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Abstract: Programming is a vital skill in computer science and engineering-related disciplines.
However, developing source code is an error-prone task. Logical errors in code are particularly hard
to identify for both students and professionals, and a single error is unexpected to end-users. At
present, conventional compilers have difficulty identifying many of the errors (especially logical
errors) that can occur in code. To mitigate this problem, we propose a language model for evaluating
source codes using a bidirectional long short-term memory (BiLSTM) neural network. We trained
the BiLSTM model with a large number of source codes with tuning various hyperparameters. We
then used the model to evaluate incorrect code and assessed the model’s performance in three
principal areas: source code error detection, suggestions for incorrect code repair, and erroneous
code classification. Experimental results showed that the proposed BiLSTM model achieved 50.88%
correctness in identifying errors and providing suggestions. Moreover, the model achieved an F-
score of approximately 97%, outperforming other state-of-the-art models (recurrent neural networks
(RNNs) and long short-term memory (LSTM)).

Keywords: source code assessment; neural network; bidirectional LSTM; software engineering; error
detection; online judge; code repair; programming education

1. Introduction

Programming is among the most critical skills in the field of computing and software
engineering. As a consequence, programming education has received an ever-increasing
level of attention. Many educational institutions (universities, colleges, and professional
schools) offer extensive programming education options to enhance the programming
skills of their students. Indeed, programming has become recognized as a core literacy [1].
Programming skills are developed primarily through repetitive practice, and many uni-
versities [2–5] have created their own programming learning platforms to facilitate such
practice by their students. These platforms are often used for programming competitions
and serve as automated assessment tools for programming courses [6].

Novice programmers tend to have difficulty developing and debugging source code
due to the presence of errors of various types (especially logical errors) and the insufficiency
of conventional compilers to detect these errors [7,8].

Example 1. Consider a simple program that takes an integer input n from the keyboard and
generates an output sum s that repetitively adds integers from 1 through n. The solution code is
written in C programming language to implement the procedure and is compiled by a conventional
compiler. After compiling, the user inputs n = 6 and the program correctly produces sum s = 21 as
the output; similarly, input n = 7 produces an output sum s = 28.
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#include <stdio.h>
int main(){

int j, l, totalsum = 0;
printf(“Give a number: “);
scanf(“%d”, &l);
for (j = 1; j < = l; j++){

totalsum = totalsum + j;
}
printf(“Total sum of 1 to %d is: %d\n”, l, totalsum);
return (0);

}
Now consider the code below in which a novice programmer has made a mistake

(a small logic error) but the compiler executes the program normally and generates out-
put, which, in this case, is incorrect. Specifically, the program has taken input n = 6
and produced output sum s = 15; similarly, input n = 7 produces output sum s = 21.

#include <stdio.h>
int main(){

int j, l, totalsum = 0;
printf(“Give a number: “);
scanf(“%d”, &l);
for (j = 1; j < l; j++){

Totalsum = totalsum + j;
}
printf(“Total sum of 1 to %d is: %d\n”, l, totalsum);
return (0);

}
No compiler has the ability to detect the coding error here. In more complex examples,

such logic errors can be difficult to resolve. Environment-dependent logic errors, such as
forgetting to include “= 0” for totalsum in the above example, are not uncommon, and even
experienced programmers can make errors in source code [9]. It is widely accepted that
many known and unknown errors go unrecognized by conventional compilers, which
means that programmers often spend valuable time identifying and fixing these errors.
To help programmers, especially novice programmers, deal with such source code er-
rors quickly and efficiently, research seeking to shed light on the issue is being actively
conducted in programming education [10,11].

A variety of source code and software engineering methods have been proposed, such
as source code classification [12,13], code clone detection [14,15], defect prediction [16],
program repair [17,18], and code completion [19,20]. Recently, natural language processing
(NLP) has been used in a number of domains, including speech recognition, language
processing, and machine translation. The most commonly used language models, including
bi-gram, GloVe [21], tri-gram, and skip-gram, are examples of NLP-based language models.
However, while these models may be useful for relatively short, simple codes, they are
considerably less effective for long, complex codes. Today, deep neural network models
are being used for language modeling due to their ability to consider long input sequences,
and deep neural network-based language models are being developed for source code bug
detection, logic error detection, and code completion [20,22–25]. Recurrent neural networks
(RNNs) have been used but are less effective due to gradient vanishing or exploding [26].
Long short-term memory (LSTM) has overcome this problem.

