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Abstract: Evaluation of online teaching quality has become an important issue because many univer-
sities are turning to online classes due to the Corona Virus Disease 2019 (COVID-19) pandemic. In this
paper, online teaching quality evaluation is considered as a linguistic multi-attribute group decision-
making (MAGDM) problem. Generally, the evaluation sematic information can be symmetrically or
asymmetrically distributed in linguistic term sets. Thus, an extended linguistic MAGDM framework
is proposed for evaluating online teaching quality. As the main contribution, the proposed method
takes into account the risk preferences of assessment experts (AEs) and unknown weight information
of attributes and sub-attributes. To be specific, the Delphi method is employed to establish a multi-
level evaluation indicator system (EIS) of online teaching quality. Then, by introducing the group
generalized linguistic term set (GLTS) with two risk preference parameters, a two-stage optimization
model is developed to calculate the weights of attributes and sub-attributes objectively. Subsequently,
the linguistic MAGDM framework was divided into two stages. The first stage maximizes the group
comprehensive rating values of teachers on different attributes to obtain partial ranking results for
teachers on each attribute. The latter stage maximizes the group comprehensive rating values of
teachers to evaluate the overall quality. Finally, a case study is provided to illustrate how to apply
the framework to evaluate online teaching quality.

Keywords: online teaching quality evaluation; linguistic multi-attribute group decision making
(MAGDM); risk preference; unknown weight information; optimization model

1. Introduction

Due to the outbreak of Corona Virus Disease 2019 (COVID-19), universities in many
countries have adopted online teaching methods to prevent the spread of the epidemic on
campus. According to data published by the United Nations Educational, Scientific and
Cultural Organization (UNESCO), as of 28 April 2020, 168 countries worldwide had closed
their campuses due to the epidemic and have adopted online teaching methods [1]. From
the Chinese Ministry of Education, as of 8 May, 1454 colleges and universities nationwide
were conducting online teaching, 1.03 million teachers were offering 1.07 million courses
online, and a total of 17.75 million college students had participated in online learning.
Currently, the global epidemic situation is still grim, and online teaching will continue to
be one of the primary forms, especially in universities where students come from a wide
variety of regions [2].

Large-scale online teaching has effectively solved the problem of students learning
at home, but the changing of teaching environment from offline to online has also posed
significant challenges to teaching quality. For instance, the changing scenarios and the
lack of a sense of presence make it difficult for teachers and students to interact effectively.
Meanwhile, network congestion occurs frequently when a large number of students attend
the classes at the same time. Against this backdrop, how to assess and promote the quality
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of online teaching has become a key issue for education departments and universities.
To this end, exploring and constructing scientific and rational indicators and scientific
methods for assessing the quality of online teaching plays a crucial role in improving the
online teaching quality [1,3].

To the best of knowledge, the complexity of teaching quality assessment leads to an
evaluation process involving multiple levels of indicators and numerous assessment ex-
perts (AEs). Thus, the issue of assessing the quality of online teaching can also be regarded
as a multi-attribute group decision-making (MAGDM) problem. In practical teaching
evaluation problems, the choice of evaluation indicator system (EIS) and the evaluation
method is related to the quality of evaluation results. The EISs are generally divided into
two categories: single-level EISs [4–7] and multi-level EISs [8–13]. Additionally, there are
many kinds of evaluation methods, such as the grey relational coefficient embed to the tech-
nique for order of preference by similarity to an ideal solution (Grey-TOPSIS) [4], analytic
hierarchy process (AHP) [8,10,12,13], fuzzy comprehensive evaluation (FCE) [5,8,11,13],
characteristic objects methods [6,7], cloud model [9] and so on. For example, Song and
Zheng [4] combined the grey correlation with TOPSIS methods to construct a new model for
assessing the quality of teaching in universities. Faizi et al. [6] extended the characteristic
objects method to solve MAGDM problem in a hesitant fuzzy environment. Faizi et al. [7]
further proposed a new MAGDM method by combining the characteristic object method
and triangular intuitionistic fuzzy numbers, which is different from the hesitant fuzzy
environment. Chen et al. [8] proposed an evaluation framework based on fuzzy AHP
and FCE methods, and established a teaching performance indicator evaluation system to
improve teaching performance of teachers, which is the primary means to improving the
teaching quality of teachers. Chang and Wang [9] assessed teachers in higher education by
constructing the interval cloud evaluation matrix and determining the order of importance
of the decision program based on the cloud model. Wang [11] proposed a new data mining
algorithm and established an improved FCE method to deal with the evaluation problem
of physical education. Obviously, to ensure the accuracy of evaluation results, a growing
number of evaluation problems need to be assessed with multi-level EISs.

According to the existing literature on teaching quality evaluation, there are two gaps
need to be filled. The first is the lack of a multi-level EIS based on online teaching quality
evaluation. The second is that the evaluation processes mentioned above did not take into
account the influence of AEs’ risk preferences on linguistic evaluation information.

As to the selection of indicators for teaching quality evaluation, Song and Zheng [4]
investigated the indicator system for assessing the quality of teaching in traditional class-
rooms, which was constructed from the perspectives of teaching plans, teaching methods,
communication skills, and teaching professional level, and then assessed the quality of
teaching in five universities. Yang et al. [13] evaluated the quality of the basic nursing
course at Peking University in terms of teaching attitudes, teaching environment, teaching
content, and teaching feedback. Kong et al. [14] constructed indicators for assessing teach-
ing quality from the dimensions of attitude, content, teaching art, classroom management,
and teaching effectiveness. Peng and Dai [15] assessed the classroom teaching quality
of teachers in terms of the dimensions of teaching capacity, teaching attitude, teaching
content, teaching method, and teaching effect. These researches provide a reference for this
paper to build a new multi-level EIS of online teaching evaluation.

In addition, in the process of online teaching evaluation, due to the complexity of
the evaluation problem and the limited knowledge of AEs, it is easier for them to give
evaluation information in the form of linguistic terms on the teachers with regard to each
sub-attribute. In order to allow linguistic terms to be aggregated and compared, scholars
have carried out semantic representations of linguistic terms. Herrera and Martínez [16]
proposed a 2-tuple linguistic representation model to represent semantic values of linguistic
terms in a balanced linguistic term set (LTS) and represented the linguistic term as a linguis-
tic 2-tuple. Wang and Hao [17] presented a new proportional 2-tuple linguistic representa-
tion model to compute with words in an unbalanced LTS. Dong et al. [18] defined the con-
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cept of the numerical scale, and on this basis, extended the 2-tuple linguistic representation
model to compute with words in an unbalanced LTS. Subsequently, Rodriguez et al. [19]
introduced the concept of a hesitant fuzzy LTS, which provided a linguistic and compu-
tational basis to increase the richness of linguistic elicitation. Dong et al. [20] proposed
a novel computing with words method to construct the hesitant fuzzy LTS by using an
unbalanced LTS and the numerical scale. Li et al. [21] presented a personalized individual
semantics model to personalize individual semantics by the 2-tuple linguistic model and
an interval numerical scale. Liu et al. [22] proposed a new fuzzy envelope for the hesitant
fuzzy LTS in form of type-2 fuzzy sets for representing comparative linguistic expressions
in decision contexts, which overcomes the limitation of existing representations in dealing
with inherent uncertainties. However, in actual online teaching evaluation, different AEs
may have different expectations for semantic values of linguistic terms, which can be de-
scribed by their risk preferences [23]. Therefore, it is necessary to investigate the linguistic
representation model in linguistic MAGDM problems based on risk preferences.

