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Abstract: The fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution)
is an attractive tool for measuring complex phenomena based on uncertain data. The original version
of the method assumes that the object assessments in terms of the adopted criteria are expressed
as triangular fuzzy numbers. One of the crucial stages of the fuzzy TOPSIS is selecting the fuzzy
conversion scale, which is used to evaluate objects in terms of the adopted criteria. The choice of a
fuzzy conversion scale may influence the results of the fuzzy TOPSIS. There is no uniform approach
in constructing and selecting the fuzzy conversion scale for the fuzzy TOPSIS. The choice is subjective
and made by researchers. Therefore, the aim of the article is to present a new, objective approach to the
construction of fuzzy conversion scales based on Item Response Theory (IRT) models. The following
models were used in the construction of fuzzy conversion scales: Polychoric Correlation Model
(PM), Polytomous Rasch Model (PRM), Rating Scale Model (RSM), Partial Credit Model (PCM),
Generalized Partial Credit Model (GPCM), Graded Response Model (GRM), Nominal Response
Model (NRM). The usefulness of the proposed approach is presented on the example of the analysis
of a survey’s results on measuring the quality of professional life of inhabitants of selected communes
in Poland. The obtained results indicate that the choice of the fuzzy conversion scale has a large
impact on the closeness coefficient values. A large difference was also observed in the spreads of
triangular fuzzy numbers between scales based on IRT models and those used in the literature on the
subject. The use of the fuzzy TOPSIS with fuzzy conversion scales built based on PRM, RSM, PCM,
GPCM, and GRM models gives results with a greater range of variability than in the case of fuzzy
conversion scales used in empirical research.

Keywords: fuzzy TOPSIS; IRT models; triangular fuzzy numbers; ordinal measurement scale; fuzzy
measurement; fuzzy conversion scales

1. Introduction

In socio-economic research, the assessment of objects (countries, cities, and organi-
zations) in terms of complex phenomena (sustainable development, quality of life, and
quality of services) is carried out using questionnaire studies and ordinal measurement
scales (most often the Likert scales). As complex phenomena are subject to assessment, an
unambiguous assessment of objects is difficult. The solution may be using multi-criteria
decision-making methods (MCDM) that allow taking into account the influence of many
partial criteria (sub-criteria) on complex phenomena. In the analysis of complex socio-
economic phenomena using MCDM methods, the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) method is particularly popular [1].

The TOPSIS method has gone through many modifications [2–5]. One of the research
directions on the TOPSIS method as part of the methodological trend is an attempt to
take into account the uncertainty of measurement results using the fuzzy set theory. The

Symmetry 2021, 13, 223. https://doi.org/10.3390/sym13020223 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0335-0036
https://doi.org/10.3390/sym13020223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13020223
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/2/223?type=check_update&version=1


Symmetry 2021, 13, 223 2 of 28

first proposal in this area was the fuzzy TOPSIS method [6], whose criteria values can be
expressed as fuzzy numbers. It is a particularly useful modification for the analysis of com-
plex socio-economic phenomena as it enables the measurement of these phenomena using
fuzzy scales or fuzzy conversion scales. These are scales in which individual categories are
most often expressed in triangular or trapezoidal fuzzy numbers. The difference between
these scales is that the respondents set the parameters of fuzzy numbers themselves in
the first case. In contrast, in the second case, a classic measurement is made using ordinal
scales, and then the measurement results are converted to the form of fuzzy numbers. The
second approach is more prevalent in the literature.

The fuzzy conversion scales used with the fuzzy TOPSIS most often have five points
(categories) represented by five triangular fuzzy numbers. The 6-point and 7-point scales
are used less frequently (see, e.g., [7,8]). The values of the parameters of triangular fuzzy
numbers differ from study to study. There are also differences in the spread of triangular
fuzzy numbers. In the studies [9,10], the triangular fuzzy numbers’ lower and upper limit
values are in the interval <0; 1>. In both studies, the spreads of fuzzy numbers for extreme
categories differ from the others. Triangular fuzzy numbers assigned to the remaining
categories are symmetric and have the same spread. In the study [10], the spreads of
adjacent fuzzy numbers overlap to a greater extent. A similar fuzzy conversion scale was
used in the study [11]. The difference concerns the middle category, where the triangular
fuzzy number has the largest spread compared to the other triangular fuzzy numbers.
Another proposal for a fuzzy conversion scale is presented in [12]. The lower and upper
limit values of triangular fuzzy numbers belong to the interval <0.1; 0.9>. Triangular
fuzzy numbers are symmetric except in the extreme categories. However, the scale is
distinguished because the ranges of triangular fuzzy numbers do not overlap.

Fuzzy conversion scales are also used in the research, where the lower and upper
limit values of the triangular fuzzy numbers belong to the interval <0; 5>. An example
may be the study [13]. In the scale used, the extreme category expressing the highest
score has an asymmetric triangular fuzzy number. The remaining triangular fuzzy num-
bers are symmetric and have the same spreads. Spreads of adjacent triangular fuzzy
numbers overlap.

A popular approach in constructing fuzzy conversion scales for the fuzzy TOPSIS
is to determine the parameters of triangular fuzzy numbers based on a value in the
interval <0; 10>. An example may be the scales proposed in [14,15]. The scales are
characterized by a large spread of the triangular fuzzy number assigned to the middle
category. Triangular fuzzy numbers assigned to the remaining categories are asymmetric.
The smallest spreads have fuzzy numbers assigned to extreme categories. A characteristic
feature of these scales is that the ranges of triangular fuzzy numbers do not overlap (except
for the extreme categories).

Lower and upper limit values of the triangular fuzzy numbers from the interval
<0; 10> were also used in [16]. However, on this scale, the spreads of adjacent fuzzy
numbers overlap. The spreads of all triangular fuzzy numbers are very close.

Another fuzzy conversion scale was used in [17]. The parameters of triangular fuzzy
numbers were established on the basis of the values in the interval <0; 9>. The scale is
characterized by the same but large range of fuzzy numbers for the middle categories.
Nădăban et al. [2] proposed a scale similar to [17]. The difference concerns the fourth and
five categories (positive categories) where the shapes and spreads of the fuzzy number
domains are different.

The fuzzy conversion scales presented above do not exhaust all possible combina-
tions of assigning triangular fuzzy numbers to categories of ordinal measurement scales.
However, it can be noticed that the extreme categories often have the smallest ranges of
triangular fuzzy numbers, which suggests that they are relative “precisely” interpreted,
perceived by experts and researchers. It is common practice to establish equal ranges of the
triangular fuzzy number for the categories representing the middle of the measurement
scale. It is difficult to indicate the dominant range of values in determining the lower and
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upper limit values of the triangular fuzzy numbers. There is also no rule about the location
of the triangular fuzzy numbers on the measurement scale. Ranges of triangular fuzzy
numbers may overlap more or less. Fuzzy conversion scales are also used where the ranges
of triangular fuzzy numbers do not overlap.