LSTM neural networks consider previous input sequences for prediction or output.
However, the functions, classes, methods, and variables of a source code may depend on
both previous and subsequent code sections or lines. In such cases, LSTM may not produce
optimal results. To fill this gap, we propose a bidirectional LSTM (hereafter BiLSTM)
language model to evaluate and repair source codes. A BiLSTM neural network can
combine both past and future code sequences to produce output [27]. In constructing and
applying our model, we first perform a series of pre-processing tasks on the source code,
then encode the code with a sequence of IDs. Next, we train the BiLSTM neural network
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using the encoded source codes. Finally, the trained BiLSTM model is used for source code
evaluation and repair. Our proposed model can be used for different systems (i.e., online
judge type, or program/software development where specifications and input/output
are well defined) where problems (questions), submission forms (editors), and automatic
assessments are involved. We plan to use the proposed model for an intelligent coding
environment (ICE) [28] via API (Application Programming Interface). ICE is one of the
examples of many services. On the other hand, there are many powerful and intelligent
IDEs (i.e., grammatical support) available, but our model (which can be applied for online
judge type systems) can provide much smarter feedback by identifying logical errors than
conventional IDEs.

The main contributions of our work are summarized below:

• The proposed BiLSTM language model for code evaluation and repair can effectively
detect errors (including logical errors) and suggest corrections for incorrect code.

• Application of the proposed model to real-world solution codes collected from the
Aizu Online Judge (AOJ) system produced experimental results that indicate superior
performance in comparison to other approaches.

• The BiLSTM model can be helpful to students, programmers (especially novice pro-
grammers), and professionals, who often struggle to resolve code errors.

• The model accelerates the code evaluation process.
• The proposed model can be used for different real-world programming learning and

software engineering related systems and services.

The remainder of the article is organized as follows: Section 2 presents related
works, Section 3 describes the approach, Section 4 presents experimental results,
Section 5 points out limitations of the model, and Section 6 offers conclusions and
suggestions for future development.

2. Related Works

The wide range of application domains and the functionality of deep neural networks
make them powerful and appealing. Recently, machine learning (ML) techniques have
been used to solve complex programming-related problems. Accordingly, researchers have
begun to focus on the development and application of deep neural network-based models
in programming education and software engineering.

In Reference [7], logic errors (LEs) are a type of error that persists after compilation,
whereas typical compilers can only detect syntax and semantic errors in codes. This
paper proposed a practical approach to identify and discover logic errors in codes for
object-oriented-based environments (i.e., C# .Net Framework). Their proposed Object
Behavior Environment (OBEnvironment) can help programmers to avoid logical errors
based on predefined behaviors by using Alsing, Xceed, and Mind Fusion Components. This
approach is not similar to our proposed BiLSTM model, as their model is developed for the
C# programming language in the .Net framework. Al-Ashwal et al. [8] introduced a CASE
(computer-aided software engineering) tool to identify logical errors in Java programs
using both dynamic and static methods. Programmers faced difficulties in identifying
logical errors in the codes during testing; sometimes it is necessary to manually check the
whole code, which also takes a large amount of time, effort, and cost. They used PMD
and Junit tools to identify logical errors on the basis of a list of some common logic errors
related to Java. This study is only effective in identifying logical errors in Java programs
but will not be effective in other programming languages.

In article [29], an automated logical error detection technique is proposed for func-
tional programming assignments. A large amount of manual and hand-made efforts are
required to identify logical errors in test cases. This proposed technique used a refer-
ence solution for each assignment (written in OCaml programming language) of students
to create a counter-example that contains all the semantic differences between the two
programs. This method identified 88 more logical errors that were not identified by the
mature test cases. Moreover, this technique can be effective for automatic code repair. The
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disadvantage of this method is that a reference program is needed to identify logical errors
for each incorrect code. In [30], the authors studied a large number of research papers on
programming languages and natural languages that were implemented using probabilistic
models. They also described how researchers adapted these models to various application
domains. Raychev et al. [19] addressed code completion by adopting an n-gram language
model and RNN. Their model was quick and effective in code completion tasks. Allamanis
et al. [31] proposed a neural stochastic language model to suggest methods and class
names in source codes. The model analyzed the meaning of code tokens before making
its suggestions and produced notable success in performing method, class, and variable
naming tasks.