With regard to linguistic MAGDM based on risk preferences, Zhou and Xu [24]
extended the sigmoid function and presented the concept of a generalized linguistic
term set (GLTS). They applied it to linguistic multi-attribute decision making involving
risk preferences. Lin and Wang [23] presented the concept of GLTSs with triangular
fuzzy semantic values, and developed a new method for coping with linguistic MADM
problems considering decision makers’ risk preferences. Lin and Wang [25] developed a
new framework to solve the linguistic MAGDM problem based on risk preferences, where
attribute evaluation values are represented by linguistic terms and the attribute weight
information is incomplete. Guo and Sun [26] combined single-valued neutrosophic LTSs
with prospect theory, and introduced a new comprehensive fuzzy decision approach to deal
with linguistic MAGDM. Focusing on decision makers’ risk preferences and regret theory,
Ma et al. [27] initiated an approach to solve the behavioral multi-attribute decision-making
problem based on probability expressions. Liao et al. [28] launched a Choquet integral-
based hesitant fuzzy gained and lost dominance score method based on prospect theory
to deal with MAGDM problems with experts’ risk preference psychology. Obviously, the
above methods and case studies are all based on a single-level EIS. This paper extends the
linguistic MAGDM based on risk preferences to the context of a multi-level EIS.

Different from group decision problems with preference relations [29,30], the MAGDM
problems involves the determination of attribute weights. To evaluate the quality of online
teaching according to the given EIS, it is an important issue of whether to provide attribute
weights. In fact, it is difficult for AEs to give attribute weight information in many cases.
Thus, some scholars have conducted studies on this issue. For example, based on the
standard deviation and average deviation of the interval type-2 fuzzy set, Gong [31]
established an optimization model to calculate attribute weights in linguistic MAGDM,
in which linguistic terms are transformed into interval type-2 fuzzy sets. Gupta et al. [32]
proposed a new method for solving linguistic MAGDM problems, in which linguistic
terms are converted into trapezoidal intuitionistic fuzzy numbers and Shannon’s entropy
theory is used to determine attribute weights. Wang and Mendel [33] initiated a new
method to deal with linguistic MAGDM problems based on interval type-2 fuzzy sets,
where an optimization model is established to determine completely unknown attribute
weights. Touqeer et al. [34] used a combination of grey relational analysis (GRA) method
and projection method to calculate completely unknown attribute weights in linguistic
MAGDM problems. We can see that these literatures are all based on the researches of
linguistic MAGDM under the single-level EIS. Therefore, considering multi-level EIS and
risk preferences, this paper develops a two-stage optimization model to derive the attribute
weights and the sub-attribute weights.

In response to the above research deficiencies, this paper designs an extended frame-
work to assess the quality of online teaching. The novelties of the framework are as
follows:
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• Taking into account the problem of online teaching quality evaluation, based on the
existing traditional classroom teaching quality EISs [4,13–15], the Delphi method
is employed to construct a brand-new multi-level EIS of online teaching quality,
including five attributes and 15 sub-attributes.

• Inspired by the decision method in Lin and Wang [25], this framework extends the
linguistic MAGDM method involving risk preferences from the single-level EIS to the
multi-level one.

• In teaching quality evaluation problems based on multi-level EISs, many works of
literature adopted the AHP approach to derive the weights of attributes and sub-
attributes [8–13]. Sometimes AEs cannot make pairwise comparisons on the im-
portance of attributes or sub-attributes, that is, they cannot use the AHP method to
calculate attribute weights. Thus, based on the principle of maximizing the group com-
prehensive evaluation value of each alternative, a two-stage attribute and sub-attribute
weight solution optimization model is established in this framework.

• The evaluation ranking results obtained by this framework are divided into the
overall ranking result and partial ranking results, which are helpful for teachers and
universities to understand their own situation and make targeted improvements.

The rest of this paper is structured as follows: Section 2 introduces the basic concepts
related to LTSs, group GLTSs with individual risk preferences, the Euclidean distance
between any two positive triangular fuzzy numbers, and the score function. Section 3
constructs a multi-level EIS for assessing online teaching quality of teachers, and then estab-
lishes a two-stage optimization model to solve the weights of attributes and sub-attributes
in the EIS. Section 4 devises an extended evaluation framework and then describes the
detailed evaluation process. Section 5 proposes a case study to verify the validity and feasi-
bility of the proposed evaluation framework. Section 6 carries on the practical discussion
to the evaluation ranking results including the overall and partial ranking results. Finally,
Section 7 concludes this paper.

2. Preliminaries

In this section, we introduce some concepts about LTSs, group GLTSs, the Euclidean
distance, and the score function.

2.1. Linguistic Term Set

Definition 1. Reference [35]. Let S =
{

s−τ1 , s−τ1+1, . . . , s0, . . . , sτ2−1, sτ2

}
be an LTS, where τ1

and τ2 are two positive integers, τ1 + τ2 + 1 represents the granularity of the LTS S, s0 represents
the central linguistic term, such as “medium” and “general”. If τ1 = τ2, then this LTS has the
following properties:

The LTS S is ordered: si > sj if and only if i > j;
There is a negation operator: Neg(si) = s−i where Neg(s0) = s0.

If τ1 = τ2 and the semantic information is symmetrically and uniformly distributed,
then S is called a balanced LTS; otherwise, S is called an unbalanced LTS. For example, an
LTS with seven granularities is denoted as follows:

S =

{
s−3 = very poor(VP), s−2 = poor(P), s−1 = slightly poor(SP), s0 = medium(M),
s1 = slightly good(SG), s2 = good(G), s3 = very good(VG)

}
. (1)
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2.2. Group Generalized Linguistic Term Set
2.2.1. Euclidean Distance

Definition 2. Reference [36]. Let ṽα = (vL
α , vM

α , vU
α ) and ṽβ = (vL

β , vM
β , vU

β ) be any two positive
triangular fuzzy numbers, then the Euclidean distance between them is defined as

d(ṽα, ṽβ) =

√
1
3

(
(vL

α − vL
β)

2
+ (vM

α − vM
β )

2
+ (vU

α − vU
β )

2
)

. (2)

2.2.2. Score Function

For comparing and ranking triangular fuzzy numbers, assume that ṽ = (vL, vM, vU)
is a positive triangular fuzzy number, then its score function could be denoted as [37]

S(ṽ) =
vL + 2vM + vU

4
. (3)

2.2.3. Group Generalized Linguistic Term Set Based on Risk Preferences

To describe the influence of the evaluation group’s risk preference on the semantic
information of linguistic terms in an LTS, Lin and Wang [25] introduced the concept of a
group GLTS.

Definition 3. Reference [25]. Let S =
{

s−τ1 , s−τ1+1, . . . , s0, . . . , sτ2−1, sτ2

}
be an LTS, then a

group GLTS is denoted as follows:

S̃ =
{
〈si, ṽi〉

∣∣∣i = −τ1, . . . , 0, . . . , τ2, ṽi = (vL
i , vM

i , vU
i )
}

, (4)

where ṽi is a triangular fuzzy number with group risk preference parameters θ1 and θ2 (θ1, θ2 > 0),
and represents a fuzzy semantic value of the linguistic term si where i = −τ1,−τ1 + 1, . . . , τ2 −
1, τ2. vL

i , vM
i and vU

i are defined as

vL
i =


(
1 + e−θ2i)−1, i = −τ1(
1 + e−θ2(i−1)

)−1
, i = −τ1 + 1, . . . ,−1, 0(

1 + e−θ1(i−1)
)−1

, i = 1, 2, . . . , τ2

(5)

vM
i =


(
1 + e−θ2i)−1, i = −τ1, . . . ,−1

0.5, i = 0(
1 + e−θ1i)−1, i = 1, 2, . . . , τ2

(6)

vU
i =


(

1 + e−θ2(i+1)
)−1

, i = −τ1, . . . ,−1(
1 + e−θ1(i+1)

)−1
, i = 0, 1, . . . , τ2 − 1(

1 + e−θ1i)−1, i = τ2

(7)

Obviously, for any i = −τ1, . . . , 0, . . . , τ2, we have vU
−1 = vM

0 = vL
1 = 0.5 and 0 <

vL
i , vM

i , vU
i < 1. If θ1 > θ2, then the evaluation group tends to make a risk-seeking

assessment. If θ1 = θ2, then the evaluation group tends to make a risk-neutral assessment.
If θ1 < θ2, then the evaluation group tends to make a risk-averse assessment.

