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Abstract: Nowadays, it is common to see large public buildings, e.g., stadiums, with some equipment
or substructure suspended from the center of the roof. These substructures will tend to be larger and
heavier the more gear is needed, which may have negative impacts on the dynamic performance
of the roof structures. In this paper, to explore the dynamic response of a large-span roof structure
with a suspended substructure, a real structure model is simplified into a two-degrees-of-freedom
system. The essential consideration of nonlinear vibration is elaborated in the equations of motions.
Approximate analytical solutions for free and forced vibrations are derived using perturbation
methods, while numerical analysis is carried out to validate the solutions. The ratio of linear to
nonlinear amplitude is proposed to represent the nonlinear effect of the primary structure, and
the nonlinear effect, varying with structural parameters of frequency ratio, mass ratio, excitation
ratio, and external force to the primary structure, is investigated. It is shown that internal resonance
occurs when the structural frequency ratio is close to 1:2 and that secondary resonance takes place
due to certain external excitations; internal resonance and secondary resonance will magnify the
amplitude of the primary structure during vibration. Finally, a case of a designed practical dome
with a suspended substructure is studied to verify the outcomes from the above research. According
to these findings, some design proposals for this type of structure are provided.

Keywords: large-span roof structure; substructure; nonlinear vibration; analytical solution

1. Introduction

The innovative configuration that some researchers may call a mega-substructure has
been proposed to reduce the dynamic response of tall buildings to winds and earthquakes.
The concept is that kinetic energy transferred from the primary structure to the substructure
is dissipated during oscillation [1]. On the other hand, the tuning mass method is utilized
to allow the substructure and primary structure to move in opposite directions so that the
vibration of the primary structure is attenuated. Furthermore, optimized parameters of
damping and mass ratio could give the structure superior performance [2]. Based on this
principle, a suspended floor system is investigated and developed for its simple and effec-
tive configuration for earthquake mitigation, which has made it common in the design of
high-rise buildings. The famous construction case is the Westcoast Transmission Building
in Vancouver (Canada), in which steel cables are used to suspend the main structure as a
precaution against seismic effects. Mahmoud et al. [3] discussed the forms of suspension
and their seismic performance, arriving at the finding that the frame with a suspended
floor outperforms the conventional design. Nakamura et al. [4] proposed a new type of
suspension and conducted a shaking table test to verify that the system could have better
seismic performance. Engle et al. [5] developed a self-centering isolation floor system,
showing that the response of the structure can be reduced by up to 40% by optimizing the
design of support and friction. Tatemichi et al. [6] investigated the behavior of suspended
floor slabs using hangar rods in high-rise structures, both analytically and experimentally,
for the purpose of seismic isolation. Ye et al. [7,8] applied the suspended floor in modular
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building, studied its dynamic response both numerically and experimentally, and opti-
mized the structure to verify its robustness and aseismic performance. It is to be noted
that the aforementioned studies focus mainly on horizontal vibration mitigation, while
the literature deals rarely with the vertical performance of suspended structures and their
application in large-span roof structures.

For large-span structures, dynamic topics are always popular, especially seismic
performance or collapse due to the failure of components. Kato et al. [9,10] investigated the
dynamic response of the dome structures, revealing that significant vertical displacement
would contribute to the seismic collapse of the large-span domes. Gao et al. [11] also
made calculations for a roof structure subjected to an earthquake, and the results showed
that the vertical displacement response of the structure is greater than the horizontal
displacement response under earthquake. Based on these results, some researchers have
sought to employ Tuned Mass Dampers (TMDs) in large-span roof structure design to offer
protection against seismic or wind effects. Tang et al. [12] studied the vibration dissipation
of a roof structure using multiple TMDs (MTMDs). It was shown that optimum values of
frequency width, damping ratio, and mass ratio exist, and those values were determined.
Zhou et al. [13] explored the characteristics of MTMDs in a roof structure subjected to wind
load, indicating that optimized MTMDs exhibit good dynamic characteristics. Fan [14]
introduced the viscous damper system for a braced dome to investigate vibration reduction
theoretically and experimentally, the results showing that the vibration-reducing effect
of the viscous damper, when incorporated into a braced dome, is significant. Zhou [15]
discussed the spring fatigue effect on MTMD optimization, the conclusion of the study
indicating that an MTMDs’ control system will reduce its optimal damping performance
to meet the spring constraint conditions. From the above studies, additional dampers or
devices could improve the performance significantly if the proper parameters are set. In
other words, an unfavorable response may occur due to inappropriate parameters.

With the promotion of building functions, roof structures with suspended substruc-
tures have become increasingly common. Some stadiums or theatres have lighting equip-
ment or large screens suspended beneath the center of a roof structure, as shown in Figure 1.
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Figure 1. A roof structure with a large, suspended screen (Madison Garden Square Stadium). 

To ensure better views for the audience in some theatres, platform structures are sus-
pended from the center of the roof. For instance, a large-scale circus is being built in 
Zhangjiajie City, Hunan Province, China. A cable truss system is employed for its large 
span of 132 m, and it is unusual in having a large heavy stage suspended beneath the roof, 
as shown in Figure 2. The primary structure is designed to be symmetrical for aesthetic 
reasons and for reasonable force. As is known from previous studies on large-span struc-
tures, the dynamic response especially about the vertical of this kind of structure is critical 
for estimating the effects of the substructure on the structure of the roof. 

Figure 1. A roof structure with a large, suspended screen (Madison Garden Square Stadium).

