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Abstract: In this paper, a novel high-performance and low-cost operator is proposed for the imperial-
ist competitive algorithm (ICA). The operator, inspired by a sociopolitical movement called the color
revolution that has recently arisen in some countries, is referred to as the color revolution operator
(CRO). The improved ICA with CRO, denoted as ICACRO, is significantly more efficient than the
ICA. On the other hand, cloud computing service composition is a high-dimensional optimization
problem that has become more prominent in recent years due to the unprecedented increase in both
the number of services in the service pool and the number of service providers. In this study, two
different types of ICACRO, one that applies the CRO to all countries of the world (ICACRO-C)
and one that applies the CRO solely to imperialist countries (ICACRO-I), were used for service
time-cost optimization in cloud computing service composition. The ICACRO was evaluated using a
large-scale dataset and five service time-cost optimization problems with different difficulty levels.
Compared to the basic ICA and niching PSO, the experimental and statistical tests demonstrate
that the ability of the ICACRO to approach an optimal solution is considerably higher and that
the ICACRO can be considered an efficient and scalable approach. Furthermore, the ICACRO-C is
stronger than the ICACRO-I in terms of the solution quality with respect to execution time. However,
the differences are negligible when solving large-scale problems.

Keywords: cloud computing; color revolution operator; imperialist competitive algorithm; quality of
service; service composition; service time-cost

1. Introduction

Providing enhanced processing facilities and appropriate on-demand self-service sys-
tems has always been the major concern of web service suppliers [1]. Recently, these con-
cerns were largely resolved by the introduction and development of cloud computing [2,3].
Its appealing financial and technical characteristics [4] and the increasing complexity of the
requested services have led to a growing trend among service providers and customers
toward cloud computing.

Although clouds and their applications are growing rapidly, service providers are not
able to prepare all the complex combinations of required services. Hence, clouds suppliers
need a mechanism for composing the required composite services using the unique services
already provided in the service pool (see Figure 1).

The dramatic increase in cloud computing customers has made the environment a
lucrative commercial space that encourages facility owners to provide services. Hence,
a considerable number of service providers are currently offering a large set of different
unique services in the pool, allowing one to find a large number of instances of the same
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service, each with different functional and quality of service (QoS) specifications [5–8].
In the current situation, cloud suppliers are confronted with a difficult optimization
problem [4,9–12]: providing the optimal compositions of unique services that will satisfy
composite service customers and persuade them to make their next requests.
This is the problem that network function virtualization (NFV) [13] systems are also
confronting [14,15]. Due to the undeniable importance of the cloud computing service com-
position (CCSC) problem, which is an NP-hard problem [9,16–18], an increasing amount of
research on the development of cloud computing has been conducted, which will be stud-
ied in Section 1.1. Despite the research conducted and progress made thus far, considerable
effort is still needed to close the gaps between the solutions obtained to date and the optimal
CCSC solutions.
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Figure 1. Service provision, requesting and binding in cloud computing.

These gaps, which have mostly arisen because of the very large problem search space,
necessitate the customization of more efficient evolutionary algorithms (EAs) to solve the
CCSC problem with higher accuracy and optimality. In addition, service time and service
cost have been identified as the two most important QoS parameters in cloud service
composition that should be further considered in optimizing the QoS [4]. Hence, in this
paper, the researchers are strongly motivated to focus on service time and cost optimization
for CCSC by improving the imperialist competitive algorithm (ICA) [18–20].

In this study, a new operator is designed based on the sociopolitical movements
known as the color revolutions, which have largely been observed in newly independent
states of the former Soviet Union and the Balkans and applied to the ICA. The operator
is denoted as the color revolution operator (CRO) and attempts to replace the worst part
of a country (solution) with a better option within an acceptable amount of time. The
algorithm, obtained by applying the CRO to the ICA, is called the imperialist competitive
algorithm with color revolution operator (ICACRO), two forms of which are used in the
service time-cost optimization for CCSC.

To provide a more explicit description of the subject, a complete explanation of the
research motivations is presented. The strategy employed by many EAs in finding the
optimal solutions to a given optimization problem is to perform a random search in the
specified search space and impose a variety of information to guide the search process
such that it is carried out more efficiently. Accordingly, the applied algorithm is expected
to reach the optimal solution of a given problem within a reasonable amount of time
provided that the problem does not include a very large search space and a large number
of dimensions.
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When facing a problem with a vast search space and numerous dimensions, the
number of space points that are actually potential solutions increases to the extent that, in
practice, very few of them can be investigated using the algorithm.

Example 1. In this paper, WSDream-QoSDataset2 [21] is used as a real-world dataset to evaluate
the ability of the proposed algorithms to solve the service time-cost optimization problem in CCSC
(STCOCCSC) (please refer to part 2.1 for the problem description). A total of 339 service providers
exist in the dataset, each of which provides 5825 different simple services. On the one hand,
suppose that 100 different simple services are required to represent a composite cloud service.
Each of the required simple services can be provided by any of the 339 service providers. In this
STCOCCSC problem, the algorithm faces a 100-dimensional problem in which each dimension
involves 339 options. Hence, there are 339100 distinct potential solutions in the search space. On
the other hand, assume that 1000 members exist in the first generation of solutions of the applied
evolutionary algorithm and that the algorithm is executed 6000 times. Accordingly, in the most
optimistic situation, 6,000,000 different potential solutions are examined by the algorithm provided
that repeated investigated solutions are neglected. Hence, 5.73e− 245% of all available points in
the search space are examined during the execution time. In other words, many potential solutions
are neglected by the algorithm.

