
symmetryS S

Article

Study of Cascading Failure in Multisubnet Composite
Complex Networks

Gengxin Sun 1,*, Chih-Cheng Chen 2,3,* and Sheng Bin 1

����������
�������

Citation: Sun, G.; Chen, C.-C.; Bin, S.

Study of Cascading Failure in

Multisubnet Composite Complex

Networks. Symmetry 2021, 13, 523.

https://doi.org/10.3390/sym13030523

Academic Editor: Jan Awrejcewicz

Received: 17 February 2021

Accepted: 19 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Data Science and Software Engineering, Qingdao University, Qingdao 266071, China;
binsheng@qdu.edu.cn

2 Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan
3 Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan
* Correspondence: sungengxin@qdu.edu.cn (G.S.); chenccheng@fcu.edu.tw (C.-C.C.)

Abstract: Current research on the cascading failure of coupling networks is mostly based on hierar-
chical network models and is limited to a single relationship. In reality, many relationships exist in a
network system, and these relationships collectively affect the process and scale of the network cas-
cading failure. In this paper, a composite network is constructed based on the multisubnet composite
complex network model, and its cascading failure is proposed combined with multiple relationships.
The effect of intranetwork relationships and coupling relationships on network robustness under
different influencing factors is studied. It is shown that cascading failure in composite networks
is different from coupling networks, and increasing the strength of the coupling relationship can
significantly improve the robustness of the network.

Keywords: cascading failure; coupling network; multirelationship network; multisubnet composited
complex network; robustness

1. Introduction

With the development of information technology and society, a real-life network sys-
tem is a coupling network composed of two or more sub-networks. In a coupling network,
systems are interconnected and work together to improve the operational efficiency of
the entire network, which is highly convenient for human production and life. Due to
the complexity of the network structure and function, cascading failure can easily occur
under the action of various factors. In recent years, the consequences of such incidents
are immeasurable [1–3], and the study of cascading failure is important to prevent the
occurrence of large-scale network failures.

The study of cascading failure in complex networks has important theoretical and
practical significance for improving the robustness and invulnerability of networks. Albert
et al. firstly studied cascading failures in scale-free networks and random networks, and
compared the effects of random attack and deliberate attack on cascading failures. As
cascading failures are common in power, communication, transportation, Internet and
various infrastructure networks, experts in various fields have conducted extensive and
in-depth research on cascading failures in complex networks from different perspectives,
and proposed different cascading failure models.

The first study on cascading failure was carried out for a single complex network. The
main models include OPA (ORNL-PSerc-Alaska) model [4], CASCADE model [5], sand
pile model [6], load-capacity model [7]; Kinney et al. [8] used the OPA model to analyze
the cascading failure of the North American power network. The research results show
that after the failure node transfers the load to its neighbor node, more network nodes will
fail, resulting in the “collapse” of the whole power network. Wang et al. [9] proposed a
cascading failure model based on random walk betweenness by setting the initial capacity
of nodes according to the betweenness of nodes in the network. Tian et al. [10] think
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that the node betweenness cannot fully reflect the initial load on the edge in traffic road
network, so a capacity-load model based on the weight of edge betweenness and edge is
proposed to define the initial load, and the cascading failure problem in the urban traffic
road network is studied by using this model. Motter et al. [11] proposed the Motter–Lai
(ML) model, which is a typical capacity-load model. They assume that the information in
the network is transmitted along the shortest path between nodes, the initial load of the
node is determined by the betweenness of the node, and the capacity of the node is directly
proportional to the initial load growth rate of the node. Crukitti et al. [12] proposed an
improved ML model. In the improved ML model, when a node in the network fails due to
the load exceeding the capacity, the node does not need to be removed from the network,
and only needs to reduce the information transmission efficiency from other nodes to the
node.

The study of cascading failure in coupling networks started in 2010 with the work
of Buldyrev [13], who used the example of two-layer coupling networks and found that
in coupling networks, by randomly attacking nodes in a network, the cascading failure
phenomenon in the coupling network is different from that in a single network; a theoretical
framework was developed for this phenomenon. Subsequently, the cascading failure of
coupling networks has been extensively studied based on this framework, and many
conclusions have been drawn that are different from those of a single network.