To ensure better views for the audience in some theatres, platform structures are
suspended from the center of the roof. For instance, a large-scale circus is being built
in Zhangjiajie City, Hunan Province, China. A cable truss system is employed for its
large span of 132 m, and it is unusual in having a large heavy stage suspended beneath
the roof, as shown in Figure 2. The primary structure is designed to be symmetrical for
aesthetic reasons and for reasonable force. As is known from previous studies on large-span
structures, the dynamic response especially about the vertical of this kind of structure is
critical for estimating the effects of the substructure on the structure of the roof.
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springs, and the substructure can be regarded as a normal TMD. Gerges [16] made the 
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optimal parameters of PTMD were determined under random white noise excitation. De-
raemaeker and Soltani [17] applied the equal peak method to derive the optimum length 
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Figure 2. A circus with a suspended stage structure. (a) Plan view. (b) Elevation view.

As is already known, the roof structure with a substructure functions according to a
principle similar to that of a pendulum tuned mass damper (PTMD). Hanging rods provide
periodic force for the substructure, the configuration of which is considered simpler than
that of a traditional TMD. During analysis, these rods are usually replaced by springs,
and the substructure can be regarded as a normal TMD. Gerges [16] made the assumption
that the pendulum angle was negligibly small in the equation of motion, and optimal
parameters of PTMD were determined under random white noise excitation. Deraemaeker
and Soltani [17] applied the equal peak method to derive the optimum length and damping
of the pendulum. Chulahwat and Mahmoud [3,18] explored the dynamic response of a
steel frame with a suspended floor, with hanger rods simplified into springs representing
stiffness of the substructure. In the same way, Ye [7,8] used an equivalent spring to simulate
connections between the primary structure and modular substructure when conducting
seismic performance analysis. There are other forms of TMDs derived from PTMDs.
Matta [19,20] studied the rolling PTMD analytically for its practical application in roof
gardens, with results showing that the rolling PTMD can be a good alternative to traditional
TMDs on account of its advantages in terms of flexibility and multitasking.

In general, linear models of PTMDs always have enough accuracy at negligibly small
pendulum angles. In fact, nonlinear effects of PTMDs exist where severe oscillations take
place. Roffel [21] explored three-dimensional motions of PTMDs coupled nonlinearly with
flexible primary structure. Nonlinear 3D and planar models were established and studied.
It was shown that the planar model has errors of 9% relative to the 3D model with low
mass ratios, and that maximum error reaches up to 20% between the two models when
mass ratios increase. Yurchenko [22] concluded that motions of the primary structure could
excite suspension points that may cause nonlinear parametric vibration of PTMDs, and
hence considered it a parametrically excited system. Bajaj [23] investigated a two-degrees-
of-freedom autoparametric nonlinear vibration absorber system, whose complex nonlinear
vibrations, such as bifurcations and chaos, might happen at some excitation frequencies and
forcing amplitudes. Song [24] used the harmonic balance method to analytically explore
the characteristics and stabilities of the vibration response of a parametrically excited
pendulum system. Areas of stable and unstable solutions were obtained. Majcher [25]
studied the parametric vibration of PTMD in high-rise structures numerically, with results
indicating the vertical ground motion transmitted to pendulum suspension points may
lead to parametric resonance in the system. It can be appreciated from the aforementioned
studies that it is necessary to nonlinearly analyze large-span roof structures with suspended
substructures that vibrate vertically to obtain more exact results.

Few current studies are focused on large-span roof structures with large and heavy
suspended substructures and on the dynamic performance of this kind of structure, which
is here discussed analytically for its nonlinearity. This research is the first to investi-
gate the nonlinear dynamic characteristics of large-span roof structures with suspended
substructures, by simplifying the model from a real complex structure into a two-degrees-
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of-freedom system to establish the equations of motions. The distinction between nonlinear
and linear vibrations is explored in the equations, and nonlinear analysis is shown to
be necessary and then carried out in the analysis that follows. Analytical solutions of
free and forced vibrations are obtained using multiscale perturbation methods, and some
structural frequency parameters which may lead to amplified vibration of the primary
structure are discussed. A nonlinear effect represented in terms of the ratio of nonlinear
to linear amplitude is discussed using parametric analysis. Lastly, nonlinear free and
forced vibration analysis of a roof structure with a substructure is conducted to verify the
conclusions obtained above. Based on these studies, some suggestions are provided for
this kind of structure.

2. Simplified Model and Dynamic Equations

As has been discussed in the aforementioned publications, large-span structures are
always vulnerable to vertical excitations. In the analyses of large-span structures, more
attention has been paid to the vertical response. Moreover, analytical solutions and inside
regulations of nonlinear vibrations may not be obtained when considering the practical
models with multiple degrees of freedom. For these reasons, a simplified model of a large-
span roof structure with a suspended substructure is proposed, as is diagramed in Figure 3.
The roof structure denoted by a lattice is the primary structure. It can be simplified into a
pendulum-type model with two degrees of freedom when only the vertical vibration of the
primary structure and the swing of the substructure are taken into consideration.
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According to Lagrange’s equation [26], undamped equations of motions with nonlin-
ear terms at the right-hand side can be written as:

M
..
y + kvy = −ml

..
θ sin θ −ml

.
θ

2
cos θ −m

..
y + P(t)

ml
..
θ + (mg + ksl) sin θ = −m

..
y sin θ + Q(t)

(1)

where M, m = mass of the primary structure and the substructure, respectively; kv = total
vertical stiffness of the primary structure; y = vertical displacement of the primary structure;
θ, l = angle and length of the pendulum, respectively; ks = total lateral stiffness of the hanger
rods; P(t), Q(t) = external excitations to the primary structure and substructure, respectively.