Regardless of the area of application of the fuzzy TOPSIS in connection with fuzzy
conversion scales, the method of determining the parameters of fuzzy numbers assigned
to categories of the ordinal measurement scales is debatable. It usually subjectively takes
place because it is most often determined by researchers or experts (see for example [7–17]).
Therefore, the article presents a new proposal of the method for determining the parameters
of fuzzy conversion scales for the fuzzy TOPSIS method based on the respondents’ opinions
who assess the partial criteria. The proposed method uses the achievements of the Item
Response Theory (IRT). We developed several simulations for determining the parameters
of fuzzy conversion scales based on prominent IRT models, namely, Polytomous Rasch
Model, Rating Scale Model, Partial Credit Model, Generalized Partial Credit Model, Graded
Response Model, and Nominal Response Model. Model-based conversions were compared
to conversions based on a model-free polychoric correlation approach and simple ordinal
rating (Likert) scale. Model-based conversions enable us to estimate thresholds given
continuous latent variable as an IRT model outcome. Based on thresholds estimated for
selected IRT models, a method of determining the parameters of triangular fuzzy numbers
for fuzzy conversion scales was proposed. As the method of estimating the thresholds
differs within IRT models, the thresholds for five IRT models were estimated and compared.

The manuscript is organized as follows. In the Section 2, the fuzzy TOPSIS is presented.
Selected IRT models are characterized in Section 3. Then, a method of constructing fuzzy
conversion scales based on threshold values obtained using IRT models was proposed.
Section 4 presents the usefulness of the proposed approach based on an empirical example
concerning assessing the quality of professional life of residents of selected communes in
Poland. In Section 5, the obtained results were compared with other fuzzy conversion scales
used in conjunction with the fuzzy TOPSIS. Finally, the conclusions of the paper are presented.

2. Fuzzy TOPSIS Method

Classical MCDM methods assume that criteria and weights are expressed in crisp
values. However, in many real situations, the assessments of criteria are often expressed
qualitatively or using linguistic expressions [18]. In such a case, the theory of fuzzy sets
proposed by Zadeh [19] applies. The fuzzy set theory, combined with the appropriate fuzzy
modifications of the MCDM methods, allows analyzing imprecise and fuzzy information.
One of such methods is the fuzzy TOPSIS proposed by Chen [6]. The method assumes that
the assessments of criteria and their weights can be expressed as triangular fuzzy numbers.

Definition 1. [20]. If X is a collection of objects denoted generically by x then a fuzzy set Ã in X
is a set of ordered pairs:

Ã =
{(

x, µÃ(x)
)∣∣x ∈ X

}
(1)

where µÃ is the membership function that maps X to the membership space M and µÃ(x) is the
grade of membership (also degree of compatibility or degree of truth) of x in Ã.

Definition 2. [6]. A fuzzy number is a fuzzy subset in the universe of discourse X that is both
convex and normal.

Definition 3. [6]. A triangular fuzzy number A′ can be defined by a triplet (a, b, c). The
membership function µA′(x) is defined as

µA′(x) =


0, x < a
x−a
b−a , a ≤ x ≤ b
x−c
b−c , b ≤ x ≤ c
0, x > c

. (2)
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Definition 4. [6]. Let A′1 = (a1, b1, c1) and A′2 = (a2, b2, c2) be two triangular fuzzy numbers,
then the vertex method is defined to calculate the distance between them as

d
(

A′1, A′2
)
=

√
1
3

[
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2
]
. (3)

Let us assume that a research trial has K respondents, then the importance of the
criteria and the assessment of alternatives (objects) with respect to each criterion can be
calculated as

x̃ij =
1
K

[
x̃1

ij + x̃2
ij + . . . + x̃K

ij

]
(4)

w̃j =
1
K

[
w̃1

j + w̃2
j + . . . + w̃K

j

]
(5)

where x̃K
ij =

(
aK

ij , bK
ij , cK

ij

)
and w̃K

j =
(

aK
(w)ij, bK

(w)ij, cK
(w)ij

)
are the assessment and impor-

tance weight of the K-th respondent in the form of triangular fuzzy numbers. A fuzzy
multi-criteria group decision making problem can be expressed in fuzzy decision matrix as

D̃ =


x̃11 x̃12 . . . x̃1n
x̃21 x̃22 . . . x̃2n
. . . . . . . . . . . .
x̃m1 x̃m2 . . . x̃mn

(i = 1, 2, . . . , m)(j = 1, 2, . . . , n) (6)

W̃ = [w̃1, w̃2, . . . , w̃n] (7)

where x̃ij =
(

aij, bij, cij

)
, w̃j =

(
a(w)j, b(w)j, c(w)j

)
.

Ranking of objects with the above-outlined assumptions is possible among others
through the application of the fuzzy TOPSIS.

Application of fuzzy TOPSIS method requires the accomplishment of the following
steps [6]:

Step 1. Construction of normalized fuzzy decision matrix R̃ =
[
r̃ij
]

m×n

R̃ =


r̃11 r̃12 . . . r̃1n
r̃21 r̃22 . . . r̃2n
. . . . . . . . . . . .
r̃m1 r̃m2 . . . r̃mn

. (8)

This stage requires an indication of benefit (B) and cost criteria (C). The normalization
formulas for benefit and cost criteria have the form, respectively:

r̃ij =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
j ∈ B (9)

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
j ∈ C (10)

where c+j = maxcij if j ∈ B and a−j = minaij if j ∈ C.

Step 2. Construction of weighted normalized fuzzy decision matrix Ṽ =
[
vij
]

m×n

Ṽ =


ṽ11 ṽ12 . . . ṽ1n
ṽ21 ṽ22 . . . ṽ2n
. . . . . . . . . . . .
ṽm1 ṽm2 . . . ṽmn

 (11)

where ṽij = r̃ij · w̃j.
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Step 3. Determining fuzzy positive ideal solution Ã+ and fuzzy negative ideal solution
Ã−, respectively:

Ã+ =
(
ṽ+1 , ṽ+2 , . . . , ṽ+n

)
(12)

Ã− =
(
ṽ−1 , ṽ−2 , . . . , ṽ−n

)
(13)

where ṽ+j = (1, 1, 1) and ṽ−j = (0, 0, 0).
Step 4. Calculation of the distance of each object from fuzzy positive ideal solution

Ã+ and fuzzy negative ideal solution Ã−, respectively:

d+i =
n

∑
j=1

d
(

ṽij, ṽ+j
)

(14)

d−i =
n

∑
j=1

d
(

ṽij, ṽ−j
)

(15)

where d is the distance between two triangular fuzzy numbers (3).
Step 5. Calculation of the closeness coefficient CCi for each object

CCi =
d−i

d+i + d−i
. (16)

CCi values are normalized in an interval < 0; 1 >. The smaller the distance of an
object is from a positive ideal solution, and the bigger from a negative ideal solution, the
closer the value of a closeness coefficient is to 1.

