfy the assumption of rigid perimeter,
CERIG command is used to establish constraint equations around the z axis to ensure all
nodes of the section have the same rotation degree of freedom. The distribution of rigid
perimeter along the beam length is shown in Figure 5.
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In order to satisfy the boundary conditions of ideal clamping, the rigid peripheral
region in left and right end supports are established by using the constraint equation. The
master node is the centroid of the end section. The master nodes are restrained against in-
plane vertical deflection (uy), out-of-plane horizontal deflection (ux), and twisting rotation
(rotz). And the master node of the left end is only restrained against longitudinal horizontal
displacement (uz). The left and right boundary conditions are shown in Figure 6.
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4.2. Verification of Results

Two doubly symmetric tubular flange composite beams (DSTFCB-1 and DSTFCB-2) of
different dimensions are selected for comparative verification, and the geometric dimen-
sions are shown in Table 5.

Table 5. Geometrical dimensions.

Parameter L (mm) H (mm) bf (mm) Tf (mm) T (mm) hw (mm) tw (mm)

DSTFCB-1 3300 330 60 30 4 270 6
DSTFCB-2 13,800 690 180 100 12 490 14
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The dimensionless threshold stiffness values of DSTFCB-1 and DSTFCB-2 are 1,158,028
and 895,768 respectively. The elastic modulus of steel Es is 2.06 × 105 MPa, and Poisson’s
ratio µs is 0.3. The strength grade of concrete is C40, and elastic modulus of concrete Ec is
3.25 × 104 MPa. The eigenvalue buckling analysis is conducted by ANSYS, and the critical
moments are obtained, which are compared with the critical moments of the theoretical
Equation (14). The comparison results are shown in Table 6 and Figure 7, the buckling
modes of doubly symmetric tubular flange composite beams with lateral bracing are shown
in Figure 8.

From Table 6 and Figure 7, it is clear that the results calculated by theoretical Equation (14)
are close to those obtained by finite element analysis, with the errors less than 5%. This
indicates that the accuracy is very high. Moreover, the critical moment increases with the
increase of lateral bracing stiffness. When the lateral bracing stiffness exceeds the threshold
stiffness, the critical moment hardly increases. From Figure 8, when lateral bracing stiffness
is less than the threshold stiffness, its buckling mode is similar to a sinusoidal half wave,
which is symmetric buckling. When the bracing stiffness is greater than the threshold
stiffness, the buckling mode is two half waves, which is antisymmetric buckling. It is
present that lateral bracing stiffness influences the buckling mode of doubly symmetric
tubular flange composite beams.

Table 6. Comparison of critical moments of doubly symmetric tubular flange composite beams with lateral bracing.

DSTFCB-1 DSTFCB-2

k̃L
Mcr (FEM)

(kN·m)
Mcr (Equation (14))

(kN·m)
Relative
Error (%) k̃L

Mcr (FEM)
(kN·m)

Mcr (Equation (14))
(kN·m)

Relative
Error (%)

0 90 89 1.11 0 2018 2113 −4.71
20 116 113 2.59 20 2455 2578 −5.01
40 138 135 2.17 40 2854 2970 −4.06
60 157 154 1.91 60 3197 3319 −3.82
80 174 172 1.15 80 3499 3631 −3.77

100 189 188 0.53 100 3767 3912 −3.85
120 203 202 0.49 120 4009 4167 −3.94
140 214 215 −0.47 140 4226 4402 −4.16
160 226 228 −0.88 160 4424 4620 −4.43
180 236 239 −1.27 180 4604 4822 −4.74
200 245 250 −2.04 200 4768 5002 −4.91
220 254 260 −2.36 220 4918 5101 −3.72
240 261 266 −1.92 240 5056 5119 −1.25
260 263 268 −1.90 260 5102 5136 −0.67
280 266 269 −1.13 280 5121 5152 −0.61
300 267 271 −1.50 300 5147 5167 −0.39

Note. The error is calculated by the formula (Mcr(FEM) −Mcr(Equation(14)))× 100%/Mcr(FEM).
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5. Parameter Analysis

In order to further understand the factors affecting elastic lateral-torsional buckling
critical moment of doubly symmetric tubular flange composite beams with lateral bracing,
the parameters such as concrete strength, span, steel ratio of flange and height-thickness
ratio of web are analyzed to obtain the influence law on the critical moment.

5.1. Effect of Concrete Strength

The yield strength of steel for doubly symmetric tubular flange composite beam is
345 MPa, the elastic modulus Es is 2.06 × 105 MPa, the Poisson’s ratio µs is 0.3, and the
concrete strength grades are C40, C50, and C60, respectively [35,36]. The calculation results
of elastic lateral-torsional buckling critical moment of doubly symmetric tubular flange
composite beams are shown in Figure 9.
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From Figure 9, it is clear that the elastic lateral-torsional buckling critical moment of
doubly symmetric tubular flange composite beams increases marginally with the increase
of concrete strength. The elastic modulus of C40, C50, and C60 concrete are 3.25 × 104 MPa,
3.45× 104 MPa, and 3.60× 104 MPa, respectively. Since the elastic lateral-torsional analysis
of beam is carried out in this paper, the impact of concrete on beam is mainly reflected in
the change of its elastic modulus. When the concrete strength grade increases from C40 to
C60, the change of elastic modulus is very small, so the change of concrete strength grade
has little effect on the critical moment.