Example 2. A visual description of the issue is illustrated in Figure 2, in which Nh is the radius of
the neighborhood circle of an investigated potential solution. As mentioned above, many potential
solutions located in the neighborhood circle are neglected by the algorithm. Although ICA designers
have made commendable efforts to prepare a more successful search using irregular but purposive
movement of the solutions in the search space, the large search space of some problems such as
the STCOCCSC greatly reduces the efficiency of the algorithm. In this study, a new operator is
designed and proposed for the ICA to improve its efficiency in investigating large search spaces. The
remainder of the paper is organized as follows. A motivation section is provided as the last part of
the introduction. Related works are briefly studied in Section 1.1. Descriptions of the STCOCCSC
and the ICA are presented in Section 2. Complete descriptions of the proposed operator (CRO)
and algorithm (ICACRO) are provided in Section 3. The experimental design and test results
obtained using two different types of the ICACRO as well as two other algorithms, i.e., the ICA and
niching particle swarm optimization (PSO), including numerical and statistical investigations, are
discussed in detail in Sections 4 and 5, respectively. Finally, our conclusions and potential topics
for future research are presented in Section 6.
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1.1. Literature Review

Different goals have been pursued by different researchers in solving the CCSC prob-
lem, but a factor common to most of these studies is the consideration of QoS parameters,
particularly service time and service cost. The objectives pursued in the literature, the
QoS parameters investigated, and their importance percentages were detailed by Jula et al.
in [4]. The previous studies conducted to solve the CCSC as an optimization problem can
be divided into two main categories.

The first category consists of studies that used different classic algorithms and de-
signed customized structures or workflows. Koflet et al. mapped the problem onto
the knapsack problem and solved it by applying a parallel form of the branch-and-
bound method [22]. Backtracking and dynamic programming are other classic algorithms
used to solve the CCSC problem [23,24]. Mixed integer programming (MIP) and lin-
ear programming (LP) were employed by Shangguang et al. and Zhu et al. [25–27] and
Hossain et al. [28], respectively, to find appropriate unique services. CCSC is also often
mapped onto graph structures to employ graph-based algorithms.

A weighted directed graph with an improved fast-EP algorithm was used in [29], and
other examples of applying graph structures in the field include the directed acyclic graph
(DAG) [30], discovery graph with Markov chain [31], and the graphical construction of the
analytic hierarchy process (AHP) [32]. Petri nets are another non-heuristic approach that
has been used to solve the CCSC problem [33].

Artificially intelligent, combinatorial, and evolutionary algorithms [34–39] constitute
the second category of studies conducted to solve the CCSC problem. Although these
algorithms have been used less frequently than the algorithms included in the first category,
the importance of achieving closer-to-optimal solutions and shorter execution times and
increases in the size of CCSC problems have forced researchers to prioritize the application
of EAs [40,41]. Different types of artificial neural networks (ANNs) and fuzzy logic have
been used in several studies [33,42–44]. A genetic algorithm (GA) including a roulette
wheel selection was applied by Ye et al. in 2011 [45]. Two improved GAs were also
proposed by Klein et al. and Ludwig [46,47].

The most successful proposed approaches are based on PSO [48,49], the chaos op-
timization algorithm (COA) [50], game theory [51], and hybrid algorithms. In addition,
unlike almost all conducted studies focusing on applying different search approaches to
find the best combination of single services, PROCLUS, as a high-dimensional clustering
algorithm, was utilized in [52] to categorize service providers. The categorized search
space enhanced the ability of the ICA to select the best possible services by optimizing
the service time in CCSC. To accomplish a comprehensive review of the literature of the
domain, including the proposed methods, used datasets and tools, and different research
objectives, a systematic literature review was presented in [4].

2. Problem and Algorithm Description
2.1. Service Time-Cost Optimization in Cloud Computing Service Composition (STCOCCSC)

With the development of computer-based system procedures, process execution and
the required services have become more complex. Due to the growing complexity and
variety of systems, a simple independent service is incapable of satisfying functional pre-
requisites of various real-world requests. Hence, it is necessary to prepare a set of simple
atomic services that can effectively work together to perform a complex service. There-
fore, a cloud service composer system (CSC) must be incorporated into cloud computing.
Increasing the number of service providers will increase the number of similar unique
services. Because the similar services are found in different parts of the network and have
absolute QoS values, the CSC should efficiently choose a unique service for each require-
ment among the many similar services provided by different service providers. Application
of the most suitable method yields the highest QoS based on customers’ requirements
and priorities.
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Due to fundamental changes in cloud environments, accessible services, and service
customer needs, automatic functional capabilities are mandatory in designing the CSC.
Therefore, choosing appropriate unique services for merging to provide an optimal combi-
nation that satisfies the functional and QoS requirements of a customer can be considered
one of the foremost critical problems of service composition. This problem is called Cloud
Computing Service Composition (CCSC) that is defined in detail and discussed in [4].