Taylor expansion is carried out for the trigonometric terms ignoring higher-order
terms, so that sin θ and cos θ can be approximated by θ and 1, respectively. Nonlinear
terms are multiplied by the perturbation parameter ε [27], indicating that the linear system
is disturbed by the nonlinear terms. The equations become:

(M + m)
..
y + kvy = ε

(
−ml

..
θθ −ml

.
θ

2
)
+ P(t)

ml
..
θ + (mg + ksl)θ = −εm

..
yθ + Q(t)

(2)
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Terms at the left-hand side of Equation (2) are linear. For the simplified model, if
vibration is regarded as linear, the equations reduce to Equation (3) (ε = 0):

(M + m)
..
y + kvy = P(t)

ml
..
θ + (mg + ksl)θ = Q(t)

(3)

It can be found that in Equation (3), interaction between the primary structure and
substructure is eliminated when the nonlinear terms are ignored, so that vibrations are
independent of each other, which means that the substructure has no effect on the primary
structure. In fact, the nonlinear terms in Equation (2) are a secondary excitation to the
original linear system, such that some dynamic properties can be ignored during linear
analysis of the structure. The dynamic problem of the large-span roof with a suspended
substructure is nonlinear in essence. This nonlinearity is exactly what is investigated in
this paper.

3. Free Vibration Characteristics Analysis

Free vibration is nonlinear according to the studies above. Let P(t), Q(t) = 0 in
Equation (2). Then, free vibration can be quantified by the following equation:

(M + m)
..
y + kvy = ε

(
−ml

..
θθ −ml

.
θ

2
)

ml
..
θ + (mg + ksl)θ = −εm

..
yθ

(4)

Vertical frequency of the primary structure and swing frequency of the substructure,
respectively, are:

ω10 =

√
kv

M + m
(5a)

ω20 =

√
g
l
+

ks

m
(5b)

Substitute Equation (5a,b) into Equation (4) and reduce them to:

..
y + ω2

10y = ε

(
−µl

..
θθ − µl

.
θ

2
)

..
θ + ω2

20θ = −ε
m

..
yθ

l

(6)

where µ =
m

M + m
.

The multiscale perturbation method [20] is applied to solve Equation (6). The multi-
scale method is a significant perturbation method for solving nonlinear dynamic problems
analytically. The vibrations of the structure are assumed to consist of the original linear
solution and the nonlinear solution, and the nonlinear solution is multiplied by the pertur-
bation parameters which represent the perturbation of the nonlinearity. This perturbation
performs at different time scales related to the perturbation parameter. Equations can be
solved in each time scale.

Assuming that y and θ consist of the original linear solution (y0, θ0) and nonlinear
solution (y1, θ1):

y = y0(T0, T1) + εy1(T0, T1)

θ = θ0(T0, T1) + εθ1(T0, T1)
(7)

where y0, θ0, y1, and θ1 can be considered as functions of T0, T1. Scales of time T0, T1 and
real time t can be related as follows:

Tn = εnt, n = 0, 1 (8)
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Substitute Equations (7) and (8) into Equation (6) to derive the below equations in
each time scale:

ε0 : D2
0y0 + ω2

10
y0 = 0

D2
0θ0 + ω2

20
θ0 = 0

(9a)

ε1 : D2
0y1 + ω2

10
y1 = −2D0D1y0 − lµ

(
θ0D2

0θ0 + (D0θ0)
2
)

D2
0θ1 + ω2

20
θ1 = −2D0D1θ0 − θ0D2

0y0/l
(9b)

where Di =
∂

∂Ti
is the (first order) differential operator.

Solutions of y0 and θ0 in Equation (9a) can be assumed as:

y0 = Aeiω10T0 + Ae−iω10T0

θ0 = Beiω20T0 + Be−iω20T0
(10)

where A and B are complex amplitudes; A and B are conjugative amplitudes of A and B,
respectively; all of them are functions of T1; i is the imaginary unit.

Substitute Equation (10) into Equation (9b):

D2
0y1 + ω2

10
y1 = −2iω10 A′eiT0ω10 + 2B2e2iT0ω20 lµω2

20 + cc

D2
0θ1 + ω2

20
θ1 = −2iω20B′eiT0ω20 +

ABeiT0(ω10+ω20)ω2
10

l
+

Be−iT0(ω10−ω20)Aω2
10

l
+ cc

(11)

where A′ and B′ are derivatives of A and B, respectively, with respect to time scale T1; cc
denotes the conjugation of the previous items;−2iω10 A′eiT0ω10 + cc and−2iω20B′eiT0ω20 + cc
are secular terms.

As shown in Equation (11), except for the secular terms, y1 is driven by the term with
a frequency of 2ω20, and θ1 is excited at frequencies of ω10 − ω20 and ω10 + ω20. Notice
that as ω10 approaches 2ω20, the secondary excitation frequency gets close to the original
linear frequency, leading to internal resonance of y1 and θ1. The internal resonance relation
is shown as:

ω10 ≈ 2ω20 (12)

Solutions of Equation (11) can be separated into resonance solutions and general
solutions. However, the latter are given in this study. Let the secular terms equal zero.
Then A and B are obtained to solve y0, θ0, y1, and θ1 subsequently. The final solutions are:

y =

(
u0 −

µv2
0lω2

20(
ω2

10 − 4ω2
20
)) cos(ω10t) +

µv2
0lω2

20(
ω2

10 − 4ω2
20
) cos(2ω20t)

θ =

v 0 −
u0v0ω2

10

2l
(

ω2
20 − (ω20 −ω10)

2
) − u0v0ω2

10

2l
(

ω2
20 − (ω20 + ω10)

2
)
 cos(ω20t)

+
u0v0ω2

10

2l
(

ω2
20 − (ω20 −ω10)

2
) cos((ω20 −ω10)t) +

u0v0ω2
10

2l
(

ω2
20 − (ω20 + ω10)

2
) cos((ω20 + ω10)t)

(13)

where u0 and v0 are initial displacement and pendulum angle of the primary structure and
substructure, respectively.