5.2. Effect of Span

The effect of span-depth ratio on elastic lateral-torsional buckling critical moment of
doubly symmetric tubular flange composite beams is studied. The span-depth ratios are
shown in Table 7. The yield strength of steel is 345 MPa and the concrete strength grade is
C40. The calculation results of critical moment are shown in Figure 10.
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Table 7. Span-depth ratios of DSTFCB-1 and DSTFCB-2.

Parameter DSTFCB-1 DSTFCB-2

Span L(m) 3.3 4.95 6.6 8.25 6.9 10.35 13.8 17.25
span-depth ratio (L/H) 10 15 20 25 10 15 20 25
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From Figure 10, it is clear that the critical moment decreases substantially with the
increase of span-depth ratio. When the span-depth ratio increases from 10 to 25, the critical
moment decreases range from 34.8% to 68.8%. It indicates that the effect of span-depth
ratio on critical moment is significant.

5.3. Effect of Steel Ratio of Flange

The steel ratio of flange can be adjusted by changing the thickness of the steel tube
(denoted by symbol α here, α is Afs/Afc), and the values are shown in Table 8. In the
analysis, the yield strength of steel is 345 MPa and the strength grade of concrete is C40,
and other parameters are unchanged. The calculation results of critical moment are shown
in Figure 11.

Table 8. Steel ratios of flange of DSTFCB-1 and DSTFCB-2.

Parameter DSTFCB-1 DSTFCB-2

Steel tube thickness (mm) 2 3 4 8 10 12
Steel content α (%) 23.6 38.9 57.3 30.7 40.6 51.8

Symmetry 2021, 13, 2328 12 of 15 
 

 

Table 7. Span-depth ratios of DSTFCB-1 and DSTFCB-2. 

Parameter DSTFCB-1 DSTFCB-2 
Span L(m) 3.3 4.95 6.6 8.25 6.9 10.35 13.8 17.25 

span-depth ratio (L/H) 10 15 20 25 10 15 20 25 

From Figure 10, it is clear that the critical moment decreases substantially with the 
increase of span-depth ratio. When the span-depth ratio increases from 10 to 25, the crit-
ical moment decreases range from 34.8% to 68.8%. It indicates that the effect of 
span-depth ratio on critical moment is significant. 

5.3. Effect of Steel Ratio of Flange 
The steel ratio of flange can be adjusted by changing the thickness of the steel tube 

(denoted by symbol α here, α is Afs/Afc), and the values are shown in Table 8. In the 
analysis, the yield strength of steel is 345 MPa and the strength grade of concrete is C40, 
and other parameters are unchanged. The calculation results of critical moment are 
shown in Figure 11. 

  
(a) (b) 

Figure 11. Effect of steel ratio of flange on critical moments. (a) DSTFCB-1; (b) DSTFCB-2. 

Table 8. Steel ratios of flange of DSTFCB-1 and DSTFCB-2. 

Parameter DSTFCB-1 DSTFCB-2 
Steel tube thickness (mm) 2 3 4 8 10 12 

Steel content α (%) 23.6 38.9 57.3 30.7 40.6 51.8 

From Figure 11, it is clear that the critical moment increases significantly with the 
increase of steel ratio of flange. When the steel ratio of flange increases from 23.6% to 
57.3%, the critical moment increases range from 14.8% to 53.4%. It indicates that the ef-
fect of steel ratio of flange on critical moment is remarkable. 

5.4. Effect of Height-Thickness Ratio of Web 
By changing the thickness of web to adjust the height-thickness ratio of web, the 

values are shown in Table 9. The yield strength of steel is 345 MPa, the strength grade of 
concrete is C40, and other parameters are unchanged. The calculation results of critical 
moment are shown in Figure 12. 

Table 9. Height-thickness ratios of web of DSTFCB-1 and DSTFCB-2. 

Parameter DSTFCB-1 DSTFCB-2 
Thickness of web (mm) 4 6 8 8 14 18 
Height-thickness ratio 67.5 45 33.75 61.25 35 27.2 

Figure 11. Effect of steel ratio of flange on critical moments. (a) DSTFCB-1; (b) DSTFCB-2.

From Figure 11, it is clear that the critical moment increases significantly with the
increase of steel ratio of flange. When the steel ratio of flange increases from 23.6% to 57.3%,
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the critical moment increases range from 14.8% to 53.4%. It indicates that the effect of steel
ratio of flange on critical moment is remarkable.

5.4. Effect of Height-Thickness Ratio of Web

By changing the thickness of web to adjust the height-thickness ratio of web, the
values are shown in Table 9. The yield strength of steel is 345 MPa, the strength grade of
concrete is C40, and other parameters are unchanged. The calculation results of critical
moment are shown in Figure 12.

Table 9. Height-thickness ratios of web of DSTFCB-1 and DSTFCB-2.