In article [32], the authors proposed a model for predicting defective regions in source
codes on the basis of the code’s semantics. The proposed deep belief network (DBN)
was trained to learn the semantic features of the code using token vectors derived from
the code’s abstract syntax tree (AST), as every source code contains method, class, and
variable names that provide important information. On the basis of this semantic meaning,
Pradel et al. [33] introduced a name-based bug detection model for codes.

Song et al. [34] proposed a bidirectional LSTM model to detect malicious JavaScript.
In order to obtain semantic information from the code, the authors first constructed a
program dependency graph (PDG) for generating semantic slices. The PDG stores semantic
information that is later used to create vectors. The approach was shown to have 97.71%
accuracy, with an F1-score of 98.29%. In articles [22,24], the authors proposed an LSTM-
based model for source code bug detection, code completion, and classification. Both
these methods were used to develop the programming skills of novice programmers.
Experimental results, obtained by tuning the various hyper parameters and settings of
the network, showed that both models achieved better results for bug detection and code
completion in comparison with other related models. In [20,23], the authors proposed
error detection, logic error detection, and the classification of source codes on the basis
of an LSTM model. Both approaches used an attention mechanism that enhanced model
scalability. On the basis of various performance scales, both models achieved significant
success compared to more sophisticated models. As noted earlier, however, an LSTM-based
model considers only previous input sequences for prediction but is unable to consider
future sequences. The proposed BiLSTM model has the ability to consider both past and
future sequences for output prediction.

In brief, there have been a number of novel and effective neural network and prob-
abilistic models proposed by researchers to solve problems related to source codes. The
proposed BiLSTM model is unlike other models in that it considers both the previous and
subsequent context of codes to detect errors and offer suggestions that enable programmers
and professionals to make the needed repairs efficiently.

3. Proposed Approach

The model that we propose is a language model using a BiLSTM neural network.
Figure 1 shows the workflow of the model, proceeding from source code collection to code
evaluation by the trained BiLSTM model.
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3.1. BiLSTM Model Architecture

Let I = {i1, i2, i3, . . . . . . . . . , it} be the set of encoded IDs of source codes. An RNN
then executes for each encoded ID it for t = 1 to n. The output vector of RNN yt can be
expressed by the following equations:

ht = tanh(Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)

where ht is the hidden state output, W is a weight matrix (Wxh is a weight connecting input
(x) to hidden layer (h)), b is a bias vector, and tanh is an activation function of the hidden
layer. Equation (1) is used to calculate the hidden state output, where the hidden state
receives the results of the previous state.

However, due to the problem of gradient vanishing/exploding [26], not all input se-
quences are used effectively in an RNN. To avoid the problem and produce a better result,
the RNN is extended to LSTM. Conceptually, an LSTM network is similar to an RNN, but
the hidden layer updating process is replaced by a special unit called a memory cell. LSTM
is implemented by applying the following equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(4)

ct = ftct−1 + ittan h(Wxcxt + Whcht−1 + bc) (5)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (6)

ht = ottan h(ct) (7)

where σ is a sigmoid function; c, f, i, and o are the cell state, forget gate, input, and output,
respectively; and all b are biases. However, there is still a shortcoming in LSTM insofar
as it considers only the previous context of the input but cannot consider any future
(i.e., subsequent) context.

To overcome this limitation, we adopted the BiLSTM model [35], which enables us
to consider both the past and future context of source codes, as shown in Figure 2. Here,
there are two distinct hidden layers, called the forward hidden layer and backward hidden
layer. The forward hidden layer h f

t considers the input in ascending order, i.e., t = 1, 2, 3,
..., T. On the other hand, the backward hidden layer hb

t considers the input in descending
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order, i.e., t = T, ...,3,2,1. Finally, h f
t and hb

t are combined to generate output yt. The BiLSTM
model is implemented with the following equations:

h f
t = tan h

(
W f

xhxt + W f
hhh f

t−1 + b f
h

)
(8)

hb
t = tan h

(
Wb

xhxt + Wb
hhhb

t+1 + bb
h

)
(9)

yt = W f
hyh f

t + Wb
hyhb

t + by (10)
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The training and evaluation processes of the proposed model are shown in Figure 3.
The bidirectional LSTM network is used as the core processing unit for training and code
evaluation. The figure shows the typical input/output style of the model.
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3.2. Data Collection and Preprocessing

We collected source codes (written in the C programming language) from the Aizu
Online Judge (AOJ) system [5,36]. All unnecessary elements (such as comments, new tabs,
blank spaces, new line) were removed from codes.