From Equation (13), higher-order harmonics in nonlinear solutions can be derived.
Numerical solution is obtained using the Runge–Kutta method for integration. Comparison
between the numerical and analytical solutions is displayed in Figure 4, which indicates
that time history curves of both solutions for the primary structure have high coincidence,
while there is a small deviation for the substructure. The solutions obtained above can be
proven to be valid.
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The time history response of the structure with structural parameters set up for ω10 ≈ 
2ω20 is shown in Figure 5a. It can be seen that as the vertical displacement of the primary 
structure increases from an initial displacement of 0.1 m to 0.3 m within about 10 s, the 
pendulum angle of the substructure decreases, that is, the vertical vibration of the primary 
structure strengthens, while the swing of the substructure weakens, which manifests in-
ternal resonance as energy is transmitted between these two vibration modes. Notice that 
when v0 = 0 in Equation (13) vibrations reduce to the linear form of Equation (14). As 
shown in Figure 5b, vibrations of the substructure have come to a full stop, while vibration 
of the primary structure continues undisturbed with an amplitude much smaller than that 
of the nonlinear vibration. Conclusions can be drawn that the swing of the substructure is 
vital to nonlinearity. 
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The time history response of the structure with structural parameters set up for
ω10 ≈ 2ω20 is shown in Figure 5a. It can be seen that as the vertical displacement of the
primary structure increases from an initial displacement of 0.1 m to 0.3 m within about 10 s,
the pendulum angle of the substructure decreases, that is, the vertical vibration of the pri-
mary structure strengthens, while the swing of the substructure weakens, which manifests
internal resonance as energy is transmitted between these two vibration modes. Notice
that when v0 = 0 in Equation (13) vibrations reduce to the linear form of Equation (14). As
shown in Figure 5b, vibrations of the substructure have come to a full stop, while vibration
of the primary structure continues undisturbed with an amplitude much smaller than that
of the nonlinear vibration. Conclusions can be drawn that the swing of the substructure is
vital to nonlinearity.

y = u0 cos(ω10t)
θ = 0

(14)Symmetry 2021, 13, 2397 8 of 21 
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where Ω1 and Ω2 are (radian) frequencies of excitations to the primary structure and sub-
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=

+
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As displayed in Equation (16a), the primary resonant frequencies in the linear vibra-

tion for y0 and θ0 can be derived as: 
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Figure 5. Amplitude of structures with the same calculation parameters: M = 100 kg, m = 20 kg, kv = 1200 N/m, l = 3.92 m.
(a) u0 = 0.1 m, v0 = 0.5 rad. (b) u0 = 0.1 m, v0 = 0 rad.

4. Nonlinear Analysis in Forced Vibration

Evidently, nonlinearity makes the vibration more complicated; some frequencies
critical to structure, which may strengthen the vibration of the primary structure, are
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ignorable when linear vibration is considered alone. In this section, the structural response
to external excitations is studied.

Harmonic excitations P(t) and Q(t) are adopted herein and are converted into complex forms:

P(t) = F1eiΩ1t

Q(t) = F2eiΩ2t (15)

where Ω1 and Ω2 are (radian) frequencies of excitations to the primary structure and
substructure, respectively; F1 and F2 are corresponding forcing amplitudes.

For brevity, a similar procedure is omitted to give the following equations with external
excitations in each time scale:

ε0 : D2
0y0 + ω2

10
y0 = f1ejΩ1t

D2
0θ0 + ω2

20
θ0 = f2ejΩ2t (16a)

ε1 : D2
0y1 + ω2

10
y1 = −2D0D1y0 − lµ

(
θ0D2

0θ0 + (D0θ0)
2
)

D2
0θ1 + ω2

20
θ1 = −2D0D1θ0 − θ0D2

0y0/l
(16b)

where f1 =
F1

M + m
; f2 =

F2

ml
.

As displayed in Equation (16a), the primary resonant frequencies in the linear vibration
for y0 and θ0 can be derived as:

Ω1 ≈ ω10 (17a)

Ω2 ≈ ω20 (17b)

Solutions of y0 and θ0 in Equation (16a) can be assumed as:

y0 = Aeiω10T0 + Ae−iω10T0 + P1eiΩ1T0 + P1e−iΩ1T0

θ0 = Beiω20T0 + Be−iω20T0 + Q1eiΩ2T0 + Q1e−iΩ2T0
(18)

where P1 =
f1

2
(

ω2
10 −Ω2

1

) ; Q1 =
f2

2
(

ω2
20 −Ω2

2

) ; A, B, A, B can all be deemed as functions

of T1.
Substitute Equation (18) into Equation (16b):

D2
0y1 + ω2

10y1 = −2iω10 A′eiT0ω10 + 2B2lµω2
20e2iT0ω20

+BlQ1µ(ω20 + Ω2)
2ei(Ω2+ω20)T0 + BlQ1µ(ω20 −Ω2)

2ei(Ω2−ω20)T0

+2lQ2
1µΩ2

2e2iΩ2T0 + cc

D2
0θ1 + ω2

20θ1 = −2iω20B′eiT0ω20 +
ABω2

10
l

ei(ω10+ω20)T0 +
ABω2

10
l

ei(ω10−ω20)T0

+
AQ1ω2

10
l

ei(Ω2−ω10)T0 +
AQ1ω2

10
l

ei(Ω2+ω10)T0 +
BP1Ω2

1
l

ei(Ω1−ω20)T0

+
BP1Ω2

1
l

ei(Ω1+ω20)T0 +
P1Q1Ω2

1
l

ei(Ω2+Ω1)T0 +
P1Q1Ω2

1
l

ei(Ω2−Ω1)T0 + cc

(19)