Current research on cascading failure in coupling networks can be divided into three
main categories: networks based on the one-to-one coupling of nodes on both sides [13–21],
and one-to-many and many-to-many coupling networks [22–26]. Regarding one-to-one
coupled networks, it was found in the literature [15] that cascading failure is more likely
to occur when attacking the coupled nodes in a coupling network; Gao et al. [16], in their
study of coupling networks under different attack methods, found that cascading failure
is more likely to occur when attacking the coupled nodes in a coupling network. Dong
et al. [20] studied the robustness of coupling networks under varying coupling relationships
and found that the greater the probability of coupling nodes with similar degrees between
networks, the stronger the robustness of the network. Shao et al. [21] used the partially
coupled and one-to-one to fully couple coupling network models, and proposed the edge
addition strategy in low relative betweenness and edge coupling addition strategy in low
relative betweenness.

For the network of one-to-many and many-to-many coupling of nodes on both sides,
Cheng et al. [22] proposed a coupling network model with multiple support dependencies
and found it to be more robust than one-to-one interdependent networks; Fu et al. [23] stud-
ied the effects of directionality, redundancy, and the degree of dependency on robustness
in coupled networks, and found that the robustness of networks based on directed depen-
dencies is lower than that of networks based on undirected dependencies. Min et al. [24]
analyzed the influence of the dependency ratio and dependency redundancy on the ro-
bustness of a coupling network, and proposed a global homogeneous interdependency
network coupling model. Shin et al. [25] proposed a cascading failure model in which
the coupled and internal edges are associated with the initial load, and found that the
robustness of the network is strongest when the ratio of the external and internal degrees
to the load reaches a certain value.

The above studies on cascading failure of a coupling network are based on the hierar-
chical network model and are limited to a single relationship, but in reality, there are many
relationships in a network system. In this paper, we propose a cascading failure model
for composite networks based on the multisubnet composite complex network model,
and mainly study the effects of intranetwork relationships and coupling relationships on
composite networks under different influencing factors.
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2. Materials and Methods
2.1. Composite Network Model

According to the multisubnet composite complex network model [26], the two ini-
tially constructed vector complex networks are denoted by ΣA = (GA, SA, MA) and
ΣB = (GB, SB, MB), respectively, where GA = (VA, EA, RA, FA), GB = (VB, EB, RB, FB),
GA and GB denote the composite networks A and B. RA = r1, RB = r2 is the intranetwork
relation, R

′
the coupling relation, R

′
= r3 and the vector complex network A as the base.

Under the load mapping Ψ : VA × (VA
⋃

VB)→ r3 , the composite network ΣA will be
loaded to ΣB, where the loading relation represents the coupling relation, and the total
number of nodes of the composite networks A and B is set to NA and NB, respectively.
The new vector composite network constructed according to the above conditions is set
to Σ = (G, S, M), where V = VA

⋃
VB, R =

{
(r1, r2, r3)

∣∣∣r1∈RA, r2∈RB, r3∈R
′
}

; the total
number of nodes of the composite network is N = NA + NB, as shown in Figure 1.
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Figure 1. An example of composite complex network.

The newly constructed composite network Σ in Figure 1 has two subnets, A and
B. The coupling relationship is set such that subnet B depends on A, and the direction
of dependence is unidirectional. The degrees of r1,r3 are set to k̂r1

A , k̂r3
A . The degrees of

relations r2,r3 regarding nodes in subnet B are set to k̂r2
B , k̂r3

B , respectively. In addition,
each relationship has a relationship strength, which represents the relationship strength
of the effect on nodes and edges. The inter-relationship strength scale parameter is set to
sf1 : sf2 : sf3.

2.2. Coupling Network Cascading Failure Model

We took the capacity-load model and the one-to-one coupling of nodes on both sides
of the network as an example, and constructed a typical cascading failure model for a
coupling network as follows.

First of all, two subnets were constructed, which are denoted as Network A and
Network B. The total number of nodes are as follows: NA and NB, the internal connections
of the nodes in each subnet are defined as connection edges, and the connections of the
nodes between network A and network B are defined as coupling edges; assume the nodes
between network A and B connect randomly on a one-to-one basis. The dependency
direction was set as the unidirectional dependency of network A on network B.
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Node degree measures the importance of the node in the network; nodes with a large
degree tend to carry a large amount of load. The initial load of node vh is defined by the
degree function.