As for the symmetry of semantic information in the group GLTS S̃, if τ1 = τ2 > 1
and θ1 = θ2, then d(ṽ−i, 0) = d(ṽi, 0). This means that the semantic information S̃ is
symmetrically distributed. Under this circumstance, if d(ṽi, ṽi+1) ≈ d(ṽi−1, ṽi) for i =
−τ1 + 1, . . . ,−1, 0, 1, . . . , τ2 − 1, then S̃ follows a symmetric and approximately uniform
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distribution. Besides, if τ1 = τ2 > 1 and θ1 6= θ2, then d(ṽ−i, 0) 6= d(ṽi, 0). There also exists
i ∈ {−τ1 + 1, . . . ,−1, 0, 1, . . . , τ2 − 1}, so that d(ṽi, ṽi+1) 6= d(ṽi−1, ṽi), which means that S̃
follows an asymmetric and non-uniform distribution.

2.2.4. Determination of Risk Preference Parameters

In order to determine the group GLTS defined above, it is assumed that Ṽ(k) ={
ṽ(k)oα , ṽ(k)oβ

, . . . , ṽ(k)oγ

}
is an expected set of triangular fuzzy semantic values offered by the

AE ek ∈ E(k = 1, 2, . . . , q) according to linguistic terms in the LTS S. Then, an optimization
model is constructed below:

min J =
q
∑

k=1
λk

(
d(ṽoα , ṽ(k)oα ) + d(ṽoβ

, ṽ(k)oβ
) + . . . + d(ṽoγ , ṽ(k)oγ )

)
s.t. θ1 > 0, θ2 > 0

(8)

where oα, oβ, . . . , oγ ∈ {−τ1, . . . ,−τ2}, θ1 and θ2 are decision variables, and d(., .) denotes
the Euclidean distance defined by (2).

By solving Equation (8), the values of the group risk preference parameters θ1 and θ2
are obtained. Then by plugging them into Equations (4)–(7), the group GLTS is derived.

3. EIS of Online Teaching Quality
3.1. Selection of Indicators for Evaluating the Online Teaching Quality

The selection of appropriate indicators is the fundamental to conducting the evaluation.
In order to effectively identify the critical factors affecting the quality of teaching, the
literature analysis and Delphi methods were used to construct indicators for evaluating the
online teaching quality.

First, analysis of the existing literature reveals that in the traditional evaluation of
teaching quality, scholars have focused on indicators of content, teaching methods, and
effectiveness. Similarly, these indicators also could be selected for assessing online courses.

Then, through interviews with six teachers and 14 students who participated in on-
line teaching, it was found that all interviewees focused on the classroom atmosphere in
the online education process. Besides, the online teaching environment and the teaching
platform were also key factors mentioned by the interviewees. Based on literature and
interview research, this paper identified five attributes of the online teaching environment,
online teaching platform, online teaching content and methods, online classroom climate,
and online teaching effectiveness. These attributes were then decomposed to constitute
15 sub-attributes. Based on the literature study and interview research, this paper iden-
tified five primary indicators of online teaching environment, online teaching platform,
online teaching content and methods, online classroom atmosphere, and online teaching
effectiveness. Then, the primary indicators were decomposed to formulate 15 secondary
indicators. Finally, the five primary indicators were treated as attributes aj(j = 1, 2, . . . , 5)
and the secondary indicators were treated as sub-attributes ajl(j = 1, 2, . . . , 5; l = 1, 2, 3).
Sub-attributes represents a specific refinement of the attribute. In other words, the five
attributes in this multi-level EIS contained 15 sub-attributes. The multi-level EIS is shown
in Table 1 below.

The attributes of the online teaching environment mainly refer to the external envi-
ronmental requirements that support online education, including the network, hardware
equipment, and teaching environment. The network environment requires the instruc-
tor to have a smooth network to ensure video and audio transmission when conducting
instruction. Hardware equipment mainly refers to the teacher having the equipment to
conduct online instruction, including computers, microphones, and cameras. Additionally,
the physical environment primarily refers to space where classes are conducted without
outside interference.
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Table 1. The multi-level evaluation indicator system (EIS) of online teaching quality.

Attribute Sub-Attribute

Online teaching environment (a1)
Network environment (a11)
Hardware equipment (a12)
Physical environment (a13)

Online teaching platform (a2)
Ease of operation (a21)
Functionality (a22)
Personalized support (a23)

Online teaching content and methods (a3)
Teaching content (a31)
Teaching schedule (a32)
Teaching format (a33)

Online classroom atmosphere (a4)
Influence of teaching (a41)
Classroom atmosphere (a42)
Students’ attitudes to learning (a43)

Online teaching effectiveness (a5)
Level of knowledge acquired (a51)
Level of thought-provoking (a52)
Problem-solving skills (a53)

The online teaching platform requires that the online teaching system used by teachers
and students be stable and easy to use. Personalized support requires the system to be able
to sign in, take attendance, interact, and submit assignments. Different from the traditional
teaching mode, the online platform plays the role of a “classroom” connecting students and
teachers. Therefore, the stability of the online platform and personalized support functions
are vital guarantees for the effective implementation of online teaching.

Regarding the content and methodological attributes of online teaching, teachers are
required to teach comprehensive content and to highlight key points. The combination of
theory and practice is also very crucial. Secondly, the teaching time is arranged in such a
way that students can easily absorb and digest the course knowledge. It is also necessary
to use a variety of teaching formats, such as a combination of live and recorded lectures,
monologues and inspirational lectures. Unlike the traditional classroom teaching quality
assessment, the content and methods for online teaching put forward higher requirements
for universities and teachers. Specifically, teachers need to adjust teaching strategies,
improve teaching methods, and optimize instructional design according to the needs of
the scenario in order to compensate for the lack of presence and interaction resulting from
online teaching.

The online classroom atmosphere contains the evaluation of teachers and students.
Among them, the influence of teaching requires teachers to be full of energy, affable, use
body language reasonably and appropriately, and teach in a natural and generous manner.
The sub-attribute of student’s attitude requires students to have a right attitude towards
learning and to pay attention to the class. Besides, the interaction and discussion between
teacher and students is also an important basis for assessing the classroom atmosphere.
This can be interpreted as a lively classroom atmosphere reflects the positive interaction
between the teacher and the students and also makes the teacher more enthusiastic in
teaching and helps the students to listen attentively to the lesson.

The teaching effectiveness is the reflection of the quality of instruction and can be
used to measure if the teaching objectives are being met. This attribute includes if students
master the content of the course in a timely and effective manner and whether the lectures
inspire students to think. In addition, fostering creativity and improving problem-solving
skills are also incorporated into this attribute.