We considered each keyword, token, variable, number, character, special character,
function, and class of the source code as a simple word, then encoded the words with IDs
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according to Table 1. This process is called word sequencing and encoding, as shown in
Figure 4. Finally, we fed the encoded IDs into the BiLSTM neural network for training.
Ultimately, the trained BiLSTM model is applied to detect errors and suggest repairs for
any incorrect code that is detected.

Table 1. List of IDs for codes encoding [22].

Name of the Words IDs

A–Z 96–121
A–z 127–152

!, ?,_, “, #, $, %, &, ‘, (,), *, +, -, ., / 63–79
:, ;, <, =, >, @ 90–95

[, \, ], ˆ 122–125
{, |, }, ~ 153–156

Keywords of C programming language 30–61
Functions 0–29
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4. Experimental Results
4.1. Data and Experimental Setup

A series of experiments based on the source codes collected from AOJ was conducted
using greatest common divider (GCD) and insertion sort (IS) problem codes. A total of 2482
codes were included in the experiments: 90% for model training, 5% for model validation,
and 5% for testing. The average length or number of lines in the GCD and IS solution codes
were 18.9 and 30.91, respectively. Moreover, the average sizes of GCD and IS solution codes
were 262.45 and 532.28 bytes, respectively. The difficulty or complexity level of solution
codes was moderate. To balance the evaluation of the experimental results, we selected an
equal number of correct (50%) and incorrect (50%) source codes from each type of problem
(GCD and IS). The nature of the error was heterogeneous in the incorrect source codes. We
did not select similar or common error typed source codes for training, validation, and
testing. Instead, we randomly selected a variety of faulty source codes. To obtain the best
results, we tuned the network configurations using hidden neurons of different sizes (e.g.,
100, 200, 300, and 400) for the BiLSTM and other models. Training data were saved as .npz
format for each type of hidden neuron (200, 300, 400, etc.). Similarly, for the output (error
identification and providing suggestions), the model used the same number of hidden
neurons. A value of 0.50 was used for the dropout [37] layers to avoid network overfitting.
The Adam optimization algorithm [38] was adopted during model training. Particularly in
deep learning, Adam optimizer is effectively used for the purpose of model learning. It
balances model parameters and loss functions to efficiently update network weights.

Our proposed model is a sequence-to-sequence language model that predicts next
words in incorrect codes on the basis of probability. The Softmax activation layer (as
defined in Equation (11)) is used to transform the output vector to probability where
Softmax takes vector Z = [z1, z2, z3, . . . , zn] and produces a vector S(z) = [s1, s2, s3, . . . , sn]
for probabilities. The Softmax layer generates the probability for each word (token or ID)
if the probability is too low (less than 0.1), which is considered as an error candidate and
immediately mark the entire line. At the same time, the model generates a possible correct
word instead of the error. To predict the correct word (token or ID), the model (BiLSTM)
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calculates the code sequences (both forward and backward) to find the best possible word
on the basis of the highest probability.

S(zi) =
exp(zi)

∑n
j=1 exp

(
zj
) (11)

We implemented our experiments on a CPU (Central Processing Unit)-based worksta-
tion (RAM: 8 GB; CPU: Intel Core i7-5600U (2.60 GHz); OS: 64-bit Windows 10).

4.2. Evaluation Metrics

We use accuracy and F1-scores as our primary metrics to evaluate the effectiveness of
the proposed BiLSTM for detecting code errors and providing code repair suggestions.

Definition 1. (Error identification accuracy) The model identifies erroneous candidates (words) in
the solution codes; the number of correct or actual error candidates (words) out of the total identified
error candidates (words) is called error identification accuracy (EIA). The “Number of correctly
detected errors” are the errors that actually exist in the code and the “Total number of detected
errors” are the errors (may exist or not in the code) detected by the model.

EIA =
Number o f correctly detected errors in code

Total number o f detected errors in code
× 100% (12)

Example 2. If a model m identifies a total of 11 error candidates (words) in solution code s1, and
only 5 of the identified candidates (words) are actually present in the code, the EIA of model m for s1
is approximately 45.45%.

Definition 2. (Suggestion accuracy) The model generates suggestions for each identified error
candidate; the number of correct or actual code repair suggestions out of the total suggestions for
error candidates is called suggestion accuracy (SA).