This paper assumes that within a cloud, each composite service (CS) consists of n
unique services (USs), each of which has service time (ST) and service cost (SC) as its QoS
parameters. A combination of USs must correspondingly act in an ordinal workflow (wf ) to
provide a required CS. However, if w fk is the workflow of CSk, then ST(w fk) and SC(w fk)
will be defined as the ST and SC of the workflow k, where the ST and SC vectors of the
workflow can be expressed as (1) and (2), respectively.

ST(w fk) = (ST1(w fk), ST2(w fk), . . . , STn(w fk)) (1)

SC(w fk) = (SC1(w fk), SC2(w fk), . . . , SCn(w fk)) (2)

The merit value (MV) of w fk is the sum of the total STs and total SCs of all elements of
w fk and is calculated using (3), where TW and CW are the weights of time and cost, which
should be determined by the user from [0,1] such that TW + CW = 1. Hence, the optimal
solution to STCOCCSC is the solution with the minimum MV value. Note that the ST and
cost values should be normalized between 1 and 10 via min-max normalization [53] to be
used in (3). Section 4 shows that the proposed operator uses the MV of solutions. Hence,
different structures of the STCOCCSC have no effect on the application and efficiency of
the operator and are therefore neglected here.

MV(w fk) =
n

∑
i=1

(TW × STi(w fk) + CW × SCi(w fk)) (3)

2.2. Imperialist Competitive Algorithm (ICA)

In evolutionary computation, the recently proposed algorithm, ICA, was formed based
on social and political activities [20,54,55], in contrast to other EAs, which are based on the
physical events or animals’ natural behaviors. The ICA starts with an initial population
created at random, in which members of the population are regarded as countries. A
few of the most powerful countries are considered imperialist, whereas the rest represent
colonies of the imperialists. Assuming that there are n dimensions in the given optimization
problem, a country is treated as an 1× n array as in (4):

Country = [p1, p2, . . . , pn] (4)

The power of country i is calculated using the objective function f, which is a function
of the variables (p1, p2, . . . , pn), yielding the following equation:

Power(Countryi) = f (Countryi) = f (pi1, pi2, . . . , pin) (5)

The ICA commences with m countries, and nimp of the most powerful ones are labeled
as the imperialists. The other countries are called colonies each of which belongs to an
empire. A simple procedure is used to disperse the non-imperialists among the imperialists.
An imperialist is randomly selected for each non-imperialist country, which is dedicated to
that empire. During the execution of the algorithm, every imperialist attracts their colonies
according to the total power of the empire and the colonies. As Equation (6) states, the total
power of each empire is the sum of the corresponding imperialist’s power and average of
power of all the colonies of the empire multiplied to a coefficient.

TPn = cn + (α× Average{power(colonieso f empiren)}) (6)
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where TPn is the total power of the nth empire, cn is the power of the imperialist country
and α is a positive decimal number between 0 and 1.

In the course of movement stage, a colony moves a x units toward its imperialist. As
illustrated in Figure 3, the direction of the movement can be represented by a vector from
the colony to its associated imperialist, where d is the distance between the colony and
the imperialist, and x is a value taken at random that can be obtained following a uniform
distribution like what is shown in (7):

x ≈ Uni f orm(0, β× d) (7)

where β is greater than one and close to 2.
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In ICA, the imperialistic competition plays an important role in the convergence of
the algorithm. This operator decreases the power of the weakest empire by taking some of
its colonies and assigning them to other empires. The process will be continued until the
weakest empire is destroyed. Imperialistic competition can be applied in various forms
based on the requirements of the problem. To facilitate the description of the proposed
algorithm, a mapping description of the key terms of the STCOCCSC, ICA and optimization
is presented in Table 1.

Table 1. Mapping description of key terms of service time-cost optimization problem in CCSC
(STCOCCSC) and imperialist competitive algorithm (ICA).

STCOCCSC ICA Optimization

Composite Service (CS) Country Solution
Merit Value (MV) Power of Country Objective Function

3. Imperialist Competitive Algorithm with the Color Revolution Operator (ICACRO)

Manipulation of the routine process may enhance the ability to navigate the search
space using heuristic algorithms if it is performed intelligently. Changes must be made
such that the optimal solution can be reached without changing the nature of the algorithm.
For this purpose, the CRO is applied to the ICA to obtain closer-to-optimal solutions for
the STCOCCSC. As described in Section 4.1 and shown in Figure 4, by making a heuristic
change in a selected part of a solution structure that does not yield an evolution of the
solution structure, the CRO increases the likelihood of achieving more suitable solutions
within a smaller execution time. The CRO can be imposed on either all existing countries
of the ICA world or only selected ones. The functional details and use conditions of the
CRO are discussed in the following sections.
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3.1. Color Revolution Operator (CRO)

New operators designed for an algorithm should ideally be similar to the algorithm in
terms of nature and structure. Hence, the operator designed to improve the ICA is similar
to the ICA and rooted in the sociopolitical attitudes of society. The main concept of the
CRO is inspired by the color revolutions that occurred in some newly independent states
of the former Soviet Union and Balkans during the early 21st century.

The color revolutions are movements in which activists protesting against the govern-
ment or ruling party under a common symbol carry out civil disobedience and nonviolent
resistance to exert strong pressure to enact change. The desired changes occur in the laws
governing the country, with the structures remaining intact, increasing hope for social and
political reform in a society. The quality of life is expected to be enhanced after a color
revolution; however, the targeted improvements are uncertain [56,57].