LvThe(0) = β·(kvThe)
α (1)

Among them, LvThe(0) denotes the initial load of vh.kvThe for the degree of the node α,β
is an adjustable parameter that controls the strength of the initial load.

Node capacity is a measure of how much load each node can handle. The larger the
node capacity, the less likely it is to overload failure, and the more resilient the network is
to cascading failure. Node capacity is defined as positively related to the initial load and is
defined as follows.

CvThe = (1 + λ)·LvThe(0) (2)

λ(λ > 0) denotes the tolerance factor. The larger λ, the larger the node capacity, and
the more resilient it is to cascading failures, but the higher the corresponding cost.

Assume that when a node in network A fails due to an attack, its own load is dis-
tributed proportionally to neighboring nodes; vh is a failure node, and the node vl is a
neighbor to it. In this paper, the load that a failed node assigns to a neighbor node, using
local merit allocation as an example, is as follows.

(∆)LvThevl = LvThe(0)·
Lvl(0)

Σvk∈ΓvThe
Lvk(0)

CvThe = (1 + λ)·LvThe(0) (3)

Among them, ΓvThe means node vh’s collection of neighbor nodes. (∆)LvThevl means
the amount of load node vh assigned to node vl.

When the load of node vl received plus its initial load is greater than its own capacity,

Lvl(0) + (∆)LvThevl > Cvl (4)

if node vl fails, the load is further redistributed to the neighboring nodes, the node vl
overload fails after receiving the assigned load, its load continues to be distributed to its
neighbor nodes, and the failure propagates in network A. When a node fails, it loses all of
its coupled edges. Since network A provides support to B, if the node in subnet B fails at
its coupled node in subnet A, then the node fails and passes its own load to its neighbor
nodes according to Equation (3). If its neighboring nodes are overloaded and fail, the fault
propagates from network A to network B. When no nodes fail in network B, the entire
network reaches a steady state, as shown in Figure 2.
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2.3. Cascading Failure Model of Composite Networks

In order to better explain the cascading failure model of composite networks, the
symbols in the model are explained firstly in Table 1.

Table 1. Symbols in the cascading failure model of composite networks.

Symbols Explanation

Fri
vhvl The relationship ri on edge vhvl
ˆ

kr′
vh

The degree of node vh about relationship r
′

Lvh (0) The initial load of node vh
RA The relationship set between the failed node and its neighbor nodes
Γri

vh The set of neighbor nodes of node vh about relationship ri
sfi The relationship strength of relationship ri

pri
vhvl

The number of triangles constituted by edges vhvl according to the
relationship ri

Wri
vl The importance of node vl about relationship ri

∆Lri
vhvl The load of the relationship ri from node vh to node vl

CFv The number of failed nodes caused by node v

The mode of cascading failure in a composite network requires consideration of the
influence of multiple relationships. If the relationship between nodes is regarded as a line,
the transmission of the load will pass through these lines. And each line has a traffic limit,
which indicates the amount of load passing through the edge per unit of time, the traffic
always positively related to the degree of nodes at ends of the edge. The traffic of edge
vhvl to relationship ri is:

Fri
vhvl =

ˆkri
vh ·

ˆkri
vl (5)

The size of the node’s load is affected by the relationship within the network and is
positively correlated with the traffic. Due to the existence of a coupling relationship, only
the relationship within the network is not suitable. Under normal circumstances, when the
number of coupling nodes of a node is greater, and the degree of these coupling nodes is
greater, the node will bear more load. Therefore, the initial load of node vh is defined as
follows:

Lvh(0) =
Σri∈RA sfi

Σri∈RA sfi+Σ
r
′∈R

′ sf
′ ·( ∑

ri∈RA

( ∑
vk∈Γ

ri
vh

Fri
vhvk))

α

+ ∑
r′∈R

′
( sf

′

Σri∈RA sfi+Σ
r
′∈R

′ sf
′ ·(

ˆ
kr′

vh
· ∑

vm∈Ωr
′

vh

( ∑
rj∈R

′
A

ˆk
rj
vm))

β)
(6)