Based on the above-detailed description of the evaluation indicators, for the sake of
more intuitively understanding the MAGDM problems of online teaching quality evalua-
tion, a multi-level hierarchic structure of online teaching quality evaluation composed of
an objective, attributes, sub-attributes, and alternatives (teachers) is shown in Figure 1.
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3.2. Determination of the Weights of Evaluation Indicators

Since this paper adopted a MAGDM approach to assess the online teaching quality
of teachers, the determination of attribute weights was particularly vital. Obviously, the
importance weights of different sub-attributes to the same attribute will also be different.
Due to the limited knowledge of AEs and the complexity of evaluation problems, it
may be difficult for them to give the weights of attributes and sub-attributes, that is,
the weights of attributes and sub-attributes are completely unknown. It is supposed
that w = (w1, w2 . . . , wm)

T represents the attribute weight vector containing m attributes.
wj = (wj1, wj2, . . . , wjp)

T means the sub-attribute weight vector, which contains p sub-

attributes under the attribute aj.
m
∑

j=1
wj = 1 and wj ∈ [0, 1],

p
∑

l=1
wjl = 1 and wjl ∈ [0, 1].

When the GLTS S̃ of the evaluation group is determined, the AE ek gives a linguistic-
term-based decision matrix Djk = (djk

sil )n×p of the alternative xi over the sub-attribute ajl

under the attribute aj where i = 1, 2, . . . , n, l = 1, 2, . . . , p, j = 1, 2, . . . , m, k = 1, 2, . . . , q.

Subsequently, each linguistic-term-based decision matrix Djk = (djk
sil )n×p can be converted

into a triangular fuzzy decision matrix expressed by

R̃jk = (r̃jk
il )n×p= (rjkL

il , rjkM
il , rjkU

il

)
n×p

, j = 1, 2, . . . , m; k = 1, 2, . . . , q, (9)

where

r̃jk
il = ṽjk

uil = (vjkL
uil , vjkM

uil , vjkU
uil ), i = 1, 2, . . . , n; l = 1, 2, . . . , p; j = 1, 2, . . . , m; k = 1, 2, . . . , q. (10)

Based upon triangular fuzzy decision matrices R̃jk(j = 1, 2, . . . , m; k = 1, 2, . . . , q),
assuming that the importance weight vector of AEs is ω = (ω1, ω2, . . . , ωq)

T , ωk ∈ [0, 1]

and
q
∑

k=1
ωk = 1. Then a triangular fuzzy weighted average operator and the AEs’ weight

vector ω = (ω1, ω2, . . . , ωq)
T are utilized to aggregate individual triangular fuzzy decision

matrices related to the attribute aj into a group one as follows:

R̃j = (r̃j
il)n×p, j = 1, 2, . . . , m, (11)
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where

r̃j
il =

q

∑
k=1

ωk r̃jk
il =

(
q

∑
k=1

ωkvjkL
uil ,

q

∑
k=1

ωkvjkM
uil ,

q

∑
k=1

ωkvjkU
uil

)
. (12)

Next, combining the sub-attribute weight vector wj = (wj1, wj2, . . . , wjp)
T and apply-

ing a triangular fuzzy weighted average operator, the triangular fuzzy evaluation values in
the elements of the ith row in R̃j can be aggregated into a group comprehensive evaluation
value for the alternative xi(i = 1, 2, . . . , n) over the attribute aj, denoted by h̃j

i , namely:

h̃j
i =

p
∑

l=1
wjl r̃

j
il =

( p
∑

l=1
wjlr

jL
il ,

p
∑

l=1
wjlr

jM
il ,

p
∑

l=1
wjlr

jU
il

)
=

( p
∑

l=1

(
wjl

q
∑

k=1
ωkvjkL

uil

)
,

p
∑

l=1

(
wjl

q
∑

k=1
ωkvjkM

uil

)
,

p
∑

l=1

(
wjl

q
∑

k=1
ωkvjkU

uil

)) (13)

Once h̃j
i is obtained, according to the attribute weight vector w = (w1, w2 . . . , wm)

T

and the triangular fuzzy weighted average operator, the group comprehensive evaluation
value h̃i of the alternative xi can be determined, that is

h̃i =
m

∑
j=1

wj h̃
j
i =

m

∑
j=1

(
wj

p

∑
l=1

wjl r̃
j
il

)
, i = 1, 2, . . . , n. (14)

Since both w = (w1, w2 . . . , wm)
T and wj = (wj1, wj2, . . . , wjp)

T(j = 1, 2, . . . , m) are
completely unknown in this paper, thus, a two-stage optimization model is constructed to
determine the weights of attributes and sub-attributes, shown as follows:

Stage 1:
As mentioned in Equation (13), h̃j

i represents the group comprehensive evaluation

value for the alternative xi with respect to the attribute aj, the larger h̃j
i represents the

better the alternative xi with regard to the attribute aj, which leads to a better alternative
xi. Therefore, based on Equation (3), we first need to find the sub-attribute weight vector
wj = (wj1, wj2, . . . , wjp)

T (j = 1, 2, . . . , m), so that S(h̃j
i) is maximized for the alternative xi

with respect to the attribute aj for all i = 1, 2, . . . , n, j = 1, 2, . . . , m. Thus, a multi-objective
optimization model in this stage is constructed as follows:

maxFj
xi = S(h̃j

i) i = 1, 2, . . . , n; j = 1, 2, . . . , m

s.t.


wjl ≥ 0, l = 1, 2, . . . , p

p
∑

l=1
w2

jl = 1.
(15)

As for the attribute aj(j = 1, 2, . . . , m), each alternative xi(i = 1, 2, . . . , n) is feasible
and non-inferior, and the optimization model of each alternative has the same constraint
conditions. Therefore, the aforementioned multi-objective optimization model can be
transformed into an aggregated optimization model by setting the same sub-attribute
weights for each alternative under the same attribute as follows:

maxFj = 1
n

n
∑

i=1
S(h̃j

i) j = 1, 2, . . . , m

s.t.


wjl ≥ 0, l = 1, 2, . . . , p

p
∑

l=1
w2

jl = 1.

(16)
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Based on Equations (3) and (13), the optimization model (16) can be equivalently
converted into

maxFj = 1
4n

n
∑

i=1

p
∑

l=1

(
rjL

il + 2rjM
il + rjU

il

)
wjl j = 1, 2, . . . , m

s.t.


wjl ≥ 0, l = 1, 2, . . . , p

p
∑

l=1
w2

jl = 1.

(17)

Solving the above optimization model (17) yields the optimal sub-attribute weight
vector w∗j = (w∗j1, w∗j2, . . . , w∗jp)

T related to the attribute wj(j = 1, 2, . . . , m). The optimal
solution of the model can be expressed as

w∗jl =

n
∑

i=1
(rjL

il + 2rjM
il + rjU

il )√
n
∑

i=1

p
∑

l=1
(rjL

il + 2rjM
il + rjU

il )
2

. (18)

Since the weight vector satisfies the constraint condition of unitization, it is also
necessary to normalize w∗j , namely:

w∗jl =
w∗jl

p
∑

l=1
w∗jl

=

n
∑

i=1
(rjL

il + 2rjM
il + rjU

il )

n
∑

i=1

p
∑

l=1
(rjL

il + 2rjM
il + rjU

il )

, j = 1, 2, . . . , m; l = 1, 2, . . . , p. (19)

The optimal sub-attribute weight vector w∗j = (w∗j1, w∗j2, . . . , w∗jp)
T after normalization

is obtained. Then, substituting w∗j into Equation (13), the optimal group comprehensive

evaluation value h̃j∗
i of the alternative xi over the attribute wj is obtained by

h̃j∗
i =

p
∑

l=1
w∗jl r̃

j
il =

( p
∑

l=1
w∗jlr

jL
il ,

p
∑

l=1
w∗jlr

jM
il ,

p
∑

l=1
w∗jlr

jU
il

)
=

( p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkL

uil

)
,

p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkM

uil

)
,

p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkU

uil

)) (20)

Stage 2:
Once h̃j∗

i is determined, the larger the triangular fuzzy evaluation value h̃i, the better
the alternative xi is. Similarly, based on Equation (3), we need to derive the attribute
weight vector w = (w1, w2 . . . , wm)

T so that for any i = 1, 2, . . . , n, S(h̃i) is maximized. The
following multi-objective optimization model of the second stage is constructed as

maxFxi
= S(h̃i) i = 1, 2, . . . , n

s.t.


wj ≥ 0, j = 1, 2, . . . , m
m
∑

j=1
w2

j = 1.
(21)

In the same way, the above multi-objective optimization model (21) is converted into
an aggregated optimization model:

maxF = 1
n

n
∑

i=1
S(h̃i)

s.t.


wj ≥ 0, j = 1, 2, . . . , m
m
∑

j=1
w2

j = 1.