Based on the characteristics of color revolutions described above, the CRO must
impose changes in the selected countries without changing either the structure of the
countries or the process through which the algorithm is executed. The operator should try
to replace one of the less optimal features of the target solution with a more suitable feature
with the ultimate goal of improving the solution. To reach this goal, in this study, the CRO
examines the USs that compose the existing CS to identify the unique service with the
greatest time-cost value (TCV), where the TCV is the sum of normalized ST and SC values
for the service. To do this, the CRO should traverse the solution to find its maximum TCV.

If the number of service providers is m, then the process of finding the maximum
value of the list using a linear time operation has a time complexity of O(m). In the next
step, the CRO randomly seeks a better alternative among service providers to replace
a service with one that provides a shorter TCV. Replacing the service that requires the
greatest TCV with an equivalent service that terminates for a smaller TCV will decrease
the MV of the CS. An important factor of the performance and time complexity of the CRO
is the number of service providers considered by the operator when searching for a smaller
TCV. How many attempts should the CRO make to find an alternative service provider?
This question has no single answer.

The service provider that provides a smaller TCV and is sought by the CRO could be
located anywhere on the list of providers considered; it might be the first one considered
or may not even be included in the list because there is no better provider. Therefore, it
is best to choose the number of attempts randomly. To provide a reasonable likelihood of
finding a better provider while preventing an excessive search time, the random number
should be neither too small nor too large. Hence, one should determine a limited range
from which the number of attempts should be chosen. In this paper,

[
log2 m, log2

2 m
]

is applied to obtain the number of attempts needed to find a better service provider,
where m indicates the number of service providers in the list. As a simple example, if the
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number of service providers is 1024, then the number of attempts will be a random number
between 10 and 100. Clearly,

(
log2 m + log2

2 m
)

/2 attempts will result in better choices
being found. After the replacing process, the CRO can calculate the new MV of the solution
simply and quickly by finding the difference between the old TCV and the new one and
subtracting it from the current MV. Accordingly, the CRO time complexity, as shown in (8),
will be O

(
log2

2 m
)

.
Figure 4 provides an example of applying the CRO to improve a solution that includes

8 USs, in which the worst selected service (located in the 5th field) is replaced with a new
one, yielding a time-cost reduction in the solution. In this example, the weights of time
and cost are 0.5. The pseudocode for the CRO is presented in Figure 5. Another factor to
consider is the number of countries that would be affected by the color revolution. This
factor has a considerable impact on the overall performance of the algorithm and will be
discussed in part 6.

T(CRO) = O(log2 m) + O
(

log2
2 m
)
⇒ T(CRO) = O

(
log2

2 m
)

(8)
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3.2. ICA with CRO (ICACRO)

Designing an efficient and simple structure for solutions is important for enhancing
the implementation performance. Hence, the structure of a country in the ICACRO consists
of two separate parts. The first part is an array of d elements, representing the index of
service providers that are selected to provide the USs required, where d is the number of
required USs that should be composed to provide the required CS and is thus identified as
the size of the problem. The second part of the country structure is a decimal variable for
storing the total ST, which is the MV of the solution.

The execution of the algorithm begins with the generation of a set of countries called
the ‘world’. The world consists of CountryNo countries, in which each country represents
a solution to the intended problem. Each country is generated by randomly selecting
a service provider for each of the required USs. The MV of each country is calculated
immediately following its generation. The MV of country i is equal to the sum of the STs
and SCs of all its constituent services and is calculated using (9).

Country_TST(i) = −1
2 ∑

j∈Countryi

(ST( j ) + SC( j )) (9)

where Country_TST(i) is the MV of country i and ST(j) and SC(j) are, respectively, the ST
and SC of the required service j obtained from the selected service provider; the TW and
CW values are assumed to both equal 0.5. Because the ICA was originally designed for
maximization and the objective of the STCOCCSC is to achieve the minimum total service
time, the negative sign reflects a smaller MV and thus a larger quantity. The countries are
sorted in ascending order at the end of the generation process, which helps the algorithm
by placing the best solution at the top of the world list. In this phase, the first imperialistNo
countries of the world list are selected as imperialist countries. The remaining countries
are considered colonies. The number of colonies can be obtained using (10).

ColonyNo = CountryNo− imperialistNo (10)

The policy applied by the ICACRO to distribute the colonies among the imperialist
countries is an equal division. Hence, the number of colonies or all imperialist countries is
equal in the first iteration of the algorithm and can be easily obtained using (11).

ColonialNo =
ColonyNo

imperialistNo
(11)

Colony displacement is the next phase of the ICACRO, in which each colony finds
and moves to a new location closer to its imperialist country. Displacements of vari-
ous sizes are made in distinct dimensions such that the displacement in each dimen-
sion is the distance between the colony and imperialist country in the dimension multi-
plied by a random coefficient. The distance between colony i and its imperialist coun-
try (impk) and the displacement of colony i in dimension d can be calculated using
(12) and (13), respectively.

distd(impk, colonyi) = impk.AssignedServer(d)− colonyi.AssignedServer(d) (12)

dispd(colonyi) = rnd× distd(impk, colonyi) (13)

where AssignedServer(d) is the dedicated service provider for the required service d and rnd
is a random decimal in (0, 1].
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The obtained distance is a positive number provided that the index of the imperialist’s
assigned server is greater than the index of the server dedicated to the colony and vice
versa. Similarly, the size of the displacement may also be positive or negative. Hence, the
index of the next assigned service provider can be less or greater than the index of the
current service provider. The index of the next assigned service provider of colony i for
dimension d can be obtained using (14).

colonyi.AssignedServert+1(d) = colonyi.AssignedServert(d) + dispd(colonyi) (14)

The MV of each country is calculated after every displacement. The newly calculated
MV of the colony may be greater than that of its imperialist country, in which case the
power of the colony is greater than that of the imperialist country and their positions
should be exchanged. After the position exchange, the previous colony and imperialist
country are now an imperialist country and colony, respectively.