Among them, Fri
vhvk represents the traffic of the edge vhvk to the relationship ri, ˆkri

vh is

the degree of the node vh in the intranetwork relationship ri,
ˆ

kr′
vh

is the degree of node vh

with respect to the coupling relationship r
′
, RA represents the relationship set between the

failed node and its neighbor nodes in subnet A, R
′

is the set of coupling relationships, R
′
A

represents the set of intranetwork relationships in the subnet where the node coupled by
failure node is located, Γri

vh represents the set of neighbor nodes of node vh with respect

to the relationship ri, Ωr
′

vh
represents the set of nodes with a coupling relationship r

′
with

the failure node α,β(α,β ≥ 1) are adjustable parameters, sfi and sf
′

are the relationship
strength of the intranetwork relationship ri and the coupling relationship r

′
, and sf≥0.

The size of the node capacity is affected by multiple relationships between nodes. The
definition of initial load describes the influence of the relationship on the node through
flow. Therefore, the node capacity is still related to the initial load, so the definition of
Formula (2) is adopted.

The load redistribution strategy generally adopts local preferential redistribution.
However, this method cannot identify key nodes, such as bridge nodes. If these nodes
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fail, it causes more serious damage. Therefore, this paper proposes a new strategy which
operates according to the importance of nodes. The more important the nodes are, the less
load is distributed, and vice versa. First, define the importance of the connection vhvl in
the relationship ri as follows:

Iri
vhvl=

ˆkri
vh ·

ˆkri
vl

pri
vhvl + 1

(7)

where pri
vhvl represents the number of triangles consituted by edges vhvl according to the

relationship ri.
In order to measure the importance of the node vh with respect to the relationship ri,

the importance of the edge is one side, and the importance of the node vl in the edge vhvl
should be considered. Therefore, the definition of eri

vhvl(vl) is as follows:

eri
vhvl(vl) =

ˆkri
vl

ˆkri
vh +

ˆkri
vl

(8)

The importance of node vl with respect to relationship ri is defined as:

Wri
vl = Iri

vhvl ·e
ri
vhvl(vl) (9)

Supposing that node vh failed due to an attack in subnet A, and assuming node vl as
a neighbor in subnet A, the load allocated by the failed node to node vl is.

∆Lri
vhvl =

(
sfi

∑ri∈RA
sfi

)
·Lvh(0) · (

Lvl(0)−
∑ri∈RA

sfi

∑ri∈RA
sfi+∑r

′∈R
′ sf
′ ·Wri

vl

∑
vk∈Γ

ri
vh

(Lvk(0)−
∑ri∈RA

sfi

∑ri∈RA
sfi+∑r

′∈R
′ sf
′ ·Wri

vk)
) (10)

∆Lri
vhvl represents the load of the relationship ri from node vh to node vl, Wri

vl represents
the importance of node vl with respect to the relationship ri, and sfi is the strength of the
relationship ri. RA represents the set of relationships within the subnet A associated with
the node vh. R

′
is the set of coupling relationships, and Γri

vh represents the set of neighbor
nodes that have a relationship ri with the node vh.

Node vl receives a load from a failed node, whose own load becomes.

Lvl(t) = Lvl(0) + ∑
ri∈RA

∆Lri
vhvl (11)

If the total load on the node at this time is greater than its capacity, i.e.,

Lvl(t) > Cvl (12)

then the node fails, its own load is distributed to its neighbor nodes in the above manner,
and the fault propagates in subnet A. If a node in subnet B fails all the nodes connected
to the relation r3 in subnet A, then the node fails. Similarly, its own load is passed to its
neighbor nodes according to (5), and the fault propagates from subnet A to subnet B. The
process loops until no node in subnet B fails, as shown in Figure 3.
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In order to better describe the state of each node in the composite network, this paper
defines an overload function for each node, which is equivalent to assigning a dynamic
weight to each node, indicating the difficulty of overloading the node, assuming that each
node in the composite network has only two states of “normal” and “disabled”. At the
initial moment, the overload function value of each node is set to “1”, which means that
the node is in “normal” state, or “0” if the node fails, which indicates that the node is in the
“failed state”, so the node’s overload function is as follows:

Gk =


1, Lv(0) + ∑

ri∈R
∆Lri

vhv ≤ Cv

0, Lv(0) + ∑
ri∈R

∆Lri
vhv > Cv

(13)

This means that the state of the entire network can be displayed without removing
nodes.