(22)



Symmetry 2021, 13, 192 11 of 21

Based upon the score function of triangular fuzzy numbers, we substitute h̃j∗
i into

Equation (14), and the optimization model (22) can be equivalently converted into:

maxF = 1
4n

n
∑

i=1

m
∑

j=1

(
hj∗L

i + 2hj∗M
i + hj∗U

i

)
wj

s.t.


wj ≥ 0, j = 1, 2, . . . , m
m
∑

j=1
w2

j = 1.

(23)

Solving the optimization model (23) yields the optimal attribute weight vector w∗ =
(w∗1 , w∗2 . . . , w∗m)

T . Then, utilize Equation (24) to normalize w∗j (j = 1, 2, . . . , m), the normal-

ized attribute weight vector w∗ = (w∗1 , w∗2 . . . , w∗m)
T is derived by

w∗j =
w∗j

m
∑

j=1
w∗j

=

n
∑

i=1
(hj∗L

i + 2hj∗M
i + hj∗U

i )

n
∑

i=1

m
∑

j=1
(hj∗L

i + 2hj∗M
i + hj∗U

i )
, j = 1, 2, . . . , m. (24)

Subsequently, substituting w∗ into Equation (14), and at the same time, according
to Equation (20), the group comprehensive evaluation value of the alternative xi(i =
1, 2, . . . , n) is calculated as

h̃∗i =
m
∑

j=1
w∗j

p
∑

l=1
w∗jl r̃

j
il =

(
m
∑

j=1
w∗j

p
∑

l=1
w∗jlr

jL
il ,

m
∑

j=1
w∗j

p
∑

l=1
w∗jlr

jM
il ,

m
∑

j=1
w∗j

p
∑

l=1
w∗jlr

jU
il

)

=

(
m
∑

j=1

(
w∗j

p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkL

uil

))
,

m
∑

j=1

(
w∗j

p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkM

uil

))
,

m
∑

j=1

(
w∗j

p
∑

l=1

(
w∗jl

q
∑

k=1
ωkvjkU

uil

))) (25)

As the summary of this section, the brief flow of the two-stage optimization model
used to solve the weights of attributes and sub-attributes is shown in Figure 2.
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Figure 2. The brief flow of the two-stage sub-attribute and attribute weight solving optimization
model.
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4. A Method for Linguistic MAGDM Involving Risk Preferences and Completely
Unknown Weight Information

Taking into account linguistic MAGDM problems involving decision makers’ risk
preferences, let X= {x1, x2, . . . , xn} be a set of alternatives, A= {a1, a2, . . . , am} be a set
of attributes, and aj= {aj1, aj2, . . . , ajp

}
(j = 1, 2, . . . , m) be a set of sub-attributes related

to the attribute aj. The weights of attributes and sub-attributes are completely unknown.
Suppose that q AEs represented by E =

{
e1, e2, . . . , eq

}
assess the alternative xi ∈ X

with regard to the sub-attribute ajl ∈ aj to the attribute aj ∈ A according to the LTS
S defined in Definition 1. Then they offer linguistic-term-based decision matrices as
Djk = (djk

sil )n×p(j = 1, 2, . . . , m; k = 1, 2, . . . , q), where djk
sil ∈ S and the weights of AEs are

known. Based on the risk preferences of AEs, a method for solving linguistic MAGDM
problems with the completely unknown weights of attributes and sub-attributes is provided.
The detailed evaluation process is described as follows:

Preprocessing:
Step 1: Based on the LTS S, each AE ek ∈ E assesses the alternative xi ∈ X with

regard to the sub-attribute ajl ∈ aj relative to the attribute aj ∈ A. The evaluation

process could be expressed by linguistic-term-based decision matrices Djk = (djk
sil )n×p

(j = 1, 2, . . . , m; k = 1, 2, . . . , q). Then, each AE provides his or her respective set of ex-
pected triangular fuzzy semantic values Ṽ(k) =

{
ṽ(k)oα , ṽ(k)oβ

, . . . , ṽ(k)oγ

}
.

Step 2: Compute the group risk preference parameters θ1 and θ2 by solving the
optimization model (8), and substitute them into Equations (4)–(7) to obtain the group
GLTS S̃.

Step 3: Transform decision matrices Djk = (djk
sil )n×p(j = 1, 2, . . . , m; k = 1, 2, . . . , q)

into triangular fuzzy decision matrices R̃jk =
(

r̃jk
il

)
n×p

(j = 1, 2, . . . , m; k = 1, 2, . . . , q)

according to Equations (9) and (10).
Step 4: Utilize the triangular fuzzy weighted average operator to aggregate individual

triangular fuzzy decision matrices R̃jk =
(

r̃jk
il

)
n×p

(j = 1, 2, . . . , m; k = 1, 2, . . . , q) into

group triangular fuzzy decision matrices R̃j = (r̃j
il)n×p(j = 1, 2, . . . , m) according to

Equation (12).
Stage 1:
Step 5: Determine the normalized optimal sub-attribute weight vector w∗j = (w∗j1,

w∗j2, . . . , w∗jp)
T by solving the nonlinear programming model (17) and using Equation (19)

for normalization.
Step 6: Compute the optimal group comprehensive evaluation value h̃j∗

i (i = 1, 2, . . . , n;
j = 1, 2, . . . , m) for the alternative xi over the attribute aj according to Equation (20).

Step 7: Make use of Equation (3) to calculate scores S(h̃j∗
i )(i = 1, 2, . . . , n; j = 1, 2, . . . , m).

Step 8: Obtain the ranking of all the alternatives over each attribute in descending

order according to the size of scores S(h̃j∗
i )(i = 1, 2, . . . , n; j = 1, 2, . . . , m), and use xiα

aj
� xiβ

to indicate that xiα is superior to xiβ
with respect to the attribute aj.

Stage 2:
Step 9: Get the optimal attribute weight vector w∗ = (w∗1 , w∗2 . . . , w∗m)

T by solving the
nonlinear programming model (23). Then employ Equation (24) to derive the normalized
optimal one denoted by w∗ = (w∗1 , w∗2 . . . , w∗m)

T .
Step 10: Calculate the optimal group comprehensive evaluation value h̃∗i (i = 1, 2, . . . , n)

of each alternative in X by making use of Equation (25).
Step 11: Generate scores S(h̃∗i )(i = 1, 2, . . . , n) of the optimal group comprehensive

evaluation value for each alternative based on Equation (3).
Step 12: Assess and rank the alternatives xi(i = 1, 2, . . . , n) in descending order

according to the size of scores S(h̃∗i )(i = 1, 2, . . . , n), and select the best alternative. Then,
make use of xiα � xiβ

to express that xiα is preferred to xiβ
, where iα, iβ ∈ {1, 2, . . . , n}.
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Based on the detailed description of the above evaluation process, an extended frame-
work of online teaching quality evaluation is devised in Figure 3.
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5. A Case Study about Online Teaching Quality Evaluation

This section aims to provide a case to clarify the feasibility and effectiveness of the
method and models presented in this paper.