Step 6. Establishing the objects ranking. The best object owns the biggest value of a
closeness coefficient (16).

3. Materials and Methods
3.1. Ordinal Items and Threshold Values

The ordered categories on the hypothesized continuum are continuous. They are
separated on the continuum by successive points termed thresholds. This is analogous to
mapping a location of an object on a line partitioned into equal units to obtain a physical
measurement. Because in ordinal or interval data there is no fixed origin, there is also no
endpoint on the latent continuum. The simplest way to operationalize the threshold for
ordinal data point is the concept of latent response variable (LRV). LRV is regarded as a
better approximation of imperfect ordinal scales and are based on normal-ogive probit
transformation of original data. The correlations estimated on the basis of transformed ordi-
nal data are called polychoric correlations and are regarded as non-attenuated correlations
(in comparison to Pearson product-moment correlations) between ordinal items.

Two methods are used in calculation of polychoric correlation. The first method, the
joint maximum likelihood approach, estimates all model parameters—correlation and
the thresholds—at the same time. The second method, two-step ML estimation, first
estimates the thresholds from the one-way marginal frequencies, then estimates polychoric
correlation, conditional on these thresholds, via maximum likelihood [21]. The number of
thresholds is k-1 for k-category of ordinal Likert scale. Model for LRV linking five ordinal
categories to corresponding latent response variable is given as

y =


1 if y∗ ≤ τ1

2 if τ1 < y∗ ≤ τ2
3 if τ2 < y∗ ≤ τ3
4 if τ3 < y∗ ≤ τ4

5 if y∗ ≥ τ4

(17)

where y∗ is latent response variable, and τ is a threshold.
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Ordinal items and the threshold values are key concepts in psychometric measurement
models. Two basic types of measurement models can be distinguished: 1/Classical Test
Theory (CTT) and 2/Item Response Theory (IRT). CTT is based on confirmatory factor
analysis (as a latent variable model) of covariance or Pearson product-moment correlation
matrix of indicators, that represents the set of highly intercorrelated items measured on
interval scale. In case of ordinal scales the Pearson correlations are replaced by tetrachoric
(for binary data) or polychoric correlations (for ordinal data) that are estimated on the
basis of k-1 thresholds for k categories. Additionally, the set of items are characterized
by the equality of items discrimination (equal factor loadings) and equality of items
intercepts [22,23].

IRT models represents modern approach to psychometric measurement, that is related
to conditional probability of response to specific binary item or specific category of ordinal
item, given respondent ability (his/her position on latent trait continuum). The probability
is described by logistic or normal ogive characteristic curves for each item. Additionally,
the set of items can be characterized by non-equal item discrimination parameters and
non-equal item difficulty parameters that are related to the threshold values [22,24].

In IRT models, thresholds are defined as boundaries between adjacent scores and
serve as successive “steps” in an item response process. The concept of threshold is key
element in polytomous Likert-type scaling (like 5—point ordinal scale) where two types of
probabilities can be distinguished: (a) probability of passing a category boundary threshold
(item step), and (b) probability of responding in the next category of scale. So, thresholds
are also sometimes referred to as category boundaries, which separate the ordered response
categories. The definition and modelling of category boundaries depends on the type of
polytomous IRT model. In the family of graded response model (GRM) the cumulative
model is used, whereas in Rasch-type model (Polytomous Rasch Model (PRM), Partial
Credit Model (PCM), and Rating Scale Model (RSM)), the adjacent category model is
preferred [24]. Therefore, the concept of threshold and interpretation of location parameter
depends on applied model.

3.2. Polytomous Rasch Model

The polytomous Rasch model is generalization of dichotomous Rasch model for
binary data. When the model has the same format across all items and has the same sized
categories is referred to sometimes as the Partial Credit Model or Rating Scale Model with
constrained slopes parameters as 1. Model is given as [25]:

Pik(θ) =
exp ∑n

k=1(θ − δik)

1 + ∑mi
k=1 exp ∑n

k=1(θ − δik)
(18)

where δik is the item difficulty (location) parameter for k-th category of i-th item. The thresh-
old corresponds with the location on θ latent continuum at which it is equal probability of
respondent’s classification into adjacent categories, and to obtain one of two successive
scale scores (1 or 2, 2 or 3, etc.).

The PRM has two properties: first, combining adjacent categories by summing the
probabilities of responses in the categories, and in the related sense of summing their
frequencies to form a single category, can only be done under very restricted circumstances.
Second, the thresholds define the boundaries of the successive categories may take on
values that are not in their natural order.

Polytomous Rasch model is the most constrained model presented in the paper and
most popular IRT model concentrated on location (difficulty) parameters. For this model,
more detailed information is provided.

Item Characteristic Curves (ICC) show logistic (for extreme categories) and probit (for
middle categories) functions, based on conditional probabilities of responding to specific
item category (1–5), given position on latent trait continuum (θ score). The number of
curves equals the number of item categories. The higher Ability score, the lower probability
of choosing weakest category (1) and the higher probability of choosing the strongest
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category (5). The probabilities of middle categories (2, 3, 4) are described by probit curves,
where probability is rising to specific Ability score, and falling beyond this point. The
intersection of adjacent categories (1–2, 2–3, 3–4) indicates the equality of conditional
probability responding to adjacent categories. The intersection points are equal to threshold
values of Ability score. Item Operation Characteristic Curves (on right panels) represent
the logit models of upper boundary threshold probabilities. The number of curves equals
the number of thresholds. The inflection point on each curve indicates the equal probability
(0.5) of choosing one of adjacent category.

3.3. Rating Scale Model

RSM model is a version of PRM:

Pik(θ) =
exp ∑n

k=0(θ − (δi + τk))

∑m−1
i=0 exp ∑n

k=0(θ − (δi + τk))
(19)

where δi is the item difficulty (location) parameter, τk is the common category boundary
(threshold) parameter for all the items using a particular rating scale and θ is a latent trait
variable. Model assumes that all items are equally discriminating (constant discrimination
parameter = 1). As a consequence distances between thresholds are the same across
items, with the only difference among the item parameters being the location of the item
determined by the mean of the thresholds. In the result, thresholds for the categories differ
in RSM from each other by an amount that is constant across items.

3.4. Partial Credit Model and Generalized Partial Credit Model

The partial credit model (PCM) developed by G. N. Masters belongs to the Rasch
family of item response models [26]. E. Muraki’s extension of Generalized Partial Credit
Model (GPCM), includes additional discrimination parameter that removes GPCM from
the family of Rasch models [27]. In partial credit model each probability of choosing
given category (k) over adjacent (k-1) category of Likert scale is explained by dichotomous
response model. In PCM the conditional probability of choosing given category is given as

Pik(θ) =
exp ∑k

j=0(θ − δik)

∑m−1
i=0 exp ∑i

j=0(θ − δik)
(20)

where δik is the difficulty (location) parameter for category boundary (threshold) parameter
k of item i and θ is a latent trait variable. Item-category threshold parameter can be given
as an intersection point of Pik(θ) and Pi,k+1(θ).