In summary, it can be seen that a node can fail due to propagation failures caused by
intranetwork relationships and coupling failures caused by coupling relationships.

This paper initially attacks only one node in subnet A and calculates CFv at the end
of the cascading failure (CFv denoted by the number of failed nodes caused by node v),
obviously, N−1 ≤ CFv ≤ N; to quantify the robustness of the entire network, the number
of failed nodes is normalized, i.e.,

Gk = S =
Σv∈NACFv

NA ∗ (NA + NB − 1)
(14)

where CFv = FA + FB,FA is the sum of the failed nodes of subnet A after cascading failure,
and FB is the sum of the failed nodes of subnet B. S is the normalized sum of the failed
nodes of the entire network resulting from the removal of all nodes in subnet A, that is,
the scale of network damage. The larger the S, the weaker the network against cascading
failure, and the smaller the S, the more resilient the network against cascading failure, and
the more robust the network is.
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3. Results

By adjusting the parameters that control node capacity λ and selecting different
proportion parameters of relationship strength to conduct the simulation experiment, this
focuses on the effect of relationship strength on the composite under different influences.
The algorithm for the cascading failure process was developed as follows according to the
above-mentioned cascading failure model and by considering the two modes of overload
failure and coupled relational failure in this paper.

(a) Attack node v in subnet A to invalidate it, take the value of the overload function for
that node as “0”, and find neighbor nodes v that are connected to it.

(b) Redistributes the load of node v and its neighbors, and if any node is overloaded,
mark its overload function as “0”.

(c) Find the failure node in the subnet A.
(d) Find all the neighbor nodes of one failed node and redistribute the load of the failed

node and its neighbors, where the node with an overload function value of “0” does
not accept any external load, and if any node is overloaded, mark its overload function
as “0”.

(e) Repeat steps (c)–(d) until no nodes fail.
(f) Calculate the number of failed nodes in the entire network as FA.
(g) Identify the node in subnet B that is coupled to subnet A. If all of its coupled nodes in

subnet A fail, then the overload function of this node is marked as “0”.
(h) Identify the failed nodes in subnet B.
(i) Redistribute the load of a failed node and its neighbor nodes in subnet B. A node with

an overload function value of “0” will not accept any external load, and when the
node fails, its overload function is marked as “0”.

(j) Repeat steps (h)–(i) until no nodes fail.
(k) Calculate the number of failed nodes in the entire network as FB.
(l) Repeat steps (a)–(h) until each node is attacked once in subnet A, and calculate the

failure size S of the composite network.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Influence of Intranetwork Relationship Strength on Composite Networks under Different
Conditions of Relationship Topology within the Network

Different structures of complex networks will lead to different cascading failures. WS
small-world networks and BA scale-free networks are the most common complex network
topologies; they are also the most common network structures in real networks. For
example, power network, Internet and transportation networks are BA or WS networks.

The BA model refers to the scale-free network model; an obvious feature of the
network is that “the rich get richer”. The topological feature of this kind of network is
that there are nodes with the maximum degree in the network. For example, Internet and
aviation networks are BA networks. The WS network is a kind of network with a short
average path length and high clustering coefficient. In this kind of network, most of the
nodes are not connected to one another, but most of them can reach one another through
a few steps. For example, social networks and urban public transport networks are WS
networks. These two kinds of networks are the most common complex network topologies
in the real world. Therefore, in the experiment, BA and WS networks were selected to
verify the impact of different network topologies on cascading failure.

In a composite network, the topology of each subnet may be different, and under the
effect of the relationship strength between nodes, the failure phenomena in the network
may be different from the previous coupling network. Since real network systems tend
to be WS small-world networks and BA scale-free networks, in order to investigate the
effect of relationship strength on network cascade failure under different conditions of
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relational topology, this paper conducted comparative experiments based on the above
network topologies separately.