5.1. Problem Description

During the outbreak of COVID-19, almost all universities across the countries post-
poned the opening of their classes. In order not to delay the progress of classroom teaching,
a certain university requires teachers to teach students courses through online teaching.
Because the online teaching method is relatively novel and unfamiliar to teachers, it is very
crucial to control the quality of online teaching. For the sake of improving the quality of
online teaching in this university, three AEs ek(k = 1, 2, 3) are invited to assess the online
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teaching quality of the four excellent teachers xi(i = 1, 2, 3, 4) selected by the university.
Then the best teacher is chosen to share his or her experience to improve the overall quality
of online teaching in this university.

5.2. Evaluation of Online Teaching Quality among Four Teachers

Preprocessing:
Based upon the seven granular LTS S presented in Definition 1 and the EIS of online

teaching quality constructed in Table 1, the linguistic-term-based decision matrices Djk =

(djk
sil )4×3(j = 1, 2, 3, 4, 5; k = 1, 2, 3) are given by experts who assess four teachers with

regard to fifteen sub-attributes by using linguistic terms in S. The importance weight vector
of experts are ω = (0.35, 0.25, 0.4)T . The original linguistic-term-based decision matrices
they provide are shown as follows:

D11 =


G SG M
SP M G
G G P

VG SP SG

, D12 =


VG G P
SG P G
SP SG SG
M P G

, D13 =


SP SG M
G SG G
M G G
P SG VG

,

D21 =


SG P P
G G SG
P SP VG

SG SG G

, D22 =


VG VG M
P VG G

SP SG P
P G SG

, D23 =


SG G G
P G M

SG SG G
SP M SP

,

D31 =


M SG P
M M SG
G SG VG
G G G

, D32 =


P G P

SG SG SG
M VP VG
G VG G

, D33 =


SG G VG
VP M SG
M SP G
G M SG

,

D41 =


G SP VG
M M SG
SP P SG
SP P G

, D42 =


SG P G
SP SG SG
G VP SG

SG SP G

, D43 =


P P SG
G SG SG
G VG SG
M SP SP

,

D51 =


G P G
G M G
P SP SG

SP SP SG

, D52 =


SG VG SG
M M G
P VG G
P P VG

, D53 =


SP SP G
SP P M
SP VG G
P G VG

.

Then, three experts ek(k = 1, 2, 3) give their own sets of triangular fuzzy semantic
values they expected, expressed as follows:

Ṽ(1) =
{

ṽ(1)−2= (0 .2, 0.3, 0 .35), ṽ(1)1 = (0.55, 0.6, 0.7), ṽ(1)2 = (0.6, 0.7, 0.85)
}

,

Ṽ(2) =
{

ṽ(2)−3= (0 .15, 0.15, 0 .25), ṽ(2)0 = (0.5, 0.6, 0.75), ṽ(2)2 = (0.75, 0.8, 0.85)
}

,

Ṽ(3) =


ṽ(3)−3= (0 .15, 0.15, 0 .25), ṽ(3)−2 = (0.15, 0.25, 0.35), ṽ(3)−1 = (0.25, 0.35, 0.45),

ṽ(3)0 = (0 .35, 0.45, 0 .55),ṽ(3)1 = (0 .45, 0.55, 0 .65),ṽ(3)2 = (0 .55, 0.65, 0 .75),
ṽ(3)3 = (0 .65, 0.75, 0 .75)

.

As the importance weights of the three experts are 0.35, 0.25, and 0.4, respectively,
solving the optimization model (8) yields the group risk preference parameters θ1 =
0.3644, θ2 = 0.5664. Apparently, the group of AEs tend to make a risk-averse decision.
Substituting the group risk preference parameters into Equations (4)–(7), the GLTS with
seven granularities can be obtained as follows:

S̃ =


〈s−3, (0.1546, 0.1546, 0.2436)〉, 〈s−2, (0.1546, 0.2436, 0.3621)〉,
〈s−1, (0.2436, 0.3621, 0.5000)〉, 〈s0, (0.3621, 0.5000, 0.5901)〉,
〈s1, (0.5000, 0.5901, 0.6745)〉, 〈s2, (0.5901, 0.6745, 0.7490)〉,
〈s3, (0.6745, 0.7490, 0.7490)〉

.
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According to Equations (9) and (10), the above-mentioned linguistic-term-based deci-
sion matrices Djk(j = 1, 2, 3, 4, 5; k = 1, 2, 3) are transformed into triangular fuzzy decision
matrices R̃jk(j = 1, 2, 3, 4, 5; k = 1, 2, 3) as follows:

R̃11 =


(0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745) (0.3621, 0.5000, 0.5901)
(0.2436, 0.3621, 0.5000) (0.3621, 0.5000, 0.5901) (0.5901, 0.6745, 0.7490)
(0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490) (0.1546, 0.2436, 0.3621)
(0.6745, 0.7490, 0.7490) (0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745)

,

R̃12 =


(0.6745, 0.7490, 0.7490) (0.5901, 0.6745, 0.7490) (0.1546, 0.2436, 0.3621)
(0.5000, 0.5901, 0.6745) (0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490)
(0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745)
(0.3621, 0.5000, 0.5901) (0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490)

,

R̃13 =


(0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745) (0.3621, 0.5000, 0.5901)
(0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745) (0.5901, 0.6745, 0.7490)
(0.3621, 0.5000, 0.5901) (0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.5000, 0.5901, 0.6745) (0.6745, 0.7490, 0.7490)

,

R̃21 =


(0.5000, 0.5901, 0.6745) (0.1546, 0.2436, 0.3621) (0.1546, 0.2436, 0.3621)
(0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745)
(0.1546, 0.2436, 0.3621) (0.2436, 0.3621, 0.5000) (0.6745, 0.7490, 0.7490)
(0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745) (0.5901, 0.6745, 0.7490)

,

R̃22 =


(0.6745, 0.7490, 0.7490) (0.6745, 0.7490, 0.7490) (0.3621, 0.5000, 0.5901)
(0.1546, 0.2436, 0.3621) (0.6745, 0.7490, 0.7490) (0.5901, 0.6745, 0.7490)
(0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745) (0.1546, 0.2436, 0.3621)
(0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745)

,

R̃23 =


(0.5000, 0.5901, 0.6745) (0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490) (0.3621, 0.5000, 0.5901)
(0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745) (0.5901, 0.6745, 0.7490)
(0.2436, 0.3621, 0.5000) (0.3621, 0.5000, 0.5901) (0.2436, 0.3621, 0.5000)

,

R̃31 =


(0.3621, 0.5000, 0.5901) (0.5000, 0.5901, 0.6745) (0.1546, 0.2436, 0.3621)
(0.3621, 0.5000, 0.5901) (0.3621, 0.5000, 0.5901) (0.5000, 0.5901, 0.6745)
(0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745) (0.6745, 0.7490, 0.7490)
(0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490) (0.5901, 0.6745, 0.7490)

,

R̃32 =


(0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490) (0.1546, 0.2436, 0.3621)
(0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745)
(0.3621, 0.5000, 0.5901) (0.1546, 0.1546, 0.2436) (0.6745, 0.7490, 0.7490)
(0.5901, 0.6745, 0.7490) (0.6745, 0.7490, 0.7490) (0.5901, 0.6745, 0.7490)

,

R̃33 =


(0.5000, 0.5901, 0.6745) (0.5901, 0.6745, 0.7490) (0.6745, 0.7490, 0.7490)
(0.1546, 0.1546, 0.2436) (0.3621, 0.5000, 0.5901) (0.5000, 0.5901, 0.6745)
(0.3621, 0.5000, 0.5901) (0.2436, 0.3621, 0.5000) (0.5901, 0.6745, 0.7490)
(0.5901, 0.6745, 0.7490) (0.3621, 0.5000, 0.5901) (0.5000, 0.5901, 0.6745)