After the displacement and position exchange of the countries, the CRO is introduced
to enhance the performance of the ICA. Excessive usage of the CRO may affect the conver-
gence of the ICA and disturb its evolutionary process, although it is not permitted to make
basic changes according to the color revolution concept. Excessive usage may also lead to
an unacceptable increase in the execution time of the ICACRO. Hence, one must apply a
CRO rate by which the effects of the CRO are controlled. For this purpose, a CRO rate of
0.05 is used in the ICACRO, i.e., 5 out of 100 iterations of the algorithm will execute the
CRO. The MV of the colonies should be recalculated after the CRO is executed for every
colony. Accordingly, the colony and its imperialist country should exchange their positions
if the newly obtained MV of the colony is better than that of the imperialist country.

In the last phase of the ICACRO, the imperialist countries enter an imperialistic
competition. In this competition, each imperialist country attempts to overcome the other
imperialist countries by taking the weakest colony of the weakest empire. The victorious
imperialist country separates the colony from its empire and adds it to its own colony set.
An imperialist country with no colonies in its empire will itself be taken by the victorious
country. To ensure that there is an adequate opportunity for each imperialist country to
increase its number of colonies and thus strengthen its empire, the imperialist competition
function is called at a rate of 0.05, i.e., the imperialist competition is executed in 5 out of
every 100 iterations, as described for the CRO.

The ICACRO is designed such that except during the first initialization, it does not
require all the countries to be sorted to find the optimal solution. Therefore, it is sufficient
to sort the imperialist countries in descending order at the end of each iteration of the
algorithm. Because there are fewer imperialist countries than non-imperialist countries, a
clear reduction in the ICACRO execution time compared to that of the ICA occurs. The
ICACRO can be terminated after a specified number of iterations, the achievement of a
specific MV, or the disappearance of all but one empire in the world. If the termination
criterion is not satisfied, the next iteration will start via displacement. The ICACRO
flowchart and pseudocode are shown in Figures 6 and 7, respectively.
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4. Experimental Design
4.1. ICACRO Implementation and Execution

To apply the ICACRO to the STCOCCSC, the algorithm is implemented in Microsoft
Visual Studio C#.NET 2012. Five STCOCCSCs of different sizes, denoted as problems A, B,
C, D and E, are generated randomly based on the WSDream-QoSDataset2 [21,58], which
is a large real-world QoS dataset that includes STs collected from 339 service providers
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and 5825 USs. Problems A, B, C, D and E consist of 100, 200, 300, 400 and 500 unrepeated
required USs, respectively. In other words, the 100 required USs in A should be combined to
prepare a requested CS. With respect to the description of the STCOCCSC, the composition
algorithm should select a service among 339 similar services for each required unique
service such that the sum of the service time-costs of all selected services is minimized. The
classic ICA and niching PSO [49,59], which is one of the most efficient methods proposed to
date, are also implemented in the same environment for comparison with the ICACRO for
the five described problems. The ICACRO, the classic ICA, and niching PSO are executed
40 times independently on a PC with an Intel Core i7—3.40 GHz processor and 8 GB
of RAM under identical conditions. The average value of the results of each method is
employed for comparison. Because WSDream-QoSDataset2 does not provide SCs, these
values are generated randomly by the authors such that their statistical distribution and
value range follow the ST distribution and value range, respectively.

For a more accurate evaluation of the ICACRO and more useful comparisons between
the ICACRO and the ICA and niching PSO, the algorithms are compared for each problem
at two fixed points of the execution process. The first point is at iteration 1500, and the
second one is at iteration 6000, which is the intended endpoint of the run. The importance
of these two points can be considered from the perspective of the abilities of the algorithms
to reach better solutions within a limited number of iterations and their achievements after
the termination of the evolutionary process. Because 1500 is 25% of 6000, the execution
time of the algorithm after 1500 iterations should be 25% of that after 6000 iterations. In
this study, the solutions obtained after 1500 and 6000 iterations are termed the first proper
solution (fps) and final solution (fs), respectively.

4.2. Definitions

In this section, some new analysis factors are introduced and defined, with which a
more meticulous comparison can be carried out among the different algorithms.

Definition 1. The appropriate solution at the lowest time (APLT) policy can be applied by cloud
suppliers to select the best obtained solution as the final solution after a limited number of iterations,
although there is still a high probability that better solutions could be achieved. This policy is useful
for suppliers who prefer to respond to requests as rapidly as possible. To satisfy the APLT policy, the
fps should be considered by cloud suppliers.