First, we constructed a composite network with the total number of nodes 200 and the
average degree 2 of subnets A and B. The coupling relationship between the nodes of the
two subnets was established randomly, and the average degree of the coupling relationship
was 2. Parameter α = β = 1. When the relationship strength scaling parameter takes
different values, the resulting S− λ curves are shown in Figure 4.
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As the proportion of relationship strength of the intranetwork relationship r1, r2
decreases, the more robust the network is (Figure 4a); conversely, when the proportion of
strength of the two relationships increases, network robustness decreases; among them,
the relationship r1 has an obvious effect on the network. When its relationship strength
is small enough, the network has the strongest robustness. Adjusting the proportion of
relationship strength of the intranetwork relationship r1, r2, shows that the network fault
scale changes slightly, indicating that the intranetwork relationship has no effect on a
BA-BA composite network (Figure 4b). By reducing the proportion of relationship strength
of the intranetwork relationship r1 in the network, network robustness is significantly
enhanced (Figure 4c); while the curves of the relationship strength ratio of 1:1:1, 1:0.1:1, and
1:10:1 overlap one other. The relationship r2 has no effect on the network. It shows that in a
WS-BA composite network, except the coupling relationship, the size of network failures
is affected by the subnets providing dependencies in addition to coupling relationships.
Increasing the proportion of relationship strength of the intranetwork relationship r2 will
significantly enhance network robustness (Figure 4d); while by increasing or decreasing
the proportion of relationship strength of the intranetwork relationship r1, its curve and
the curve of the relationship strength ratio of 1:1:1 coincide. This shows that in a BA-WS
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composite network, except the coupling relationship, the network fault size is affected by
the subnet that is provided with dependencies in addition to the coupling relationship.

3.2. Influence of Coupling Relationship Strength on Composite Networks under Different
Conditions of Relationship Topology within the Network

The above experiment mainly explores the influence of the intranetwork relationship
on the network. In addition, there is a coupling relationship between subnets. The stronger
the coupling relationship is, the more the node is affected by other subnets, and the failure
phenomenon that occurs in the network is different. Therefore, in order to explore the
influence of the coupling relationship on the network cascading failure under conditions of
relationship topology within the network, this paper conducted experiments in different
combinations according to the network topologies of WS and BA.

First, we constructed a composite network with the total number of 200 nodes and the
average degree 2 of subnets A and B. The coupling relationship between the nodes of the
two subnets was established randomly, and the average degree of the coupling relationship
was 2. Parameter α = β = 1. When the relationship strength scaling parameter takes
different values, the resulting S− λ curves are shown in Figure 5.
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Figure 5. Influence of coupling relationship strength on composite networks. (a) WS-WS (Two
subnets are WS network); (b) BA-BA (Two subnets are BA network); (c) WS-BA (The first subnet is
WS network and the second subnet is BA network); (d) BA-WS (The first subnet is BA network and
the second subnet is WS network).

As shown in Figure 5a,c,d, as the proportion of the coupling relationship r3 increases,
the network robustness increases. This indicates that the coupling relationship is beneficial
to the network robustness. In Figure 5b, as the proportion of relationship strength of the
coupling relationship increases, the network change is small. This indicates that in the BA-
BA composite network, the coupling relationship has no effect on the network. Therefore,
in order to improve the network’s ability to resist cascading failure, it is necessary to
enhance the influence between subnets as much as possible.
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3.3. The Average Degree of the Relationship within the Network and Effect of Relationship Strength
on Composite Networks under Different Conditions

It has been shown in the literature that the larger the average degree of the network,
the more robust the network is. A composite network is composed of multiple subnets, and
because each subnet has a different average degree, the cascading failure in a composite
network may have different properties under the effect of the relationship strength. The
experiments were performed separately in a composite network consisting of subnets with
different average degrees for further research.

In the experiment, a composite network with topology WS subnets A and B and 200
subnet nodes was constructed. The parameter of α,β was set to 1. The average degree of
the coupling relationship and the coupling relationship establishment were consistent with
the above experiments, and the average degree of the subnet was 2, 4, 6. Depending on
different combinations, the resulting S−λ curve is shown in Figure 6 when the relationship
strength scale parameter takes on different values.
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intranetwork relationships is 2 and 4; (b) the average degree of intranetwork relationships is 2 and 6;
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relationships is 6 and 2.