,

R̃41 =


(0.5901, 0.6745, 0.7490) (0.2436, 0.3621, 0.5000) (0.6745, 0.7490, 0.7490)
(0.3621, 0.5000, 0.5901) (0.3621, 0.5000, 0.5901) (0.5000, 0.5901, 0.6745)
(0.2436, 0.3621, 0.5000) (0.1546, 0.2436, 0.3621) (0.5000, 0.5901, 0.6745)
(0.2436, 0.3621, 0.5000) (0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490)

,

R̃42 =


(0.5000, 0.5901, 0.6745) (0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490)
(0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745)
(0.5901, 0.6745, 0.7490) (0.1546, 0.1546, 0.2436) (0.5000, 0.5901, 0.6745)
(0.5000, 0.5901, 0.6745) (0.2436, 0.3621, 0.5000) (0.5901, 0.6745, 0.7490)

,

R̃43 =


(0.1546, 0.2436, 0.3621) (0.1546, 0.2436, 0.3621) (0.5000, 0.5901, 0.6745)
(0.5901, 0.6745, 0.7490) (0.5000, 0.5901, 0.6745) (0.5000, 0.5901, 0.6745)
(0.5901, 0.6745, 0.7490) (0.6745, 0.7490, 0.7490) (0.5000, 0.5901, 0.6745)
(0.3621, 0.5000, 0.5901) (0.2436, 0.3621, 0.5000) (0.2436, 0.3621, 0.5000)

,
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R̃51 =


(0.5901, 0.6745, 0.7490) (0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490)
(0.5901, 0.6745, 0.7490) (0.3621, 0.5000, 0.5901) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745)
(0.2436, 0.3621, 0.5000) (0.2436, 0.3621, 0.5000) (0.5000, 0.5901, 0.6745)

,

R̃52 =


(0.5000, 0.5901, 0.6745) (0.6745, 0.7490, 0.7490) (0.5000, 0.5901, 0.6745)
(0.3621, 0.5000, 0.5901) (0.3621, 0.5000, 0.5901) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.6745, 0.7490, 0.7490) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.1546, 0.2436, 0.3621) (0.6745, 0.7490, 0.7490)

,

R̃53 =


(0.2436, 0.3621, 0.5000) (0.2436, 0.3621, 0.5000) (0.5901, 0.6745, 0.7490)
(0.2436, 0.3621, 0.5000) (0.1546, 0.2436, 0.3621) (0.3621, 0.5000, 0.5901)
(0.2436, 0.3621, 0.5000) (0.6745, 0.7490, 0.7490) (0.5901, 0.6745, 0.7490)
(0.1546, 0.2436, 0.3621) (0.5901, 0.6745, 0.7490) (0.6745, 0.7490, 0.7490)

.

According to Equations (11) and (12), the individual triangular fuzzy decision matrices
R̃jk(j = 1, 2, 3, 4, 5; k = 1, 2, 3) are aggregated into group ones R̃j(j = 1, 2, 3, 4, 5):

R̃1 =


(0.4726, 0.5682, 0.6494) (0.5225, 0.6112, 0.6931) (0.3102, 0.4359, 0.5331)
(0.4463, 0.5441, 0.6432) (0.3654, 0.4719, 0.5669) (0.5901, 0.6745, 0.7490)
(0.4123, 0.5266, 0.6232) (0.5676, 0.6534, 0.7304) (0.4152, 0.5026, 0.5950)
(0.3884, 0.4846, 0.5545) (0.3239, 0.4237, 0.5353) (0.5923, 0.6748, 0.7229)

,

R̃2 =


(0.5436, 0.6298, 0.6931) (0.4588, 0.5423, 0.6136) (0.3807, 0.4801, 0.5739)
(0.3070, 0.3944, 0.4975) (0.6112, 0.6931, 0.7490) (0.4674, 0.5752, 0.6594)
(0.3150, 0.4118, 0.5215) (0.4103, 0.5103, 0.6134) (0.5108, 0.5929, 0.6523)
(0.3111, 0.4123, 0.5266) (0.4674, 0.5752, 0.6594) (0.4290, 0.5284, 0.6308)

,

R̃3 =


(0.3654, 0.4719, 0.5669) (0.5586, 0.6450, 0.7229) (0.3626, 0.4458, 0.5169)
(0.3136, 0.3844, 0.4726) (0.3966, 0.5225, 0.6112) (0.5000, 0.5901, 0.6745)
(0.4419, 0.5611, 0.6457) (0.3111, 0.3900, 0.4970) (0.6407, 0.7192, 0.7490)
(0.5901, 0.6745, 0.7490) (0.5200, 0.6233, 0.6854) (0.5541, 0.6407, 0.7192)

,

R̃4 =


(0.3934, 0.4810, 0.5756) (0.1858, 0.2851, 0.4104) (0.5836, 0.6668, 0.7192)
(0.4237, 0.5353, 0.6311) (0.4517, 0.5586, 0.6450) (0.5000, 0.5901, 0.6745)
(0.4688, 0.5652, 0.6619) (0.3626, 0.4235, 0.4872) (0.5000, 0.5901, 0.6745)
(0.3551, 0.4743, 0.5797) (0.2125, 0.3206, 0.4517) (0.4515, 0.5495, 0.6494)

,

R̃5 =


(0.4290, 0.5284, 0.6308) (0.3202, 0.4174, 0.5140) (0.5676, 0.6534, 0.7304)
(0.3945, 0.5059, 0.6097) (0.2791, 0.3974, 0.4989) (0.4989, 0.6047, 0.6854)
(0.1902, 0.2910, 0.4173) (0.5237, 0.6136, 0.6619) (0.5586, 0.6450, 0.7229)
(0.1858, 0.2851, 0.4104) (0.3600, 0.4924, 0.5651) (0.6134, 0.6934, 0.7229)

.

Stage 1:
Once the group triangular fuzzy decision matrices R̃j(j = 1, 2, 3, 4, 5) for the attribute

aj are obtained, we can utilize Equation (19) to calculate the optimal normalized sub-
attribute weight vector to the attribute aj(j = 1, 2, 3, 4, 5):

w∗1= (0 .3227, 0.3299, 0 .3474)T , w∗2= (0 .3552, 0.2880, 0 .3568)T ,
w∗3= (0 .3143, 0.3269, 0 .3588)T , w∗4= (0 .3399, 0.2645, 0 .3956)T ,
w∗5= (0 .2665, 0.3107, 0 .4228)T .

Subsequently, based upon Equation (20), we can calculate the optimal group com-
prehensive evaluation value h̃j∗

i (j = 1, 2, 3, 4, 5) of the alternative xi(i = 1, 2, 3, 4) over the
attribute aj(j = 1, 2, 3, 4, 5) as
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h̃1∗
i =


(0 .4326, 0.5364, 0 .6234)
(0 .4696, 0.5656, 0 .6548)
(0 .4645, 0.5601, 0 .6488)
(0 .4380, 0.5306, 0 .6067)

, h̃2∗
i =


(0 .4611, 0.5512, 0 .6277)
(0 .4518, 0.5449, 0 .6277)
(0 .4123, 0.5048, 0 .5946)
(0 .3982, 0.5006, 0 .6020)

,

h̃3∗
i =


(0 .4276, 0.5191, 0 .6000)
(0 .4076, 0.5034, 0 .5904)
(0 .4705, 0.5619, 0 .6342)
(0 .5543, 0.6456, 0 .7175)

, h̃4∗
i =


(0 .4137, 0.5027, 0 .5887)
(0 .4613, 0.5631, 0 .6519)
(0 .4531, 0.5376, 0 .6207)
(0 .3555, 0.4634, 0 .5734)

,

h̃5∗
i =


(0 .4538, 0.5468, 0 .6366)
(0 .4028, 0.5151, 0 .6129)
(0 .4496, 0.5409, 0 .6225)
(0 .4207, 0.5221, 0 .5906)

.