Definition 2. The optimal solution at the appropriate time (OSAT) policy is an appropriate policy
for cloud suppliers who prefer to wait a reasonable amount of time to achieve closer-to-optimal
solutions. Application of this policy causes slightly more delay in responding to service requests than
APLT but yields more QoS-satisfying solutions. Utilization of the fs will satisfy the OSAT policy.

Definition 3. To assess the optimal method of applying the CRO to empower the ICA for obtaining
better solutions, the time-cost consumption check (TCC) can be defined, using (15), and used for the
consumption check. The TCC allows the optimality of all algorithms to be evaluated in comparison
to that of one of the algorithms under consideration. For this purpose, the weakest algorithm in the
experimental test is chosen as the basis, and the other investigated algorithms are compared to the
basis. In (15), Best(A) and Best(basis) are the best MVs obtained using algorithm A and the basis,
respectively. A larger difference between Best(A) and Best(basis) indicates a higher quality of A.

TCC(%) =

(
1− Best(A)

Best(basis)

)
× 100 (15)

In this study, the TCC is employed to compare the results obtained using niching PSO,
the ICA, the ICACRO-I, and the ICACRO-C for problems A to E, where niching PSO is
selected as the basis.
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Definition 4. The ratio of the MV of the final obtained solution to the execution time of an algorithm
is called the time utilization (TU) and can be a suitable and reliable factor for comparing the efficiencies
of algorithms in solving the same problem. A larger/smaller TU value indicates the greater efficiency
of an algorithm compared to that of others when solving maximization/minimization problems.

Definition 5. Let us define TU-based optimality (TUO) as the ratio of the TU value of an algorithm
ALG1 to the TU value of another algorithm ALG2. TUO can be used to show the efficiency of ALG1
compared to that of ALG2 by taking their execution times as effective parameters.

Definition 6. Merit value variation (MVV) can be studied from the 1500th iteration to 6000th
iteration to identify the improvement of the best solution obtained by the algorithms between these
two points of execution. The MVV value can easily be calculated by finding the difference between
the best MVs obtained at the two points. The MVV values of the ICACRO-I and ICACRO-C are
obtained using (16) and (17), respectively. In the same way, execution time variation (ETV) can
also be defined as the difference between execution times of an algorithm in the 1500th iteration and
6000th iteration. According to this definition, the ETVs of the two algorithms are calculated using
(18) and (19), respectively.

∆MC = MVV(ICACRO− C) = C f ps− C f s (16)

∆MI = MVV(ICACRO− I) = I f ps− I f s (17)

∆TC = ETV(ICACRO− C) = C f sT − C f psT (18)

∆TI = ETV(ICACRO− I) = I f sT − I f psT (19)

Definition 7. The merit value gradient (MVG), which is defined in (20) and (21) for the two
algorithms, can be considered a meaningful factor that includes the MVV and ETV of an algorithm
and is used to evaluate how well an algorithm can avoid premature convergence by looking for better
solutions. For minimization problems, the greater the MVG, the more convincing the evidence for
allowing the algorithm to more thoroughly search through a search space. The very low MVG for
small problems may indicate that a solution very close to the optimal solution is obtained.

MVG(ICACRO− C) =
∆MC
∆TC

(20)

MVG(ICACRO− I) =
∆MI
∆TI

(21)

5. Comparison of Results and Discussion

As previously stated, the number of countries and their positions in the ranking are
expected to play a decisive role in the efficiency and effectiveness of the CRO. To assess this
role, the CRO is applied in the algorithm in two different ways. The first is the ICACRO-C,
in which the CRO is utilized for all countries. The second is the ICACRO-I, in which the
CRO is applied only to the imperialist countries.

As also discussed earlier, five different-sized problems with different degrees of
difficulty are generated and addressed using the ICACRO-C, ICACRO-I, ICA, and niching
PSO. For the first three algorithms, the number of countries initialized in the first iteration
is 500. Similarly, 500 particles are generated for niching PSO to provide an equivalent
comparison for all five algorithms.
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Part a of Figure 8 indicates that the solutions obtained using the ICACRO-C and
ICACRO-I are significantly better than those generated using the ICA and niching PSO in
terms of the APLT policy. Similarly, part b of the same figure indicates the superiority of
the ICACRO-C and ICACRO-I over the ICA and niching PSO in terms of the OSAT policy.
The execution results, obtained using the two different types of the ICACRO, and their
trends shown in Figure 8 also reveal that the ICACRO-C achieved a better solution than
that of the ICACRO-I for problem A. Hence, based on the first evaluation, the ICACRO-C
is the most suitable algorithm for solving problem A due to the better solution achieved.
Despite this conclusion, the following paragraphs will show that other factors can affect
the decision.

The improvements achieved by applying the CRO to the ICA are demonstrated by
comparing the quality of the solutions in parts a and b of Figures 9–12. The total service
time-cost of the best solutions, obtained using the ICACRO-C and ICACRO-I, are consis-
tently lower than the service time-cost of the solutions generated using the ICA and niching
PSO for problems B, C, D and E. The ICACRO-C and ICACRO-I obtain solutions that are
significantly closer to optimal considering that these two algorithms, when evaluating
the CRO, achieved optimality for different problems in which different levels of difficulty
arose because of the different numbers of USs required. Since the ICA demonstrated better
results than those of niching PSO, and because the ICA and the ICACRO differ only in
the application of the CRO, it can be concluded that the high-performance level achieved
resulted from the CRO efficiency and its appropriate embedding in the ICA.