It is found that the external excitations make the equations more complicated. Except
for the secular terms −2iω10 A′eiT0ω10 + cc, the frequencies resulting in resonance for y1
from Equation (19) can be expressed, respectively, as:

ω10 ≈ 2ω20 (20a)

Ω2 ≈ ω10 + ω20 or Ω2 ≈ |ω20 −ω10| (20b)

Ω2 ≈ ω10/2 (20c)
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Equation (20a) reflects the frequency relation of internal resonance as in a previous
study. Equation (20b,c) reflect the secondary resonance relation for y1. Time history results
of the primary structure subjected to specific excitations are shown in Figure 6a. When
the frequency ratio of substructure to primary structure is near 0.5, the vertical displace-
ment of the primary structure, which is amplified during the vibration, is unstable and
divergent, while the other structural frequency ratio coincides with steady-state vibration.
As frequencies of excitations to the substructure approach the secondary resonance fre-
quency referred to in Equation (20b,c), amplitudes of vibration of the primary structure are
augmented to different degrees. As illustrated in Figure 6b, the frequency of excitations
to the substructure in Equation (20c) presents the amplitude of the primary structure as a
“beat” oscillation [28], which means that the external frequency is close to the structural
frequency. As is shown in Figure 6d, the excitation frequency of the substructure, ω10 + ω20,
in Equation (20b) shows the minimum amplification of vibration, since the excitation fre-
quency is too high relative to the linear frequency of the substructure, which is hardly
excited, making the final result small.

Symmetry 2021, 13, 2397 10 of 21 
 

 

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

A
m

pl
itu

de
(m

)

Time(s)

 ω20/ω10=0.1
 ω20/ω10=0.5
 ω20/ω10=2

 

0 20 40 60 80 100
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

A
m

pl
itu

de
(m

)

Time(s)

 Ω2≈ ω10/2

 
(a) (b) 

0 20 40 60 80 100
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

A
m

pl
itu

de
(m

)

Time(s)

 Ω2≈ ｜ω10-ω20｜

 

0 20 40 60 80 100
-0.0010

-0.0005

0.0000

0.0005

0.0010

A
m

pl
itu

de
(m

)

Time(s)

  Ω2≈ ω10+ω20

 
(c) (d) 

Figure 6. Amplitude of the primary structure with the same calculation parameters: M = 100 kg, m = 20 kg, kv = 1200 N/m, 
F1 = 0, F2 = 10. (a) ω20/ω10 = 0.1, 0.5, 2, Ω2 ≈ 0.1 rad/s. (b) ω20/ω10 = 0.3, Ω2 ≈ ω20/2. (c) ω20/ω10 = 0.3, Ω2 ≈ ω20 − ω10. (d) ω20/ω10 = 
0.3, Ω2 ≈ ω20 + ω10. 
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where c1, c2, … c6, d1, d2, … d10 are coefficients of the harmonic terms referred to in Appen-
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Finally, the general solution is:

y = c1 cos ω10t + c2 cos Ω1t + c3 cos 2ω20t + c4 cos(Ω2 + ω20)t + c5 cos(Ω2 −ω20)t

+c6 cos 2Ω2t

θ = d1 cos ω20t + d2 cos Ω2t + d3 cos(ω10 + ω20)t + d4 cos(ω10 −ω20)t + d5 cos(Ω2 −ω10)t

+d6 cos(Ω2 + ω10)t + d7 cos(Ω1 −ω20)t + d8 cos(Ω1 + ω20)t + d9 cos(Ω2 + Ω1)t

+d10 cos(Ω2 −Ω1)t

(21)

where c1, c2, . . . c6, d1, d2, . . . d10 are coefficients of the harmonic terms referred to in
Appendix A.

The linear solutions of the structure subjected to the same excitation are given as:

y = e1 cos ω10t + e2 cos Ω1t

θ = f1 cos ω20t + f2 cos Ω2t
(22)

where e1, e2, f 1, and f 2 are referred to in Appendix A.
It is revealed that the external force can introduce more harmonics into the nonlinear

system, which is different from the linear forced vibration. Secondary frequencies should
be taken into account for forced vibration analysis.

To assess the validity of solutions subjected to different excitations, the amplitude
ratio of numerical to analytical results is discussed. Parameters of the calculation model
refer to the practical engineering structure, as shown in Table 1.

Table 1. Parameters of practical model.

M (kg) m (kg) kv (N/m) l (m) ks (N/m) ω10 (rad/s) m/M ω20/ω10 Time (s)

105 5000 5.5 × 106 3.29 104 7.25 0.05 0.3 100

The contour of the amplitude ratio to distinct frequencies of excitation is pictured
in Figure 7. It is shown that the ratio ranges almost between 0.9 and 1.1; as excitation
frequencies approach the resonant frequency of the primary structure or substructure,
deviation becomes obvious. The conclusion can be drawn that the analytical solution is
accurate enough, and hence has a high efficiency for general excitation frequencies except
for resonant frequencies.
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5. Nonlinear Effect Analysis

As shown in the above studies, nonlinear solutions of the structure are more compli-
cated, with many additional harmonics included in the final solutions. However, it can
be found that nonlinearity is obviously affected by structural parameters, among which
excitations to the primary structure and substructure are critical factors for nonlinearity.
External forcing amplitude also accounts markedly for the nonlinearity of the structure.
Furthermore, as excitations to the primary structure are strengthened, the nonlinearity due
to the same amplitude of external force on the substructure will be weakened significantly.