SA =
actual suggestion f or error candidates

total suggestions
× 100% (13)

Example 3. If model m generates a total of 20 suggestions in solution code s2, and only 13 of the
total suggestions are correct or true, the SA of model m for s2 is 65%.

Definition 3. (Correctness of the model) Correctness of the model is calculated as the average of
EIA and SA values.

Correctness o f Model(CoM) =
EIA + SA

2
(14)

Example 4. If model m has an EIA value of 45.45% and an SA value of 65%, the correctness of
model m will be approximately 55.23%.

Recognizing that correctness of the model (CoM) alone is insufficient to measure the
performance of the model, we used three additional evaluation metrics: precision, recall,
and F-score. The three measures are defined as follows:

Precision (P) =
TP

TP + FP
(15)

Recall (R) =
TP

TP + FN
(16)
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F− score =
2 × P× R

P + R
(17)

Precision is the ratio of correct error classifications to total error classifications (i.e.,
true positives to total positives, both true and false). The term TP refers to error code
classified as error; similarly, FP refers to the correct code classified as an error. Recall refers
to how correctly the model classifies the error codes (the ratio of true positives to true
positives plus false negatives). The term FN refers to error code classified as correct. The
F-score is the harmonic mean of precision and recall.

4.3. Cross-Entropy

The cross-entropy is an important scale for measuring the performance of probabilistic
language models and is defined by the difference between the actual and predicted output
of the model. Cross-entropy is calculated by the following equation:

Crossentropy (CE) ≈ 1
n

n

∑
i=1
−log2(p(wi)), (18)

where n is sample length, wi is an ID within a sample, and probability P(wi) is calculated
for wi.

4.4. Determining the Number of Epochs and Hidden Units

An epoch is a complete cycle with the full training dataset. Using the optimal number
of epochs can improve the performance of the model as well as save time for model training.
Our training dataset consisted of two types of problem (GCD and IS) solution codes. We
trained our model separately for each of the two types using different hidden units.

Figure 5 shows the results of the cross-entropy calculations used to select the optimal
number of epochs and hidden units (neurons) for the BiLSTM model. Figure 5a gives
the results for the GCD case. First, we identified the appropriate number of hidden units
for model training. In this case, 200 hidden units produced the lowest cross-entropy.
Moreover, cross-entropy was lowest when the number of epochs was between 20 and 25.
The indication, then, is that, for the GCD case, the model produced its best performance
when the number of hidden units was 200 and the number of epochs was between 20 and
25, and that using these values saves model training time. Similarly, Figure 5b shows that,
in the IS case, cross-entropy for the BiLSTM model was lowest when 400 hidden units and
between 25 and 30 epochs are used.
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Figure 6 shows the cross-entropy results for the LSTM model. Figure 6a indicates that,
in the GCD case, the cross-entropy of the LSTM model reached its lowest level when 300
hidden units and between 22 and 25 epochs were used. Figure 6b provides the results
of when IS codes were used for model training. Here, the LSTM model had minimum
cross-entropy when 400 hidden units and between 25 and 30 epochs were used.
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Comparative statistics for the lowest cross-entropy of the LSTM and BiLSTM models
are given in Table 2. For the LSTM model, 300 and 400 hidden units produced the minimum
cross-entropy for the GCD and IS solution codes, respectively. On the other hand, for the
BiLSTM model, 200 and 400 hidden units, respectively, produced the lowest cross-entropy.
Therefore, we chose these numbers of hidden units (i.e., those producing the minimum
cross-entropy) for training and code evaluation.

Table 2. Comparative lowest crossentropy of LSTM and BiLSTM models for different hidden units.

SL
Hidden Units

(Neurons)

LSTM BiLSTM

GCD IS GCD IS

1 100 1.89 1.75 1.35 1.24
2 200 1.72 1.35 1.24 1.07
3 300 1.62 1.24 1.25 1.05
4 400 1.66 1.20 1.25 1.04

4.5. Incorrect Source Code Evaluation

We evaluated erroneous source codes using the LSTM and BiLSTM models and
compared the performance of the two models. In Figure 7a, an incorrect GCD solution
code was evaluated by the LSTM model. Errors were identified in lines 13, 15, 16, and 18 of
the code. According to the context of the code, a logical error occurred in line 14, which
was supposed to be l = m%n; however, the LSTM model was unable to accurately detect
the error. Figure 7b shows an erroneous solution to an IS problem assessed by LSTM. Most
of the errors (logical and syntactic) were identified by the model, but an irrelevant error
(actually, no error at all) was identified in line 3.