On the other hand, Figure 13 presents the optimality calculated for the five investigated
problems in five separate categories, each in two parts reflecting the checkpoints after 1500
and 6000 iterations. Based on the TCCs calculated based on niching PSO for problems A
to E, the minimum and maximum optimality values obtained by applying the CRO are
39.05% and 47.86% for the fs and 38.68% and 46.66% for the fps, respectively. The averages
of the optimality values achieved using the ICACRO-C, ICACRO-I, and ICA are 42.89%,
40.51%, and 21.13% for the fs and 46.12%, 44.11%, and 22.88% for the fps, respectively.
The optimality achieved using the CRO in the ICA compared to that achieved using the
classic ICA can be calculated by considering the ICA as the basis. Figure 14 shows that
the minimum and maximum optimality values obtained for problems A to E are 20.48%
and 32.80% for the fs and 22.04% and 31.63% for the fps, respectively. Hence, the averages
of the optimality values obtained using the ICACRO-C and ICACRO-I are 30.30% and
27.49% for the fs and 27.81% and 24.72% for the fps, respectively. The optimality values of
the ICACRO-C based on the ICACRO-I for problems A to E are presented in Figure 15.
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5.1. ICACRO-C or ICACRO-I?

The performances of the ICACRO-C and ICACRO-I are examined more closely to
identify the differences between the two algorithms (see Table 2). Comparison of the best
solutions obtained using the ICACRO-C and ICACRO-I in solving the different problems
demonstrates that although the ICACRO-C performs better than the ICACRO-I for all
investigated problems and for both APLT and OSAT policies, investigation of the execu-
tion times of the algorithms and the effect of the problem size can help us to study the
performances of the two algorithms more precisely.

Table 2. fs and fst results for ICACRO-I and ICACRO-C.

Problem A Problem B Problem C Problem D Problem E

ICACRO-C Best result
after 1500 iterations

(Cfps)
34.53 69.63 103.02 147.96 190.64

ICACRO-C Best result
after 6000 iterations

(Cfs)
34.15 66.94 98.49 132.70 165.87

ICACRO-C
1500-iteration

execution time (CfpsT)
6.5 s 13.4 s 20.2 s 26.8 s 34.4 s

ICACRO-C
6000-iteration

execution time (CfsT)
25.7 s 53.5 s 80.4 s 107 s 136.6 s

ICACRO-I Best result
after 1500 iterations

(Ifps)
35.23 73.78 107.54 155.29 197.45

ICACRO-I Best result
after 6000 iterations

(Ifs)
35.08 69.50 102.39 137.41 173.46

ICACRO-I
1500-iteration

execution time (IfpsT)
5.9 s 12.2 s 18.7 s 24.5 s 31.1 s

ICACRO-I
6000-iteration

execution time (IfsT)
23.5 s 49.1 s 74.6 s 97.5 s 123.8 s

Cfps—Cfs 0.38 2.69 4.53 15.26 24.77

Ifps—Ifs 0.15 4.28 5.15 17.88 23.99

CfsT—CfpsT 19.2 s 40.1 s 60.2 s 80.2 s 102.2 s

IfsT—IfpsT 17.6 s 36.9 s 55.9 s 73 s 92.7 s

To study the execution times of the ICACRO-C and ICACRO-I, denoted as CfsT and
IfsT, respectively, the times, shown in Table 2, are recorded after execution of the algorithms
for problems A to E. Figure 16 demonstrates that CfsT and IfsT increased in linear fashion
according to the problem size. It also shows that the larger the problem size, the larger the
difference between CfsT and IfsT. With the execution times and information regarding their
trends, it is possible to compare the ICACRO-C and ICACRO-I results more precisely.
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Figure 16. Execution times of the ICACRO-C and ICACRO-I for solving problems A–E.

In accordance with definitions 4 and 5, Figure 17 shows that the ICACRO-C achieved
smaller TU values for all 5 problems than those achieved by the ICACRO-I. Hence, it can
be concluded that with respect to the required execution time, the ICACRO-C outperforms
the ICACRO-I and can achieve more proper solutions when solving the same STCOCCSCs.
The TUO values of the five problems are also shown to be almost equal. Therefore, the
same level of optimality can be achieved when solving problems of various sizes using the
ICACRO-C instead of the ICACRO-I.
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5.2. Fps or Fs?

As mentioned in definitions 1 and 2, cloud suppliers can prepare a solution based on
the APLT or OSAT policies. Table 2 shows the execution times and MVs of the ICACRO-I
and ICACRO-C for problems A-E for both policies.

In accordance with definitions 6 and 7, Figure 18 demonstrates that although the MVG
is very close to zero for simple problem A, it experiences an increasing trend for both
investigated algorithms. Also, the ICACRO-I is shown to perform slightly better than the
ICACRO-C based on the MVG investigation.
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ICACRO-I ICA −51.362 0.174 <0.001 
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Figure 18. Merit value gradient (MVG) and trend of MVG of ICACRO-C and ICACRO-I for prob-
lems A–E.