Therefore, the term amplification coefficient in Equation (23) is proposed to describe
and measure the unfavorable nonlinear effect on the primary structure; moreover, the
relative excitation ratio can be expressed as the forcing amplitude ratio of the primary
structure to the substructure, as in Equation (24). Parametric analysis is conducted in the
following studies to give mass ratios, frequency ratios, relative excitation ratios, and the
external forces of the primary structure, respectively.

Amplification coefficient =
∣∣∣∣max(A nonlinear)

max(A linear)

∣∣∣∣ = ynonlinear
ylinear

(23)

where ynonlinear = maximum nonlinear amplitude; ylinear = maximum linear amplitude.

Relative excitation ratio =
F1

F2
(24)

where F1 = forcing amplitude to the primary structure; F2 = forcing amplitude to
the substructure.

The analysis is carried out for the simplified model; the parameters of the model are
adopted as a base model from the one in Table 1. In this section, parameters are chosen
for different mass ratio, frequency ratio and excitation situations; detailed information is
shown in Table 2.

Table 2. Calculation models.

Model M (kg) m (kg) kv (N/m) l (m) ks (N/m) m/M ω20/ω10

Base model 105 5000 5.5 × 106 3.29 0 0.05 0.23

Mass ratio 105 5.5 × 106 3.29 0 0.05~0.2 0.23

Frequency ratio 105 5000 5.5 × 106 0 0.05 0.1~10

5.1. Effect from Mass Ratio

The structural frequency ratio is set to 0.3. As shown in Figure 8a, as excitation fre-
quency to the primary structure approaches the primary resonant frequency, the nonlinear
amplification coefficient gets close to 1.0, which exhibits weak nonlinearity of the primary
structure; the primary structure shows a significant nonlinear effect as excitations deviate
from the resonant frequency. Furthermore, the coefficient is larger at smaller mass ratios,
which means that the structural nonlinear effect is strong at a small mass ratio. However,
what is different is that the response of the primary structure is obviously amplified when
the substructure is excited at not only the primary but also the secondary resonant frequen-
cies, and that coefficients in some cases could reach up to three at the secondary resonance,
as shown in Figure 8b. A nonlinear effect appears obvious when the substructure is excited
at the secondary resonance.

5.2. Effect from Frequency Ratio

Amplification coefficients in different cases at distinct structural frequency ratios are
given in four excitation combinations:
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(1) Low frequency excitation to the primary structure (Ω1 = 0.1 rad/s), and low frequency
excitation to the substructure (Ω2 = 0.1 rad/s).

(2) High frequency excitation to the primary structure (Ω1 = 10 rad/s), and low frequency
excitation to the substructure (Ω2 = 0.1 rad/s).

(3) Low frequency excitation to the primary structure (Ω1 = 0.1 rad/s), and high frequency
excitation to the substructure (Ω2 = 10 rad/s).

(4) High frequency excitation to the primary structure (Ω1 = 10 rad/s), and high fre-
quency excitation to the substructure (Ω2 = 10 rad/s).

It is revealed in Figure 9a that amplification coefficients increase significantly to above
1.6 when the frequency ratio is around 0.5. It can be noticed that when the structural
frequency ratio is near 1.0 and the substructure is excited at a low frequency, the response
of the primary structure is also amplified, since it may cause the frequency (Ω2 − ω20 or
Ω2 + ω20) of excitations to y1 to approach the vertical frequency (ω10), as referred to in
Equation (15c).
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As the frequency ratio exceeds 3.0, amplification coefficients tend to 1.0 gradually,
which means that the nonlinear effect disappears at a high structural frequency ratio. In
fact, as the frequency of the substructure gets higher, the connections between the primary
structure and the substructure can be deemed stronger, and thus the substructure can be
considered fixed to the primary structure to the extent that the nonlinear vibration is almost
equivalent to the linear vibration. As shown in Figure 9b, when the structural frequency
ratio reaches 10, the nonlinear time history curve almost coincides with the linear one.

When the frequency ratio is near 0.5, as shown in Figure 9c, the nonlinear vibra-
tion shows the “beat” oscillation along the specific path, which can explain the inter-
nal resonance in the free vibration, with the resonant vibration superimposed on the
forced vibration.

It can be seen that when the frequency ratio reaches 1.0, a similar vibration with inter-
nal resonance occurs, and amplitude of the primary structure is augmented, as depicted in
Figure 9d.

5.3. Effect from Relative Excitation

As mentioned above, excitation ratio and forcing amplitude are critical factors for
the nonlinearity of the primary structure. Therefore, these two factors are analyzed para-
metrically at a mass ratio of 0.05 and a frequency ratio of 0.3. As depicted in Figure 10a,b,
amplification of the primary structure becomes more severe as the excitation ratio increases
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from 0.1 to 1.0. Whenever the excitation frequency is around the primary or secondary
resonant frequency, the nonlinearity of the primary structure appears significant. It can be
found that excitations, when applied only to the primary structure, make the nonlinear
effect negligible near the primary resonant frequency rather than at other frequencies, as
displayed in Figure 10c,d.
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Figure 10. ynonlinear/ylinear. (a) F1 = 105 N, 0.1 rad/s ≤ Ω2 ≤ 10 rad/s, 0.1 ≤ F2/F1 ≤ 1. (b) F1 = 105 N,
0.1 rad/s ≤ Ω1 ≤ 10 rad/s, F2/F1 = 0.1, 0.5, 1. (c) F1 = 105 N, 0.1 rad/s ≤ Ω2 ≤ 10 rad/s, 0.1 ≤ F2/F1 ≤ 1.
(d) 0.1 rad/s ≤ Ω2 ≤ 10 rad/s, F2/F1 = 0.1, 0.5, 1. (e) 0.1 ≤ F2/F1 ≤ 2, 0.01Gprimary ≤ F1 ≤ 0.1Gprimary (Gprimary = 106 N).