The GPCM is two-parameter PCM model:

Pik(θ) =
exp ∑n

k=0 1.7ai(θ − δi + dk)

∑m−1
i=0 exp ∑i

j=0(θ − δi + dk)
(21)

where ai is a common slope (discrimination) parameter, δi is an item difficulty (location)
parameter and dk is the category boundary (threshold) parameter. The dk define how far
from an item location a threshold is.

3.5. Graded Response Model

GRM is a logistic model given by the equation:

Pik(θ) =
exp[ai(θ − δik)]

1 + exp[ai(θ − δik)]
− exp[ai(θ − δik+1)]

1 + exp[ai(θ − δik+1)]
(22)

where ai is the item discrimination parameter, and δik is the difficulty (location) parameter
for category boundary (threshold) parameter k of item i.
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3.6. Nominal Response Model

NRM is an IRT model for unordered multiple choice questions or “yes”, “no”, “don’t
know” type of questions. No implicit ordering of scale categories is required. The model is
given by the equation:

Pik(θ) =
exp(akθ + δk)

∑i exp(aiθ + δi)
(23)

where ak is the category slope parameter and δk is the category intercept parameter (at-
tractiveness of the k-th category, that helps to interpret the ordering of the categories).
Additionally, ∑mi

k=1 aik = 0 and ∑mi
k=1 δik = 0.

3.7. Method of Constructing Fuzzy Conversion Scales for the Fuzzy TOPSIS Method

The proposed method assumes the conversion of the measurement results in triangular
fuzzy numbers because they are most often used in the fuzzy TOPSIS. The conversion
method was divided into four stages, as shown in Figure 1.
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Stage 1. Evaluation of objects in terms of partial criteria using ordinal measurement scales.
Let us assume that a set of objects is assessed in terms of a complex phenomenon

characterized by partial criteria. Assessment of objects in terms of partial criteria are
obtained during a survey using a questionnaire. Each of the objects is assessed in terms
of partial criteria by the respondents using the same ordinal measurement scale with the
following categories: 1—very low (VL), 2—low (L), 3—medium (M), 4—high (H), 5—very
high (VH).

Stage 2. Calculation of the thresholds for each of the criteria.
The respondents’ assessments obtained in the first stage should be used to determine

the thresholds. Thresholds are estimated separately for each of the partial criteria. The
choice of the IRT model based on which the thresholds will be estimated up to the researcher
considers the assumptions and properties of individual models.

Stage 3. Conversion of the categories on the ordinal measurement scale to the triangu-
lar fuzzy numbers with the use of thresholds.

Conversion of the categories on the ordinal measurement scale to triangular fuzzy
numbers uses the threshold values estimated in step 2. The method of determining the
parameters of fuzzy numbers differs depending on the category’s position on the ordinal
measurement scale. The formulas for determining the parameters of triangular fuzzy
numbers for each category are presented in Table 1.

Table 1. Formulas for determining the parameters of triangular fuzzy numbers.

Category Parameters of Triangular Fuzzy Numbers
a b c

VL −4 −4 τi1
L τi1

τi1+τi2
2 τi2

M τi2
τi2+τi3

2 τi3
H τi3

τi3+τi4
2 τi4

VH τi4 4 4

The parameters of triangular fuzzy numbers should be estimated separately for each
of the partial criteria. It is easy to notice that some parameters of the triangular fuzzy
numbers that replace the extreme categories are arbitrarily set at the level of −4 and 4. This
procedure allowed for both the left and right limitation of the measurement scale. The
adopted values result from the fact that in IRT models, the hidden variable continuum
is often limited to the range <−4; 4>. It should also be emphasized that the parameters
of triangular fuzzy numbers can be scaled by a selected constant value set arbitrarily by
the researcher.

Stage 4. Conversion of the measurement results into triangular fuzzy numbers.
Each assessment of the object in terms of the respondents’ selected partial criterion is

transformed into a triangular fuzzy number. This procedure should be repeated for the
remaining criteria, remembering that triangular fuzzy numbers’ parameters may differ
even though they replace the same category on the ordinal scale. Given the assessments
in the form of triangular fuzzy numbers, calculate the mean score of the object for each
criterion according to arithmetic rules for triangular fuzzy numbers. The averaged scores
will also be in the form of triangular fuzzy numbers. The criteria values for each of the
objects calculated in this way can be used in the fuzzy TOPSIS method.

The research process using the proposed approach to the construction of fuzzy con-
version scales and the fuzzy TOPSIS method was summarized in the form of a flow
chart (Figure 2).
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4. Empirical Example

The method of constructing fuzzy conversion scales using IRT models for the fuzzy
TOPSIS is presented on the example of assessing the quality of professional life. The quality
of professional life was one of a larger survey on the quality of life of inhabitants of a
selected county in Poland. The study was conducted in 2017 in the form of individual inter-
views using a questionnaire. The selection of respondents for the study was proportional
strata sampling. The sample size was determined based on statistical data published by
Statistics Poland. The planned sample size was 1.047 respondents. One thousand fifty-four
correctly completed questionnaires were received. The maximum sampling error was 0.03.
The size of error indicates that the research results can be considered highly precise and
representative for the analyzed county. The assumed and obtained sample distribution by
place of residence is presented in Table 2.
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Table 2. The distribution of the research sample by place of residence.

Planned Sample Size Realized Sample Size

Maximum Sampling Error
Assumed = 3%

Maximum Sampling Error
Obtained = 3%

Total 1047 1054
Commune A 97 95
Commune B 107 110
Commune C 97 98
Commune D 242 283
Commune E 504 468

The aim of the study was to establish a ranking of five communes in terms of the
quality of professional life of their inhabitants. The quality of professional life as a complex
phenomenon has been characterized in terms of 12 criteria: C1—job security, C2—salary,
C3—promotion opportunities, C4—development opportunities, C5—chances of finding a
new comparable or better job, C6—relations with colleagues, C7—relations with superiors,
C8—understanding of the employer, C9—justice of the superior, C10—communication in
the workplace, C11—material working conditions, C12—the flexibility of working time. In
the evaluation of communes, in terms of the adopted criteria, an ordinal measurement
scale was used with the following categories: 1—very low (VL), 2—low (L), 3—medium
(M), 4—high (H), 5—very high (VH). The research did not consider answers such as
“don’t know”, “I have no opinion”; therefore, the final analysis included the opinions of
939 respondents. According to the methodology presented in Section 3.7, the measurement
results using the ordinal measurement scale are used to determine the thresholds. The
thresholds were established for each of the criteria. All IRT models described in Section 3
were used to estimate thresholds, which allowed for a comparative analysis of the obtained
results. The thresholds for the models are shown in Tables 3–16.