Next, according to Equation (3), the scores S(h̃j∗
i )(i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) are

computed as

S(h̃1∗
i ) =


0.5322
0.5639
0.5584
0.5265

, S(h̃2∗
i ) =


0.5478
0.5423
0.5041
0.5004

, S(h̃3∗
i ) =


0.5165
0.5012
0.5571
0.6408

,

S(h̃4∗
i ) =


0.5020
0.5599
0.5373
0.4639

, S(h̃5∗
i ) =


0.5460
0.5115
0.5385
0.5139

.

(26)

For the attribute a1, we have S(h̃1∗
2 ) > S(h̃1∗

3 ) > S(h̃1∗
1 ) > S(h̃1∗

4 ), so the ranking result

of teachers’ online teaching quality over the attribute a1 is denoted by x2
a1� x3

a1� x1
a1� x4.

In the same way, the ranking results of teachers’ online teaching quality over different
attributes are obtained, as shown in Table 2.

Table 2. Ranking results of teachers’ online teaching quality evaluation over different attributes.

Attribute Ranking

Online teaching environment (a1) x2
a1� x3

a1� x1
a1� x4

Online teaching platform (a2) x1
a2� x2

a2� x3
a2� x4

Online teaching content and methods (a3) x4
a3� x3

a3� x1
a3� x2

Online classroom atmosphere (a4) x2
a4� x3

a4� x1
a4� x4

Online teaching effectiveness (a5) x1
a5� x3

a5� x4
a5� x2

Stage 2:
According to scores S(h̃j∗

i )(i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) of the optimal group compre-

hensive evaluation value h̃j∗
i (i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5) for the alternative xi with regard

to the attribute aj obtained in Stage 1, the normalized optimal attribute weight vector is
derived as w∗ = (0.2045, 0.1964, 0.2078, 0.1935, 0.1978)T by using Equation (24).

Based on Equation (25), we can calculate the optimal group comprehensive evaluation
value h̃∗i (i = 1, 2, 3, 4) of each alternative as

h̃∗i =


(0.4377, 0.5312, 0.6153)
(0.4384, 0.5381, 0.6272)
(0.4503, 0.5415, 0.6245)
(0.4350, 0.5339, 0.6192)


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According to Equation (3), we can obtain the scores S(h̃∗i )(i = 1, 2, 3, 4) as

S(h̃∗i ) =


0.5289
0.5355
0.5395
0.5305

.

Because S(h̃∗3) > S(h̃∗2) > S(h̃∗4) > S(h̃∗1), the overall ranking result of four teachers
is x3 � x2 � x4 � x1, which means that the teacher with the best online teaching quality
is x3.

From the perspective of Table 2 and the overall ranking result, if the teacher with
the best online teaching quality is chosen in terms of a certain attribute, then teacher x1
is the best in aspects of online teaching platform and online teaching effectiveness. The
teacher x2 is better than other three teachers in terms of online teaching environment and
atmosphere. The teacher x4 has an absolute advantage in terms of online teaching content
and methods. Compared with other teachers, although the teacher x3 is not the best in
every aspect, it almost always ranks in the second place, which is high and stable. On the
contrary, the teacher x2 ranks the worst in aspects of online teaching content and methods
and online teaching effectiveness. The teacher x4 has the worst ranking with respect to
online teaching environment and platform. Except for the best ranking of the teacher x1 in
terms of the above-mentioned attributes, the first teacher ranks next to last for the other
attributes, which indicates that teacher x1 is at the lower end of the ranking and not stable
in general. Although teachers x1, x2, and x4 have the best online teaching quality among a
certain attribute(s), in view of all the evaluation attributes, the teacher x3 is the best.

6. Practical Discussion

The above-simulated case verifies the feasibility and effectiveness of the proposed
evaluation framework. On the one hand, several inspirations to AEs are given by the
evaluation process and results of the case. Initially, in the actual evaluation, AEs often have
different expectations and considerations for semantic values of linguistic terms. Thus, the
risk preference is used to describe and depict this phenomenon, which makes the evaluation
results more accurate and persuasive. Meanwhile, we can find that the importance weights
of attributes and sub-attributes in many multi-level EISs are subjectively given by AEs for
previous evaluation researches. But in this paper, the importance weights of attributes
and sub-attributes can be objectively derived through the proposed evaluation method.
Therefore, it makes the evaluation process fairer and makes teachers more convincing.
Next, from the evaluation results of the above case, we can see that there are not only the
overall evaluation ranking result, but also partial ranking results of teachers over each
attribute. This form of evaluation results can help universities and teachers better improve
the quality of online teaching. For universities, they can not only select the best teacher in
the overall ranking for teaching experience, but also choose the best one in a certain aspect
to impart teaching experience in this aspect. For teachers, they can not only know their
ranking in the comprehensive evaluation, but also understand their own deficiencies in
some aspects to improve themselves.

On the other hand, the research in this paper also has some limitations, which need to
be improved in the future. Firstly, this paper regards online teaching quality evaluation as
a linguistic MAGDM problem, assuming that the AE group uses the same granular LTS
for evaluation. In real life, because different AEs have different knowledge and different
preferences, LTSs with different granularities may be employed by them for evaluation.
How to convert LTSs with different granularities into ones with the same granularity under
the consideration of individual AEs’ risk preferences is the direction of future research.
Secondly, the form of evaluation information given in this paper is single. When different
AEs give different types of evaluation information, how to transform and aggregate them is
also the direction to be studied in the future. Thirdly, the proposed evaluation framework is
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applicable to online teaching quality evaluation, but it is also applicable to other application
cases, which is worth further research in the future.

Of course, there are some other MAGDM methods that can be used to solve attribute
weights, such as TOPSIS, VIKOR and PROMETHEE II methods [38]. Which method is
suitable to be used in a realistic assessment environment should be measured by one
or some benchmarks. In this paper, the online teaching evaluation process takes into
account the risk preferences of AEs. However, the difference in risk preferences will affect
the weights of attributes and sub-attributes in the EIS [23]. Thereby, in an evaluation
environment that considers risk preferences, the presented attribute and sub-attribute
weight solution optimization model and the devised evaluation framework are more
suitable and applicable than some other MAGDM approaches.

7. Conclusions

In the current way of epidemic prevention and control, online teaching has gradually
transformed into a mainstream learning method in universities. In order to ensure the
quality of online teaching in universities, evaluation of online teaching quality is particu-
larly important. By introducing and expanding the linguistic MAGDM method, this paper
mainly copes with the evaluation problem of online teaching quality that considers AEs’
risk preferences and the completely unknown weights information in the multi-level EIS.
Its contributions and advantages are manifested in four aspects. First of all, we construct a
multi-level EIS of online teaching quality based upon the Delphi method, which can be
well applied to evaluation of online teaching quality. Then, we extend Lin and Wang’s
method [25] to apply to the evaluation problem based on a multi-level EIS which commonly
exists in reality. Furthermore, according to the principle of maximizing the group compre-
hensive evaluation value of each alternative, we put forward the two-stage optimization
model that can objectively solve the weights of attributes and sub-attributes. The presented
two-stage optimization model has lower requirements for the AEs than other attribute
solving models, and is more practical and objective. Lastly, in the process of evaluation, the
evaluation results given by our framework include both the overall evaluation result and
partial evaluation results. These evaluation results can help teachers and even universities
to understand the specific problems existing in some aspects of current online teaching in
more detail for timely improvement.
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