Figure 10e illustrates the tendency of the amplification coefficients varying with the
excitation ratio of distinct external forcing amplitudes of the primary structure, and the
ratio of forcing amplitude to the gravity of the primary structure, which represents the
relative force level, is discussed. It can be observed that when the forcing amplitude
is about 0.01 times (1 percent) the gravity of the primary structure, the nonlinearity of
the structure is not sensitive to the excitation ratio, and that the nonlinear effect grows
rapidly with the excitation ratio when the force on the primary structure equals 0.1 times
(10 percent) the gravity.

6. Case Study

In this section, a large-span roof structure with a suspended substructure is designed,
and free and forced vibrations of the model are analyzed to validate the conclusions drawn
above. ABAQUS/CAE (Version: 2020, ABAQUS Inc., Palo Alto, CA, USA) is adopted for
the analysis.

6.1. Modeling

The primary structure is designed as a Kiewitte single-layer reticulated shell with
a span of 30 m and a rise of 3 m. The diagram is shown in Figure 11a. The section of
the dome member adopts steel pipes of ϕ 30 × 4. The live loads of about 0.08 kN/m are
converted into nodal mass. There is a substructure suspended through the center of the
dome structure by four hanging rods. The substructure consists of the rods and the beams.
Sections of the rods are also pipes of ϕ 30 × 4, and a square section of 80 × 80 × 8 is
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adopted for the beams. The substructure is depicted in Figure 11b. Sliding bearings with
constraints freedom released in a radial direction are set at the outer circle of the structure,
as shown in Figure 11c.

Symmetry 2021, 13, 2397 15 of 21 
 

 

relative force level, is discussed. It can be observed that when the forcing amplitude is 
about 0.01 times (1 percent) the gravity of the primary structure, the nonlinearity of the 
structure is not sensitive to the excitation ratio, and that the nonlinear effect grows rapidly 
with the excitation ratio when the force on the primary structure equals 0.1 times (10 per-
cent) the gravity. 

6. Case Study 
In this section, a large-span roof structure with a suspended substructure is designed, 

and free and forced vibrations of the model are analyzed to validate the conclusions 
drawn above. ABAQUS/CAE (Version: 2020, ABAQUS Inc., Palo Alto, CA, USA) is 
adopted for the analysis. 

6.1. Modeling 
The primary structure is designed as a Kiewitte single-layer reticulated shell with a 

span of 30 m and a rise of 3 m. The diagram is shown in Figure 11a. The section of the 
dome member adopts steel pipes of φ 30 × 4. The live loads of about 0.08 kN/m are con-
verted into nodal mass. There is a substructure suspended through the center of the dome 
structure by four hanging rods. The substructure consists of the rods and the beams. Sec-
tions of the rods are also pipes of φ 30 × 4, and a square section of 80 × 80 × 8 is adopted 
for the beams. The substructure is depicted in Figure 11b. Sliding bearings with con-
straints freedom released in a radial direction are set at the outer circle of the structure, as 
shown in Figure 11c. 

The models with three distinct lengths of the rods are analyzed. Table 3 displays spe-
cific parameters of two types of connections to the primary structure that are hinged and 
rigid. A diagram of the entire three-dimensional model is displayed in Figure 11d. 

Suspended 
Point

Primary Structure

Monitoring 
Point

 

Suspended 
Point

Rod

Substructure

Beam

 

(a) (b) 

 
 

(c) (d) 
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Figure 11. A designed roof structure with suspended substructure. (a) Configuration and dimensions
of the primary structure. (b) Configuration and dimensions of the substructure. (c) Boundary
condition of the structure. (d) 3D diagram of the entire model.

The models with three distinct lengths of the rods are analyzed. Table 3 displays
specific parameters of two types of connections to the primary structure that are hinged
and rigid. A diagram of the entire three-dimensional model is displayed in Figure 11d.

Table 3. Substructure parameters of different models.

Model L (m) f 20 (Hz) v0 (m) θ0 (rad) ω20 (rad/s) ω20/ω10 m/M Remarks

1 1 0.13 0.04 0.04 3.13 0.12 0.06 Hinged

2 2.5 2.06 0.1 0.04 12.93 0.5 0.06 Rigid

3 5 0.22 0.2 0.04 1.4 0.05 0.06 Hinged

6.2. Modal Analysis

Modal and nonlinear time history analyses are conducted. The results of modal
analysis are obtained to determine the vertical frequency of the dome structure (the primary
structure) and the swing frequency of the substructure.

Modal information about model 2 is given in Figure 12, with the frequency of the verti-
cal vibration being 3.98 Hz (ω10 = 25.05 rad/s) and the swing frequency of the substructure
being 2.03 Hz (ω20 = 12.93 rad/s). It can be found that ω20 ≈ 0.5ω10, coinciding with the
relation for internal resonance in Equation (11). Swing frequency information about the
other models is listed in Table 2.
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its frequency.

6.3. Nonlinear Analysis of Free Vibration

In the time history analysis, the distinct initial displacements listed in Table 2 are set
up for the substructure at the same angle. As depicted in Figure 13, when initial lateral
displacement of the substructure is 0.1 m, the corresponding angle is calculated to be about
0.04 rad. Geometric nonlinearity is considered in the analysis. The process of the analysis
lasts for 20 s.
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Figure 13. Initial condition of substructure.