Table 3. Thresholds for the Polychoric Correlation Model (PM) (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.270 −1.110 −0.980 −1.280 −0.820 −1.970
2→3 −0.597 −0.352 −0.231 −0.529 0.032 −1.291
3→4 0.323 0.574 0.714 0.445 0.830 −0.430
4→5 1.310 1.560 1.560 1.480 1.730 0.620

Table 4. Thresholds for the PM (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −1.790 −1.640 −1.460 −2.100 −1.750 −1.120
2→3 −1.125 −0.985 −0.894 −1.317 −1.059 −0.552
3→4 −0.311 −0.126 −0.029 −0.314 0.087 0.397
4→5 0.780 0.860 0.980 0.770 1.060 1.310

Table 5. Thresholds for the Polytomous Rasch Model (PRM) (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.468 −1.356 −1.16 −1.599 −1.018 −2.549
2→3 −1.09 0.675 −0.523 −0.968 0.033 −1.991
3→4 0.424 0.808 1.102 0.625 1.103 −0.771
4→5 1.946 2.380 2.215 2.284 2.610 0.800
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Table 6. Thresholds for the PRM (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −2.268 −2.000 −1.589 −2.911 −2.225 −1.081
2→3 −1.707 −1.584 −1.545 −2.121 −1.764 −1.157
3→4 −0.651 −0.287 −0.145 −0.549 −0.244 0.598
4→5 1.114 1.175 1.384 1.088 1.632 1.868

Table 7. Thresholds for the Rating Scale Model (RSM) (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.463 −1.142 −0.986 −1.342 −0.724 −2.503
2→3 −0.927 −0.606 −0.450 −0.806 −0.188 −1.967
3→4 0.386 0.707 0.864 0.508 1.125 −0.653
4→5 1.839 2.160 2.316 1.960 2.578 0.799

Table 8. Thresholds for the RSM (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −2.284 −2.073 −1.911 −2.375 −2.020 −1.368
2→3 −1.748 −1.537 −1.376 −1.839 −1.484 −0.832
3→4 −0.435 −0.224 −0.062 −0.525 −0.171 0.481
4→5 1.018 1.229 1.391 0.927 1.282 1.934

Table 9. Thresholds for the Partial Credit Model (PCM) model (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.365 −1.258 −1.075 −1.484 −0.941 −2.377
2→3 −0.997 −0.613 −0.471 −0.883 0.041 −1.838
3→4 0.405 0.763 1.035 0.592 1.041 −0.702
4→5 1.830 2.239 2.091 2.147 2.461 0.761

Table 10. Thresholds for the PCM model (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −2.113 −1.863 −1.483 −2.711 −2.072 −1.009
2→3 −1.573 −1.458 −1.419 −1.955 −1.622 −1.056
3→4 −0.589 −0.254 −0.122 −0.498 −0.213 0.566
4→5 1.051 1.110 1.305 1.027 1.532 1.761

Table 11. Thresholds for the Generalized Partial Credit Model (GPCM) model (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.366 −1.283 −1.107 −1.583 −1.076 −2.317
2→3 −1.026 −0.661 −0.542 −1.045 0.084 −1.788
3→4 0.408 0.800 1.144 0.673 1.306 −0.686
4→5 1.865 2.351 2.238 2.434 3.086 0.747

Table 12. Thresholds for the GPCM model (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −1.916 −1.747 −1.455 −2.560 −2.026 −0.960
2→3 −1.320 −1.253 −1.120 −1.815 −1.577 −1.456
3→4 −0.444 −0.212 −0.086 −0.467 −0.210 0.730
4→5 0.887 0.996 1.108 0.970 1.495 2.131
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Table 13. Thresholds for the Graded Response Model (GRM) model (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.739 −1.648 −1.506 −2.036 −1.462 −2.798
2→3 −0.795 −0.523 −0.365 −0.820 0.049 −1.777
3→4 0.450 0.826 1.040 0.676 1.448 −0.575
4→5 1.842 2.380 2.435 2.410 3.247 0.838

Table 14. Thresholds for the GRM model (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −2.139 −2.000 −1.701 −2.916 −2.457 −1.839
2→3 −1.308 −1.168 −1.030 −1.766 −1.439 −0.942
3→4 −0.335 −0.129 −0.037 −0.422 −0.111 0.545
4→5 0.897 1.021 1.109 1.021 1.454 2.088

Table 15. Thresholds for the Nominal Response Model (NRM) model (for criteria C1–C6).

Thresholds C1 C2 C3 C4 C5 C6

1→2 −1.371 −1.559 −1.280 −1.533 −1.130 −2.374
2→3 −1.203 −0.973 −0.791 −1.416 −0.454 −2.505
3→4 −0.598 −0.318 −0.158 −0.635 0.038 −1.518
4→5 −0.096 0.389 0.539 0.197 0.891 −0.924

Table 16. Thresholds for the NRM model (for criteria C7–C12).

Thresholds C7 C8 C9 C10 C11 C12

1→2 −2.053 −1.855 −1.541 −2.707 −2.788 0.692
2→3 −1.628 −1.504 −1.370 −2.577 −2.059 −1.898
3→4 −1.136 −0.993 −0.779 −1.622 −1.220 −0.455
4→5 −0.732 −0.608 −0.357 −0.859 −0.472 0.438

Thresholds can be also graphically represented as characteristic curves. An example
of such curves for each item and operation characteristic curves obtained based on the
PRM is presented in Figures 3–14.
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Based on each item’s thresholds, the parameters of triangular fuzzy numbers corre-
sponding to the five points of the ordinal measurement scale were determined (in line
with stage 3 of the proposed methodology). The values of the estimated parameters are
presented in Tables 17–30.
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Table 17. Parameters of triangular fuzzy numbers estimated on the basis of the PM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.730 2.890 3.020 2.720 3.180 2.030

2—L
a 2.730 2.890 3.020 2.720 3.180 2.030
b 3.067 3.269 3.395 3.096 3.606 2.370
c 3.403 3.648 3.769 3.471 4.032 2.709

3—M
a 3.403 3.648 3.769 3.471 4.032 2.709
b 3.863 4.111 4.242 3.958 4.431 3.140
c 4.323 4.574 4.714 4.445 4.830 3.570

4—H
a 4.323 4.574 4.714 4.445 4.830 3.570
b 4.817 5.067 5.137 4.963 5.280 4.095
c 5.310 5.560 5.560 5.480 5.730 4.620

5—VH
a 5.310 5.560 5.560 5.480 5.730 4.620
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 18. Parameters of triangular fuzzy numbers estimated on the basis of the PM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.210 2.360 2.540 1.900 2.250 2.880

2—L
a 2.210 2.360 2.540 1.900 2.250 2.880
b 2.543 2.688 2.823 2.292 2.596 3.164
c 2.875 3.015 3.106 2.683 2.941 3.448

3—M
a 2.875 3.015 3.106 2.683 2.941 3.448
b 3.282 3.445 3.539 3.185 3.514 3.923
c 3.689 3.874 3.971 3.686 4.087 4.397

