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Abstract: Motivated by the work of Saridakis (Phys. Rev. D 102, 123525 (2020)), the present study
reports the cosmological consequences of Barrow holographic dark energy (HDE) and its thermody-
namics. The literature demonstrates that dark energy (DE) may result from electroweak symmetry
breaking that triggers a phase transition from early inflation to late-time acceleration. In the present
study, we incorporated viscosity in the Barrow HDE. A reconstruction scheme is presented for the
parameters associated with Barrow holographic dark energy under the purview of viscous cosmology.
The equation of state (EoS) parameter is reconstructed in this scenario and quintessence behaviour is
observed. Considering Barrow HDE as a specific case of Nojiri–Odintsov (NO) HDE, we have ob-
served quintom behaviour of the EoS parameter and for some values of n the EoS has been observed
to be very close to −1 for the current universe. The generalised second law of thermodynamics has
come out to be valid in all the scenarios under consideration. Physical viability of considering Barrow
HDE as a specific case of NO HDE is demonstrated in this study. Finally, it has been observed that
the model under consideration is very close to ΛCDM and cannot go beyond it.

Keywords: holography; dark energy; bulk viscosity; thermodynamics

1. Introduction

Gerard ’t Hooft proposed the famous Holographic Principle (HP) inspired by black-
hole thermodynamics [1,2]. HP states that all the information contained in a volume of
space can be represented as a hologram, which corresponds to a theory located on the
boundary of that space [3]. It is widely believed that HP is a fundamental principle of
quantum gravity.

In the late 1990s, Reiss et al. [4] and Perlmutter et al. [5] independently reported that
the current universe is passing through a phase of accelerated expansion. This started a
new era in Modern Cosmology. The authors of [4,5] proved this by observational data. This
was further supported by other observational studies [6–10]. Characterised by negative
pressure to some exotic matter is thought to be responsible for this acceleration. The exotic
matter is dubbed as “dark energy” (DE) [11,12]. It is described by an equation of state
(EoS) parameter defined as w = p

ρ , where p is the pressure and ρ is the density due to DE.

One can easily verify from Friedmann’s equations that w < −1
3 is a necessary condition for

the accelerated expansion of the universe. The simplest candidate of DE is cosmological
constant (Λ), characterised by EoS parameter w = −1 [13]. Various DE models have
been reviewed in the literature [11,12,14–26]. From References [27,28], currently the DE
percentage is 68.3%. The remaining density is due to dark matter (DM), baryonic matter and
radiation. The contributions of baryonic matter and radiation are negligible with respect to
the total density of the universe. Dimopoulos and Markkanen [29] have demonstrated that
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it is possible to obtain DE from the interplay of Higgs boson and inflation, and it has further
been demonstrated that a key element for the same result is the electroweak symmetry
breaking that can lead to a transition to inflation to late-time acceleration.

One of the broad types of DE candidates is Holographic DE (HDE), which is
discussed in References [30–35]. The principle of HDE is HP. Its density is given by
ρΛ = 3c2Mp

2L−2 [31,36,37], where c2 represents a dimensionless constant, Mp is the
reduced Planck mass and L stands for infrared (IR) cut-off. To date, there are different
modifications in IR cut-off being made. HDE can be accounted for also using corrections
without barotropic fluids, for example [38,39]. Observational constraints on DE and
HDE can be also found in [40]. In this paper, we will study the Barrow Holographic DE.

In the Covid 19 pandemic, Barrow was very much inspired by its illustrations and
deduced that intricate, fractal features on the black-hole structure may be introduced by
the quantum-gravitational effects [41]. This complex structure leads to infinite/finite area
but with finite volume. Therefore, the entropy expression to a deformed black-hole is [41]

SB =

(
A
A0

)∆+1
, (1)

where A is the standard horizon area and A0 is the Planck area. The quantum gravitational
deformation is quantified by ∆ and ∆ = 0 corresponds to the standard Bekenstein–Hawking
entropy. In addition, ∆ = 1 corresponds to the most intricate and fractal structure. Note
that the usual “ quantum-corrected” entropy with logarithmic corrections is very much
different than the “above quantum-gravitationally corrected entropy ”. No doubt, the
involved foundation and physical principles are completely different but resemble Tsallis
non- extensive entropy.