Parameter DSTFCB-1 DSTFCB-2

Thickness of web (mm) 4 6 8 8 14 18
Height-thickness ratio 67.5 45 33.75 61.25 35 27.2

Symmetry 2021, 13, 2328 13 of 15 
 

 

  
(a) (b) 

Figure 12. Effect of height-thickness ratio of web on critical moments. (a) DSTFCB-1; (b) DSTFCB-2. 

From Figure 12, it is clear that the critical moment increases slightly with the de-
crease of the height-thickness ratio of web. When the height-thickness ratio of web in-
creases from 27.2% to 67.5%, the critical moment decreases range from 1.3% to 5.1%. This 
indicates that the effect of height-thickness ratio of web on critical moment is weak. 

6. Conclusions 
This paper focuses on the elastic lateral-torsional buckling for doubly symmetric 

tubular flange composite beams with lateral bracing under concentrated load. Theoreti-
cal and numerical simulation studies are carried out and the following conclusions are 
obtained: 

(1) By establishing the total potential energy equation and introducing dimension-
less parameters, the analytical solution of the critical moment of doubly symmetric tub-
ular flange composite beams with lateral bracing under concentrated load is obtained. 

(2) Considering the multiple parameters, the dimensionless critical moment calcu-
lation formula of doubly symmetric tubular flange composite beams with lateral bracing 
is fitted by 1stOpt software, and the accuracy is verified by finite element analysis. This 
provides a simple method for predicting and analyzing stability behavior of doubly 
symmetric tubular flange composite beams with lateral bracing. 

(3) The calculation formula of dimensionless threshold stiffness LTk  is given in this 
paper. When L LTk k<  , the critical moment rises noticeably with increasing lateral brac-
ing stiffness. When the lateral bracing stiffness reaches the threshold stiffness, the critical 
moment tends to be stable, and it is 63% higher than the critical moment of tubular 
flange composite beams without lateral bracing. It proves that lateral bracing is benefi-
cial to the overall stability of doubly symmetric tubular flange composite beams. 

(4) The increase in concrete strength and web height-thickness ratio has a weaker 
effect on the critical moment. However, span-depth ratio and flange steel ratio exhibit 
the significant effect on the critical moment. The results can provide a reference for im-
proving the stability of doubly symmetric tubular flange composite beams with lateral 
bracing. 

Author Contributions: Conceptualization, Y.L. (Yingchun Liu); Formal analysis, W.Z.; Methodol-
ogy, Y.L. (Yingchun Liu) and W.Z.; Software, Z.H., Y.L. (Yuchen Liu), Z.W. and R.W.; Validation, 
J.J. and Y.L. (Yuchen Liu); Writing—original draft, Y.L. (Yingchun Liu) and Z.H.; Writing—review 
& editing, J.J., R.W., K.Y. and Z.Z. All authors have read and agreed to the published version of the 
manuscript. 

Funding: The authors are grateful for the financial support received from the National Natural 
Science Foundation of China (52178143 and 51578120); The Natural Science Foundation of Hei-
longjiang Province, grant number LH2020E018; 2021 Social Science Development Research Project 
of Hebei Province grant number 20210301135; Humanities and Social Science Research Project of 

Figure 12. Effect of height-thickness ratio of web on critical moments. (a) DSTFCB-1; (b) DSTFCB-2.

From Figure 12, it is clear that the critical moment increases slightly with the decrease
of the height-thickness ratio of web. When the height-thickness ratio of web increases from
27.2% to 67.5%, the critical moment decreases range from 1.3% to 5.1%. This indicates that
the effect of height-thickness ratio of web on critical moment is weak.

6. Conclusions

This paper focuses on the elastic lateral-torsional buckling for doubly symmetric tubu-
lar flange composite beams with lateral bracing under concentrated load. Theoretical and
numerical simulation studies are carried out and the following conclusions are obtained:

(1) By establishing the total potential energy equation and introducing dimensionless
parameters, the analytical solution of the critical moment of doubly symmetric tubular
flange composite beams with lateral bracing under concentrated load is obtained.

(2) Considering the multiple parameters, the dimensionless critical moment calculation
formula of doubly symmetric tubular flange composite beams with lateral bracing is fitted
by 1stOpt software, and the accuracy is verified by finite element analysis. This provides a
simple method for predicting and analyzing stability behavior of doubly symmetric tubular
flange composite beams with lateral bracing.

(3) The calculation formula of dimensionless threshold stiffness k̃LT is given in this
paper. When k̃L < k̃LT, the critical moment rises noticeably with increasing lateral bracing
stiffness. When the lateral bracing stiffness reaches the threshold stiffness, the critical
moment tends to be stable, and it is 63% higher than the critical moment of tubular flange
composite beams without lateral bracing. It proves that lateral bracing is beneficial to the
overall stability of doubly symmetric tubular flange composite beams.

(4) The increase in concrete strength and web height-thickness ratio has a weaker
effect on the critical moment. However, span-depth ratio and flange steel ratio exhibit the
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significant effect on the critical moment. The results can provide a reference for improving
the stability of doubly symmetric tubular flange composite beams with lateral bracing.
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