4—H
a 3.689 3.874 3.971 3.686 4.087 4.397
b 4.235 4.367 4.476 4.228 4.574 4.854
c 4.780 4.860 4.980 4.770 5.060 5.310

5—VH
a 4.780 4.860 4.980 4.770 5.060 5.310
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 19. Parameters of triangular fuzzy numbers estimated on the basis of the PRM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.532 2.644 2.840 2.401 2.982 1.451

2—L
a 2.532 2.644 2.840 2.401 2.982 1.451
b 2.721 3.660 3.159 2.717 3.508 1.730
c 2.910 4.675 3.477 3.032 4.033 2.009

3—M
a 2.910 4.675 3.477 3.032 4.033 2.009
b 3.667 4.742 4.290 3.829 4.568 2.619
c 4.424 4.808 5.102 4.625 5.103 3.229

4—H
a 4.424 4.808 5.102 4.625 5.103 3.229
b 5.185 5.594 5.659 5.455 5.857 4.015
c 5.946 6.380 6.215 6.284 6.610 4.800

5—VH
a 5.946 6.380 6.215 6.284 6.610 4.800
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000
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Table 20. Parameters of triangular fuzzy numbers estimated on the basis of the PRM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 1.732 2.00 2.411 1.089 1.775 2.919

2—L
a 1.732 2.00 2.411 1.089 1.775 2.919
b 2.013 2.208 2.433 1.484 2.006 2.881
c 2.293 2.416 2.455 1.879 2.236 2.843

3—M
a 2.293 2.416 2.455 1.879 2.236 2.843
b 2.821 3.065 3.155 2.665 2.996 3.721
c 3.349 3.713 3.855 3.451 3.756 4.598

4—H
a 3.349 3.713 3.855 3.451 3.756 4.598
b 4.232 4.444 4.620 4.270 4.694 5.233
c 5.114 5.175 5.384 5.088 5.632 5.868

5—VH
a 5.114 5.175 5.384 5.088 5.632 5.868
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 21. Parameters of triangular fuzzy numbers estimated on the basis of the RSM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.537 2.858 3.014 2.658 3.276 1.497

2—L
a 2.537 2.858 3.014 2.658 3.276 1.497
b 2.805 3.126 3.282 2.926 3.544 1.765
c 3.073 3.394 3.550 3.194 3.812 2.033

3—M
a 3.073 3.394 3.550 3.194 3.812 2.033
b 3.730 4.050 4.207 3.851 4.469 2.690
c 4.386 4.707 4.864 4.508 5.125 3.347

4—H
a 4.386 4.707 4.864 4.508 5.125 3.347
b 5.113 5.433 5.590 5.234 5.852 4.073
c 5.839 6.160 6.316 5.960 6.578 4.799

5—VH
a 5.839 6.160 6.316 5.960 6.578 4.799
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 22. Parameters of triangular fuzzy numbers estimated on the basis of the RSM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 1.716 1.927 2.089 1.625 1.980 2.632

2—L
a 1.716 1.927 2.089 1.625 1.980 2.632
b 1.984 2.195 2.357 1.893 2.248 2.900
c 2.252 2.463 2.624 2.161 2.516 3.168

3—M
a 2.252 2.463 2.624 2.161 2.516 3.168
b 2.908 3.119 3.281 2.818 3.172 3.825
c 3.565 3.776 3.938 3.475 3.829 4.481

4—H
a 3.565 3.776 3.938 3.475 3.829 4.481
b 4.291 4.502 4.664 4.201 4.555 5.208
c 5.018 5.229 5.391 4.927 5.282 5.934

5—VH
a 5.018 5.229 5.391 4.927 5.282 5.934
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000
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Table 23. Parameters of triangular fuzzy numbers estimated on the basis of the PCM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.635 2.742 2.925 2.516 3.059 1.623

2—L
a 2.635 2.742 2.925 2.516 3.059 1.623
b 2.819 3.065 3.227 2.816 3.550 1.893
c 3.003 3.387 3.529 3.117 4.041 2.162

3—M
a 3.003 3.387 3.529 3.117 4.041 2.162
b 3.704 4.075 4.282 3.854 4.541 2.730
c 4.405 4.763 5.035 4.592 5.041 3.298

4—H
a 4.405 4.763 5.035 4.592 5.041 3.298
b 5.118 5.501 5.563 5.369 5.751 4.029
c 5.830 6.239 6.091 6.147 6.461 4.761

5—VH
a 5.830 6.239 6.091 6.147 6.461 4.761
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 24. Parameters of triangular fuzzy numbers estimated on the basis of the PCM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 1.887 2.137 2.517 1.289 1.928 2.991

2—L
a 1.887 2.137 2.517 1.289 1.928 2.991
b 2.157 2.340 2.549 1.667 2.153 2.968
c 2.427 2.542 2.581 2.045 2.378 2.944

3—M
a 2.427 2.542 2.581 2.045 2.378 2.944
b 2.919 3.144 3.230 2.774 3.082 3.755
c 3.411 3.746 3.878 3.502 3.787 4.566

4—H
a 3.411 3.746 3.878 3.502 3.787 4.566
b 4.231 4.428 4.592 4.265 4.660 5.163
c 5.051 5.110 5.305 5.027 5.532 5.761

5—VH
a 5.051 5.110 5.305 5.027 5.532 5.761
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 25. Parameters of triangular fuzzy numbers estimated on the basis of the GPCM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.634 2.717 2.893 2.417 2.924 1.683

2—L
a 2.634 2.717 2.893 2.417 2.924 1.683
b 2.804 3.028 3.176 2.686 3.504 1.948
c 2.974 3.339 3.458 2.955 4.084 2.212

3—M
a 2.974 3.339 3.458 2.955 4.084 2.212
b 3.691 4.070 4.301 3.814 4.695 2.763
c 4.408 4.800 5.144 4.673 5.306 3.314

4—H
a 4.408 4.800 5.144 4.673 5.306 3.314
b 5.137 5.576 5.691 5.553 6.196 4.030
c 5.865 6.351 6.238 6.434 7.086 4.747

5—VH
a 5.865 6.351 6.238 6.434 7.086 4.747
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000



Symmetry 2021, 13, 223 21 of 28

Table 26. Parameters of triangular fuzzy numbers estimated on the basis of the GPCM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.084 2.253 2.545 1.440 1.974 3.040

2—L
a 2.084 2.253 2.545 1.440 1.974 3.040
b 2.382 2.500 2.713 1.812 2.198 2.792
c 2.680 2.747 2.880 2.185 2.423 2.544

3—M
a 2.680 2.747 2.880 2.185 2.423 2.544
b 3.118 3.268 3.397 2.859 3.107 3.637
c 3.556 3.788 3.914 3.533 3.790 4.730

4—H
a 3.556 3.788 3.914 3.533 3.790 4.730
b 4.221 4.392 4.511 4.251 4.643 5.430
c 4.887 4.996 5.108 4.970 5.495 6.131