Therefore, it can be concluded that for problems with a small number of required
simple services, obtaining the fps seems to be sufficient and that execution of the algorithms
to reach the fs will not lead to a significant improvement in the best obtained solution to the
problem. Nevertheless, as the number of required simple services increases, the difference
becomes more significant.

5.3. Performance Statistical Test

Statistically evaluating and comparing the results obtained using the previous algo-
rithms can provide more information regarding the algorithm functionality and perfor-
mance. To this end, different statistical tests are performed using IBM SPSS STATISTICS
version 22.

A repeated measures analysis of variance, with the Greenhouse-Geisser correction [60],
is conducted to consider the difference in mean total service time-cost obtained using the
four algorithms. The result of the repeated measures analysis of variance indicates that
the mean STs of the four investigated algorithms are statistically significantly different
for all investigated problems (see Table 3). Pairwise comparisons with the Bonferroni
correction [61–63] also reveal that the two different types of ICACRO obtained a signifi-
cantly lower mean total service time-cost than that of the ICA and niching PSO for all four
investigated problems.
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Table 3. Results of repeated measures ANOVA.

df Mean
Square F Sig.

Problem A
Between Groups 1.234 1654453.748 1064352.466 <0.001

Error 7400.915 1.554

Problem B
Between Groups 1.079 9596518.233 258544.375 <0.001

Error 6473.570 37.117

Problem C
Between Groups 1.082 31014381.517 441298.360 <0.001

Error 6493.645 70.280

Problem D
Between Groups 1.052 46227282.898 199913.106 <0.001

Error 6309.354 231.237

Problem E
Between Groups 1.040 72555514.778 195415.062 <0.001

Error 6239.068 371.289

Furthermore, the ICA results are also significantly better than the results of niching
PSO according to the results shown in Table 4. To statistically analyze the behavior of the
ICACRO-C and ICACRO-I, Table 4 is provided. The table shows that there is a significant
difference between the results obtained using the two algorithms. Further inspection of the
results suggests that the mean difference between these two algorithms is significant and
increases as the problem size increases. Hence, based on the trends of the algorithm results,
it can be concluded that the larger the problem size, the more efficient the performance of
the ICACRO-C compared to that of the ICACRO-I.

Table 4. Results of Bonferroni pairwise comparisons.

(I) Algorithm (J) Algorithm Mean Difference
(J—I) Std. Error Sig.

Problem A

ICACRO-C Niching PSO −22.836 0.018 <0.001
ICACRO-I Niching PSO −22.037 0.019 <0.001

ICA Niching PSO −12.575 0.009 <0.001
ICACRO-C ICA −10.261 0.015 <0.001
ICACRO-I ICA −9.462 0.016 <0.001
ICACRO-C ICACRO-I −0.798 0.002 <0.001

Problem B

ICACRO-C Niching PSO −50.116 0.089 <0.001
ICACRO-I Niching PSO −47.144 0.088 <0.001

ICA Niching PSO −18.518 0.026 <0.001
ICACRO-C ICA −31.598 0.072 <0.001
ICACRO-I ICA −28.626 0.071 <0.001
ICACRO-C ICACRO-I −2.972 0.01 <0.001

Problem C

ICACRO-C Niching PSO −92.806 0.127 <0.001
ICACRO-I Niching PSO −89.269 0.121 <0.001

ICA Niching PSO −51.471 0.044 <0.001
ICACRO-C ICA −41.335 0.098 <0.001
ICACRO-I ICA −37.798 0.091 <0.001
ICACRO-C ICACRO-I −3.537 0.009 <0.001

Problem D

ICACRO-C Niching PSO −111.665 0.221 <0.001
ICACRO-I Niching PSO −104.956 0.218 <0.001

ICA Niching PSO −53.594 0.061 <0.001
ICACRO-C ICA −58.071 0.178 <0.001
ICACRO-I ICA −51.362 0.174 <0.001
ICACRO-C ICACRO-I −6.709 0.019 <0.001

Problem E

ICACRO-C Niching PSO −139.396 0.293 <0.001
ICACRO-I Niching PSO −132.027 0.27 <0.001

ICA Niching PSO −71.467 0.086 <0.001
ICACRO-C ICA −67.928 0.225 <0.001
ICACRO-I ICA −60.56 0.2 <0.001
ICACRO-C ICACRO-I −7.369 0.026 <0.001
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6. Conclusions and Directions for Future Research

Designing effective operators for EAs can enhance the searching capabilities of the
algorithms provided that they are utilized appropriately. Furthermore, the designed
operators should be developed based on the same origins used as inspiration in the design
of the algorithms. Hence, in this paper, a new operator termed the CRO is designed and
applied to the ICA based on the color revolutions, a sociopolitical movement that has
occurred in some countries. Application of the CRO significantly increases the ability of
the ICA to achieve closer-to-optimal solutions when considering five problems of different
size. Two types of the proposed algorithm (ICACRO-C and ICACRO-I) considerably
outperformed niching PSO and the ICA in terms of the APLT and OSAT policies. The
ICACRO-C is experimentally and statistically evaluated to generally be more efficient than
the ICACRO-I in terms of execution time and the obtained results.

The CRO can be improved by providing a dynamic probability rate and optimum
number of target countries in future research. This can be done by evaluating the trends of
changes in the MV and convergence speed of solutions. The CRO can also be made more
effective provided that service providers are categorized precisely based on all possible
QoS parameters.
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