Symmetry 2021, 13, 247 11 of 15

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

Table 2. Comparative lowest crossentropy of LSTM and BiLSTM models for different hidden units. 

SL Hidden Units (Neurons) 
LSTM BiLSTM 

GCD IS GCD IS 

1 100 1.89 1.75 1.35 1.24 

2 200 1.72 1.35 1.24 1.07 

3 300 1.62 1.24 1.25 1.05 

4 400 1.66 1.20 1.25 1.04 

4.5. Incorrect Source Code Evaluation 

We evaluated erroneous source codes using the LSTM and BiLSTM models and com-

pared the performance of the two models. In Figure 7a, an incorrect GCD solution code 

was evaluated by the LSTM model. Errors were identified in lines 13, 15, 16, and 18 of the 

code. According to the context of the code, a logical error occurred in line 14, which was 

supposed to be l = m%n; however, the LSTM model was unable to accurately detect the 

error. Figure 7b shows an erroneous solution to an IS problem assessed by LSTM. Most of 

the errors (logical and syntactic) were identified by the model, but an irrelevant error (ac-

tually, no error at all) was identified in line 3. 

 

Figure 7. Source codes evaluation by the LSTM model. (a) Erroneous solution code of GCD problem, (b) Erroneous solu-

tion of IS problem. 

To compare the error assessment efficiency of the two models (LSTM and BiLSTM), 

we assessed the same erroneous codes through the BiLSTM model. In Figure 8a, a solution 

to the GCD problem is evaluated by the BiLSTM model. The model detected errors in lines 

13, 14, and 16. On the basis of the context of the code, the model considered the output 

statement in line 18 to identify the errors. As a result, the BiLSTM model correctly identi-

fied logical errors in lines 13 and 14 on the basis of the output details in line 18. In Figure 

8b, where an incorrect solution to the IS problem was assessed by the BiLSTM model, the 

BiLSTM model was able to identify all the errors (logical and syntax) in the code. Errors 

were identified in lines 6, 16, 17, and 18, considering the full context of the erroneous code. 

In contrast, it is all but impossible to determine logical errors using a conventional com-

piler or to even consider the later context of the code. Figures 7 and 8 show that the 

BiLSTM model properly evaluated the erroneous code on the basis of later context. On the 

other hand, the LSTM model was incapable of considering later context to detect errors. 

Figure 7. Source codes evaluation by the LSTM model. (a) Erroneous solution code of GCD problem, (b) Erroneous solution
of IS problem.

To compare the error assessment efficiency of the two models (LSTM and BiLSTM),
we assessed the same erroneous codes through the BiLSTM model. In Figure 8a, a solution
to the GCD problem is evaluated by the BiLSTM model. The model detected errors in
lines 13, 14, and 16. On the basis of the context of the code, the model considered the
output statement in line 18 to identify the errors. As a result, the BiLSTM model correctly
identified logical errors in lines 13 and 14 on the basis of the output details in line 18. In
Figure 8b, where an incorrect solution to the IS problem was assessed by the BiLSTM
model, the BiLSTM model was able to identify all the errors (logical and syntax) in the code.
Errors were identified in lines 6, 16, 17, and 18, considering the full context of the erroneous
code. In contrast, it is all but impossible to determine logical errors using a conventional
compiler or to even consider the later context of the code. Figures 7 and 8 show that the
BiLSTM model properly evaluated the erroneous code on the basis of later context. On the
other hand, the LSTM model was incapable of considering later context to detect errors.
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4.6. Suggestions for Code Repair

The two models provided suggestions for code repair for each detected error location.
Table 3 lists the suggestions based on the GCD problem evaluation described above.



Symmetry 2021, 13, 247 12 of 15

Table 3. Suggestions for greatest common divider (GCD) problem evaluated in Figures 7a and 8a.

Location in Code
LSTM BiLSTM

Detected Suggested Detected Suggested

13 = ! = !
14 n, m m, n
15 m, n n, m
16 l l; l l;
18 printf }

Similarly, Table 4 lists the suggestions based on the IS problem evaluations by the
LSTM and BiLSTM models.