5—VH
a 4.887 4.996 5.108 4.970 5.495 6.131
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 27. Parameters of triangular fuzzy numbers estimated on the basis of the NRM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.629 2.441 2.720 2.467 2.870 1.626

2—L
a 2.629 2.441 2.720 2.467 2.870 1.626
b 2.713 2.734 2.964 2.526 3.208 1.560
c 2.797 3.027 3.209 2.584 3.546 1.495

3—M
a 2.797 3.027 3.209 2.584 3.546 1.495
b 3.099 3.355 3.526 2.975 3.792 1.988
c 3.402 3.682 3.842 3.365 4.038 2.482

4—H
a 3.402 3.682 3.842 3.365 4.038 2.482
b 3.653 4.035 4.191 3.781 4.465 2.779
c 3.904 4.389 4.539 4.197 4.891 3.076

5—VH
a 3.904 4.389 4.539 4.197 4.891 3.076
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 28. Parameters of triangular fuzzy numbers estimated on the basis of the NRM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 1.947 2.145 2.459 1.293 1.212 4.692

2—L
a 1.947 2.145 2.459 1.293 1.212 4.692
b 2.160 2.321 2.545 1.358 1.576 3.397
c 2.372 2.496 2.630 1.423 1.941 2.102

3—M
a 2.372 2.496 2.630 1.423 1.941 2.102
b 2.618 2.751 2.926 1.900 2.360 2.824
c 2.864 3.007 3.221 2.378 2.780 3.545

4—H
a 2.864 3.007 3.221 2.378 2.780 3.545
b 3.066 3.199 3.432 2.760 3.154 3.992
c 3.268 3.392 3.643 3.141 3.528 4.438

5—VH
a 3.268 3.392 3.643 3.141 3.528 4.438
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000
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Table 29. Parameters of triangular fuzzy numbers estimated on the basis of the GRM (for criteria
C1–C6).

Category Fuzzy Number
Parameters

Criteria
C1 C2 C3 C4 C5 C6

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 2.261 2.352 2.494 1.964 2.538 1.202

2—L
a 2.261 2.352 2.494 1.964 2.538 1.202
b 2.733 2.914 3.065 2.572 3.293 1.713
c 3.205 3.477 3.635 3.180 4.049 2.223

3—M
a 3.205 3.477 3.635 3.180 4.049 2.223
b 3.827 4.151 4.338 3.928 4.749 2.824
c 4.450 4.826 5.040 4.676 5.448 3.425

4—H
a 4.450 4.826 5.040 4.676 5.448 3.425
b 5.146 5.603 5.737 5.543 6.348 4.132
c 5.842 6.380 6.435 6.410 7.247 4.838

5—VH
a 5.842 6.380 6.435 6.410 7.247 4.838
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

Table 30. Parameters of triangular fuzzy numbers estimated on the basis of the GRM (for criteria
C7–C12).

Category Fuzzy Number
Parameters

Criteria
C7 C8 C9 C10 C11 C12

1—VL
a 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000
c 1.861 2.000 2.299 1.084 1.543 2.161

2—L
a 1.861 2.000 2.299 1.084 1.543 2.161
b 2.277 2.416 2.634 1.659 2.052 2.609
c 2.692 2.832 2.970 2.234 2.561 3.058

3—M
a 2.692 2.832 2.970 2.234 2.561 3.058
b 3.179 3.352 3.467 2.906 3.225 3.801
c 3.665 3.871 3.963 3.578 3.889 4.545

4—H
a 3.665 3.871 3.963 3.578 3.889 4.545
b 4.281 4.446 4.536 4.300 4.671 5.316
c 4.897 5.021 5.109 5.021 5.454 6.088

5—VH
a 4.897 5.021 5.109 5.021 5.454 6.088
b 8.000 8.000 8.000 8.000 8.000 8.000
c 8.000 8.000 8.000 8.000 8.000 8.000

The obtained triangular fuzzy numbers can also be presented graphically (as in
Figure 1). Due to the large number of fuzzy numbers obtained, only the fuzzy numbers
estimated using the PRM are presented as an example (Figure 15).

The ordinal measurement scale with five categories used to assess five communes
against 12 criteria is replaced with the corresponding fuzzy conversion scales. It means
that triangular fuzzy numbers now represent the categories on the ordinal scale. Suppose
for each commune we average the respondents’ assessment for each criterion (according
to the rules of arithmetic for triangular fuzzy numbers). In that case, we obtain the i-th
commune’s assessment in terms of the j-th criterion corresponding to Equation (4). These
values can now be summarized in the fuzzy decision matrix (6) and proceed to the first
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stage, fuzzy TOPSIS. A fragment of such a matrix with assessments estimated based on the
fuzzy conversion scale obtained for the PRM is presented below:

D̃ =


(3.078, 3.758, 4.592) (3.425, 3.984, 4.903) . . . (3.161, 3.843, 4.687)
(3.357, 4.075, 4.743) (4.064, 4.545, 5.111) . . . (3.290, 3.959, 4.769)

. . . . . . . . . . . .
(2.594, 3.164, 4.263) (2.897, 3.348, 4.500) . . . (2.779, 3.294, 4.165)

.
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Figure 15. Triangular fuzzy numbers for criteria C1–C12.

In constructing the normalized matrix (8), the normalization Equation (9) was used
because all criteria were the benefit criteria. Equal weights were assumed for all criteria.
The positive and negative solutions were established by Equations (12) and (13). The
values of the closeness coefficient (16) for each of the objects, together with the place in the
ranking, are presented in Table 31.
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Table 31. The values of the fuzzy Technique for Order of Preference by Similarity to Ideal Solu-
tion (TOPSIS).

Communes
Fuzzy TOPSIS Rating

PM PRM RSM PCM GPCM GRM NRM

A 0.626 0.604 0.604 0.607 0.607 0.606 0.611 4
B 0.644 0.623 0.625 0.624 0.624 0.625 0.623 3
C 0.667 0.648 0.651 0.650 0.649 0.651 0.645 2
D 0.689 0.674 0.676 0.675 0.674 0.676 0.670 1
E 0.600 0.578 0.582 0.581 0.580 0.578 0.589 5

5. Discussion

In the literature on the subject, there are two main approaches to analyzing ordinal
data with the use of fuzzy numbers. The first one is the construction of fuzzy scales.
In this case, the respondents express their opinions in the form of fuzzy numbers, the
parameters of which they set themselves. In the second approach, the ordinal scale’s
measurement results are transformed into fuzzy conversion scales. Each point on the fuzzy
conversion scale is represented by a fuzzy number (most often a triangular fuzzy number).
The parameters of fuzzy numbers are set arbitrarily by researchers. According to the
authors’ knowledge, no fuzzy scales have been used so far in combination with the fuzzy
TOPSIS. Therefore, the approach proposed in the article based on the construction of fuzzy
conversion scales with the use of IRT models was compared with fuzzy conversion scales
subjectively determined by researchers (described in the Section 1). For the comparative
analysis, fuzzy scales (marked with symbols CS1–CS5) were selected, the parameters of
which are presented in Table 32.