In Figure 6, it can be concluded that regardless of the value the average degree
of intranetwork relationships takes, the greater the proportion of coupling relationship
strength, the more robust the network is. The influence of intranetwork relationships on
the network are as follows: In Figure 6a,b, the smaller the proportion of strength of the
relationship r1, the more robust the network is; the curves with the proportion of strength
of the relationship r2 of 0.1 and 10 almost overlap. This indicates that when the average
degree of the relationship within the subnet B is greater than subnet A, the relationship
r2 has no effect on the network. In Figure 6c,d, the smaller the proportion of strength
of the relationship r2, the more robust the network is; the curves of the relationship r1
coincide. This shows that when the average degree of the relationship within the subnet B
is less than subnet A, the relationship r1 has no effect on the network. In summary, when
the average degree of the lower subnet is greater than the upper subnet, the smaller the
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proportion of upper subnet relationship strength, and the more robust the network is, and
the intranetwork relationship of the lower subnet has no effect on the network. Conversely,
the smaller the proportion of relationship strength of the lower subnets, the more robust
the network is, and the intranetwork relationship of the upper subnets has no effect on the
network.

3.4. The Effect of Relationship Strength on Composite Networks under Different Conditions of
Different Average Degree of the Coupling Relationship

The average degree of the coupling relationship represents the strength of coupling
between two subnetworks. The greater the average degree of the coupling relationship, the
greater the number of edges between the nodes of the two subnetworks. In general, the
greater the coupling strength, the more robust the network is, while in composite networks,
the edge between nodes has relative strength. The above experiments proved that the
relationship strength scaling parameter has a decisive influence on the robustness of the
network. In order to investigate the effect of relationship strength on the network under
different conditions of coupling relationship average degree, the following experiments
were performed.

First, a composite network with a total of 200 nodes and a WS topology for subnets
A and B was constructed. α,β was set to 1. The average degree of the intranetwork
relationship between the two subnets r1 and r2 was set to 2, and the average degree of the
coupling relation r3 was 2, 4, 6, and 8, respectively. The resulting S− λ curves are shown
in Figure 7 for different values of the relationship strength scaling parameter.
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coupling relationship is 2; (b) the average degree of coupling relationship is 4; (c) the average degree
of coupling relationship is 6; (d) the average degree of coupling relationship is 8.

As shown in Figure 7, it can be found that the greater the average degree of the
coupling relationship, the closer the curves of the intranetwork relationship r2 and the
coupling relationship r3. When the average degree of the coupling relationship is 8, the
curves finally overlap. This indicates that these have the same effect on the network;
in addition, as the average degree of the coupling relationship increases, the degree of
improvement of the coupling relationship on the network robustness decreases. Therefore,
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it can be inferred that when the coupling strength is large enough, the coupling relationship
has no effect on the network.

4. Discussion and Conclusions

Composite complex networks are widely representative of reality, such as nuclear
power networks, logistics–transportation networks, and hydropower-communication net-
works. The coupling relationship between subnets improves the operational efficiency of
the network system on the one hand, and extends the influence of cascading failure on the
other hand. The cascading failure model is based on the composite complex network model
with multisubnet under load and considers the influence of relationship strength, and the
mutual influence of multiple relationships and composite network topology features was
studied comprehensively.

In the real world, there are often interdependent relationships between two complex
systems. For example, there is a strong interdependence between the power system and
the water supply system. The power system provides power services for the water supply
system, and the water supply system provides industrial water support for the power
system. In order to better describe the interdependent network structure, especially to
study the cascading failure and percolation phenomenon, a dependent network model
is proposed. The dependent network model provides a good tool for studying the ro-
bustness of networks in the real world. In the past, research on cascading failures in
complex networks was often limited to one network. However, in the real world, cascading
failures will spread to interdependent networks, which will aggravate the diffusion of
cascading failures and lead to a sharp decline in network robustness. The emergence of
the dependent network model extends the research of cascading failure and robustness
of complex networks from one network to two networks, which is more in line with the
actual situation of the real world and greatly expands the description ability of complex
networks for real complex systems.

The study shows that the two subnetworks in a composite network have different
topologies, and the relationship strengths have different effects on the network; the greater
the strength of the coupling relationship, the stronger the network robustness, but as the
average degree of the coupling relationship increases, the effect of the coupling relationship
on the network decreases; when the ratios of the average degree of intranetwork relation-
ships are different, intranetwork relationships have different influences on the network.
In a future study, the coupling relationship between two subnets will be changed from
unidirectional support to bidirectional dependence to further investigate cascading failure
in a composite complex network.
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