Table 4. Suggestions for IS problem evaluated in Figures 7b and 8b.

Location in Code
LSTM BiLSTM

Detected Suggested Detected Suggested

3 main int main
6 = < <= n < n

16 < > < key > key
17 i j a[i] a[j]
18 +,+ -,- j++ j–

Both the LSTM and BiLSTM models provided relevant suggestions for correcting
the detected errors. Such suggestions can be useful to programmers, especially novice
programmers, to help them quickly repair erroneous codes. However, not all errors are
straightforward; some may rely on previous or subsequent lines in the code. In such cases,
the BiLSTM model is more efficient than the LSTM model.

4.7. Error Detection Performance

Table 5 shows the comparative performances of the BiLSTM, LSTM, and RNN models
for the GCD source code dataset. The CoM of the BiLSTM model was approximately
52.4%, which was much higher than the CoM of the other two models. Note that CoM (as
per Equation (13)) was determined on the basis of the correctness of error detection and
the suggestions provided for incorrect code. We calculated standard deviation (σ) on the
basis of model performance in terms of error identification and suggestion accuracy. The
BiLSTM model achieved the lowest deviation (σ: 4.55) compared to other models, which
determines that the performance distribution of the model was consistent. Although the
BiLSTM model also had the highest precision rate of 98%, there were very few correct codes
classified as incorrect. The 95.5% recall rate indicated that there were relatively few false
positives. As noted earlier, the F-score is the harmonic mean of the recall and precision
ratios and is an important metric to describe model performance. As Table 5 shows, the
F-score of the BiLSTM model was highest among the three models, at 96.7%, indicating that
our proposed model produced superior true positives with a low rate of false positives.

Table 5. Performance of the models based on the GCD dataset.

Model EIA CoM σ Precision (P) Recall (R) F-Score

BiLSTM 66 52.4% 4.55 98% 95.5% 96.7%
LSTM [18] 45 33.2% 7.67 87% 89% 87.0%
RNN [18] 33 25% 7.76 80% 81% 80.0%

Table 6 shows the comparative results when the models were applied to the IS dataset.
Once again, the BiLSTM model outperformed the LSTM and RNN models (CoM: 49.35%;
σ: 3.12; precision: 97%; recall: 97%; F-score: 97.0%).
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Table 6. Performance of the models based on the IS dataset.

Model EIA CoM σ Precision (P) Recall (R) F-Score

BiLSTM 62 49.35% 3.12 97% 97% 97.0%
LSTM [18] 41 30.6% 6.09 90% 88% 88.0%
RNN [18] 29 22% 7.15 82% 79% 80.0%

5. Limitations

Our experiment, including model training, validation, and testing, was conducted using
only the C programming language. The performance of the BiLSTM model has not yet been
tested using other programming languages. Moreover, we used only two types of solution
codes—greatest common divisor (GCD) and insertion sort (IS). It should also be noted that
our experimental results show that the BiLSTM model was not flawless—having falsely
identified as erroneous code that which was actually correct. Some incorrect suggestions were
also produced.

6. Conclusions

It is generally recognized that conventional compilers and other code evaluation
systems are unable to reliably detect logic errors and provide proper suggestions for code
repair. While neural network-based language models can be effective in identifying errors,
standard feedforward neural networks or unidirectional recurrent neural networks (RNNs)
have proven insufficient for effective source code evaluation. There are many reasons
for this, including code length and the fact that some errors depend on both previous
and subsequent code lines. In this paper, we presented an efficient bidirectional LSTM
(BiLSTM) neural network model for code evaluation and repair. Importantly, the BiLSTM
model has the ability to consider both the previous and subsequent context of the code
under evaluation. In developing the model, we first trained the BiLSTM model as a
sequence-to-sequence language model using a large number of source codes. We then used
the trained BiLSTM model for error detection and to provide suggestions for code repair.
Experimental results showed that the BiLSTM model outperformed existing unidirectional
LSTM and RNN neural network-based models. The CoM value of the BiLSTM model
was approximately 50.88%, with an F-score of approximately 97%. The proposed BiLSTM
model thus appears to be effective for detecting errors and providing relevant suggestions
for code repair.

In the future, we plan to evaluate our model using larger datasets and different
programming languages. We will also seek to optimize various model parameters to
improve model performance. We will present real-world performances and experiences
obtained from ICE, as well as case studies based on users’ feedback.
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