Table 32. Fuzzy conversion scales for comparative analysis.

Fuzzy Conversion Scale CS1 [12] Fuzzy Conversion Scale CS2 [10]

Triangular fuzzy number Triangular fuzzy number
Category a b c Category a b c
Terrible 0.1 0.1 0.2 Very low 0 0 0.2

Bad 0.2 0.3 0.4 Low 0 0.2 0.4
Normal 0.4 0.5 0.6 Fair 0.3 0.5 0.7
Good 0.6 0.7 0.8 High 0.6 0.8 1

Superb 0.8 0.9 0.9 Very high 0.8 1 1

Fuzzy conversion scale CS3 [14] Fuzzy conversion scale CS4 [16]
Category a b c Category a b c
Very poor 0 0 1 Very poor 0 1 3

Poor 0 1 3 Poor 1 3 5
Fair 3 5 7 Fair 3 5 7

Good 7 9 10 Good 5 7 9
Very good 9 10 10 Very good 7 9 10

Fuzzy conversion scale CS5 [17]
Category a b c
Very low 1 1 3

Low 1 3 5
Medium 3 5 7

High 5 7 9
Very high 7 9 9

In addition, the obtained results were compared with the approach treating the ordinal
measurement scale used in the empirical study as an interval scale (marked as S). It means
that the ratings of individual criteria were expressed as arithmetic means of the respondents’
ratings, and then the classic TOPSIS method was used.
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A comparative analysis was carried out for the two most common approaches in
determining reference objects’ coordinates. In the first case, the coordinates are determined
by the work [6], that is (1,1,1) for the benefit criteria and (0,0,0) for the cost criteria. In the
second case, the coordinates are determined based on the maximum values for the benefit
criteria and the minimum values for the cost criteria [2]. The closeness coefficient values’
distributions are presented in Figures 16 and 17.
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In the case of reference objects determined according to the study [6], the closeness
coefficient values (16) have significantly higher values for the S scale than for the other
scales. The S scale’s closeness coefficient values also have a greater variation range than the
other scales. The closeness coefficient values for the remaining scales reach relatively lower
values. There is a minimal differentiation of median values among them. The CS3 scale
has the largest range of variability. For most of the fuzzy conversion scales, the closeness
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coefficient values’ symmetric distribution was observed. In conjunction with the classic
TOPSIS method, the S scale resulted in obtaining an asymmetric distribution of the values
of the closeness coefficient with a right-skewed distribution (at an average level).

Establishing the reference objects’ coordinates based on the maximum and minimum
values (depending on the nature of the criteria) had a strong influence on the results of
the fuzzy TOPSIS. The basic difference is the greater ranges of variation in the closeness
coefficients’ values for fuzzy conversion scales (especially for those obtained based on
IRT models). Another method of determining the coordinates of reference objects clearly
improved the discriminant power of the fuzzy conversion scales proposed in the article.
The exception was the results of the fuzzy TOPSIS for the scale obtained with the use of
the NRM model. In this case, the range of variability of the closeness coefficient value was
smaller than in other scales. The median value was also lower, as was the coefficient’s value
for the highest-rated object. The change in the reference objects’ coordinates also affected
the fuzzy TOPSIS results for the CS1–CS5 fuzzy conversion scales. The range of variability
of the values of the closeness coefficients for these scales also increased. However, it
is smaller than in scales based on IRT models, which proves their lower discriminant
abilities. In this case, the lowest-rated objects have higher values of closeness coefficients
than in scales built on IRT models. The values of the closeness coefficient for the S scale
with the classic TOPSIS method responded most strongly to the change in coordinates of
the reference objects. The range of variability of the closeness coefficient has significantly
increased (the lowest-rated objects now have significantly lower values than in the previous
case). Other coordinates of reference objects influenced asymmetry in the distributions of
the closeness coefficient values for some fuzzy conversion scales. For the scales based on the
RSM, PCM, GPCM, and GRM models, a small right-skewed distribution of the closeness
coefficient values was observed. Moderate right-skewed distribution was observed for the
S and NRM scales. In other cases, we can assume that the distributions were symmetric.

The choice of the fuzzy conversion scale in the analyzed study did not affect com-
munes’ position in the rankings. There were also no differences for the S scale combined
with the classic TOPSIS method. However, the choice of the fuzzy conversion scale im-
pacts the values of the closeness coefficients obtained using the fuzzy TOPSIS. It is crucial,
especially in multidimensional comparative analysis. The closeness coefficient is treated
as a synthetic variable, and its values are used in the subsequent stages of multivariate
data analysis.

Most of the proposed fuzzy conversion scales (except the NRM scale) are characterized
by symmetric or very close to symmetric distribution, regardless of how the reference
objects’ coordinates are determined. Therefore, it can be assumed that the proposed
approach has a similar discriminatory power among both low and high rated objects.
Because of the symmetry of the distributions of the closeness coefficient values and the
relatively high discriminant power, it is recommended to use fuzzy conversion scales
constructed using PRM, RSM, or PCM models for the fuzzy TOPSIS.

6. Conclusions

The paper presents a new method of constructing fuzzy conversion scales for the
fuzzy TOPSIS based on IRT models. The proposed approach allows determining the
different spread of triangular fuzzy numbers that replace the ordinal scale’s points. It is
closer to reality because the respondents perceive and interpret the points of ordinal scales
differently, which means that the assumption that the distance between points of the scale
is equal is most often not met. Moreover, it should be emphasized that the approach based
on IRT models enables the construction of an individual fuzzy conversion scale for each of
the criteria. That is a significant difference from the literature approach, where one scale is
used for all criteria.

The proposed method is one way of transforming the data into fuzzy TOPSIS but
can also be used in conjunction with other MCDM methods. Subsequent research should
focus on at least two aspects. The first one concerns the fuzzy TOPSIS and checking how



Symmetry 2021, 13, 223 27 of 28

the use of scoring functions at the stage of constructing the weighted decision matrix will
affect the closeness coefficient values and positions in the ranking. The use of scoring
functions simplifies the analysis but may also cause a certain loss of information. Another
interesting direction of research using the proposed approach may be the comparison of
fuzzy conversion scales with fuzzy scales and the assessment of the impact on the results
of the fuzzy TOPSIS. In the case of fuzzy scales, the assessment of the object in terms of the
criterion is determined directly during the survey in the form of a triangular fuzzy number
with parameters determined by each of the respondents. The results of the assessment
obtained in this way should be more precise. At the same time, it is a more time-consuming
method and relatively little known to respondents who may have problems with the correct
completion of the questionnaire. Therefore, obtaining similar measurement results using
the fuzzy TOPSIS would additionally emphasize the usefulness of the approach proposed
in the article.
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