Time history vertical displacements of the dome at the monitoring point are illustrated
in Figure 14. The results reveal that the structural frequency ratio of 0.5 contributes to the
resonant vibration of the dome structure, which can be depicted as the “beat” oscillation,
as shown in Figure 14a. Instead, dome structures of the other models continue vibrating
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at smaller amplitudes, as shown in Figure 14b. It can be demonstrated that the internal
resonance has exactly amplified the response of the structure.

Symmetry 2021, 13, 2397 17 of 21 
 

 

 
Figure 13. Initial condition of substructure. 

Time history vertical displacements of the dome at the monitoring point are illus-
trated in Figure 14. The results reveal that the structural frequency ratio of 0.5 contributes 
to the resonant vibration of the dome structure, which can be depicted as the “beat” oscil-
lation, as shown in Figure 14a. Instead, dome structures of the other models continue vi-
brating at smaller amplitudes, as shown in Figure 14b. It can be demonstrated that the 
internal resonance has exactly amplified the response of the structure. 

0 5 10 15 20
-0.0156

-0.0154

-0.0152

-0.0150

-0.0148

-0.0146

-0.0144

-0.0142

-0.0140

-0.0138

-0.0136
 Model 2

A
m

pl
itu

de
(m

)

Time(s)  

0 5 10 15 20
-0.0156

-0.0154

-0.0152

-0.0150

-0.0148

-0.0146

-0.0144

-0.0142

-0.0140

-0.0138

-0.0136

A
m

pl
itu

de
(m

)

Time(s)

 Model 3
 Model 1

 

(a) (b) 

Figure 14. Amplitude at the monitoring point of the dome structure. (a) Model 2. (b) Model 1 and Model 3. 

6.4. Nonlinear Analysis of Forced Vibration 
Model 3 is taken for the forced vibration analysis. External forces applied to the sub-

structure are shown in Figure 15. Three frequencies of excitations to the substructure are 
analyzed for the secondary resonance studied above. Information about excitation param-
eters is shown in Table 4. 

 
Figure 15. External forces applied to substructure. 

Table 4. Excitation parameters at different excitation frequencies. 

Model  F2 Ω2 (rad/s) Remarks 
3-1 2000 12.12 Ω2 ≈ ω10/2 
3-2 2000 22.84 Ω2 ≈ ω10 − ω20 
3-3 2000 25.64 Ω2 ≈ ω10 + ω20 

Z

T

F2 F2 F2

F2 F2

F2

Figure 14. Amplitude at the monitoring point of the dome structure. (a) Model 2. (b) Model 1 and Model 3.

6.4. Nonlinear Analysis of Forced Vibration

Model 3 is taken for the forced vibration analysis. External forces applied to the
substructure are shown in Figure 15. Three frequencies of excitations to the substructure
are analyzed for the secondary resonance studied above. Information about excitation
parameters is shown in Table 4.
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Table 4. Excitation parameters at different excitation frequencies.

Model F2 Ω2 (rad/s) Remarks

3-1 2000 12.12 Ω2 ≈ ω10/2
3-2 2000 22.84 Ω2 ≈ ω10 − ω20
3-3 2000 25.64 Ω2 ≈ ω10 + ω20

Figure 16a–c shows the vertical displacements at the monitoring point. According to
these, when excitation frequencies reach the secondary resonant frequency, vertical displace-
ments of the primary structure present the “beat” oscillation. As shown in Figure 16b,c,
the time history curves are not standard for “beat” oscillation, probably because of the
geometric nonlinearity of the structure such that the stiffness of the primary structure
varies during vibration. In fact, the secondary resonance takes place exactly.

To sum up, the nonlinear vibration characteristics of the large-span suspended sub-
structure deduced in Sections 2 and 3 for the simplified model are demonstrated in the
multiple-degrees-of-freedom system. Although vibration forms of the long-span sus-
pended substructure are numerous and complicated, the vibration regulations obtained
from the two-degrees-of-freedom model are proven valid, and these outcomes could guide
the analysis of a multiple-degrees-of-freedom model when considering vertical vibration
of the primary structure.
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7. Conclusions

The large-span roof structure with a suspended structure has been investigated, non-
linear free and forced vibration equations for simplified models of the large-span structure
with a suspended substructure have been set up, and nonlinear dynamic characteristics
with different structural parameters have been explored by comparing linear and nonlinear
results in this study. Conclusions can be drawn as follows:

(1) Amplitude of the primary structure tends to be augmented at internal resonance if
the structural frequency ratio nears 1:2. Vertical vibration of the primary structure
and swing of the substructures could excite each other.

(2) When frequencies at which excitations are applied to the substructure satisfy the
conditions Ω2 ≈ ω10 + ω20, Ω2 ≈ |ω20 −ω10| or Ω2 ≈ ω10/2, amplitude of the
primary structure may be augmented due to the secondary resonance.

(3) A nonlinear effect on the structure is obvious as vertical excitations deviate from the
vertical resonant frequencies, while excitations to the substructure gets close to the
swing resonance. Frequency ratios and mass ratios have been identified as key factors
for the primary structure’s nonlinearity, and the nonlinear effect appears weaker as
mass ratios increase.

(4) The substructure can be considered attached to the primary structure when connec-
tions between them are strong enough to reduce the nonlinear effect. The structure
can be analyzed linearly for frequency ratios and mass ratios exceeding 3.0 and 0.1,
respectively, according to the above studies.
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(5) In the design of this kind of structure, structural frequency ratios should be prevented
from approaching 0.5, and external frequencies of Ω2 ≈ ω10 + ω20, Ω2 ≈ |ω20 −ω10|
or Ω2 ≈ ω10/2 to the substructure should be taken into consideration as an additional
check to ensure the safety of the structure.

These studies focusing especially on forced vibrations here are expected to lay a
foundation for further ground motion analysis.
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Appendix A
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