Gordon M. Barrow quoted “Thermodynamics should be built on energy not on heat
and work” [42–46]. The standard HDE is given by ρDEL4 ≤ S, where L = horizon length
and S ∝ A ∝ L2. Therefore, using the Barrow entropy Equation (1) lead to

ρDE = CL−2(1−∆), (2)

where C is the parameter with dimension [L]−2(∆+1). When ∆ = 0, the expression (2) will
be standard HDE, i.e., ρDE = 3c2Mp

2L−2 ( Mp is the Planck mass and L is IR cut-off) where
C = 3c2Mp

2 and c2 is the model parameter. When the deformation effects quantified by ∆,
Barrow HDE will deviate from standard HDE and hence leading to different cosmological
consequences. It is very interesting to note that in the limiting case of ∆ → 1, the above
expression becomes the constant, i.e., ρDE = constant.

The concept of viscosity has been analysed from different viewpoints in cosmol-
ogy [47,48]. The universe consists of various components having different equations of
state and cooling rate. Hence, there exist many contexts under which the bulk viscosity
causes exponential decay of anisotropy [48]. The viscosity term in the viscosity model
dominates the cosmic pressure and exceeds the pressure contribution from other cosmic
matter contributions, which contradicts the traditional fluid theory [49]. In this context,
let us refer to the extensive review of viscous cosmologies by Medina et al. [50]. In the
study of [50], it was demonstrated that bulk viscosity is compatible with the FRW metric
and our current study is in line with this. Furthermore, it has been shown by Mur-
phy [51] that the bulk viscosity can lead to a non-singular universe and the consequences
of the bulk universe have been discussed in many other studies. In the subsequent
sections we are going to demonstrate Barrow HDE under the purview of bulk viscosity
and as a specific case of the Nojiri–Odintsov cut-off.

Nojiri and Odintsov [52] developed cosmological models, where the DE and DM
were treated as imperfect fluids. Viscous fluids represent one particular case of what
was presented in [52]. In the paper, we will incorporate the viscosity term in the various
parameters of Barrow HDE. The paper is organised as follows: In Section 2, we will
reconstruct the density, thermodynamic pressure of Barrow HDE. We will also reconstruct
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effective pressure, effective EoS of Viscous Barrow HDE. We will also calculate viscous
pressure of Barrow HDE. We will plot density versus ∆; effective EoS versus redshift z and
bulk viscous pressure of viscous Barrow HDE versus redshift z versus C. We will study
accordingly. In Section 3, we will study the generalised second law of thermodynamics of
viscous Barrow HDE using Barrow entropy. In Section 4, we will reconstruct the density,
EoS parameter of Barrow HDE as a Specific NO HDE. We will plot EoS versus redshift z
in this case and will study the outcomes. In Section 4.1, we will study the validity of the
generalised second law of thermodynamics for Barrow HDE with NO cut-off. Here, we
will plot the total entropy of the Barrow HDE with an NO cut-off against the cosmic time t.
We give our conclusions in the Concluding Remarks.

2. Viscous Barrow Holographic Dark Energy

In this section we study the effect of viscosity in Barrow HDE. As it is known, viscosity
refers to the resistance to flow. By considering many components in the cosmology, there is
a contribution of bulk viscosity in the thermodynamic pressure [53], which also plays a
very important and crucial role in accelerating the universe. The term bulk viscosity arises
because of different cooling rates of the components. We can affirm that the bulk viscous
pressure in cosmic media emerges as a result of coupling among the different component
of the cosmic substratum [54–60]. In this context, we would like to mention that in recent
years there has been an increased interest in studying cosmic fluid under the purview
of bulk viscosity. In a recent work by [61], it has been demonstrated how bulk viscous
modifications to the equation of state leads to physically viable results.

Here we will reconstruct the thermodynamic pressure of Barrow HDE with viscosity.
Let us assume Rh is the radius of event horizon, then it is given by

Ṙh = HRh − 1, (3)

or,

Rh ≡ a
∫ ∞

t

dt
a

= a
∫ ∞

a

da
Ha2 . (4)

Let us assume that infrared (IR) cut-off is the event horizon. Therefore replacing L in
Equation (2) with Rh, we get the density of Barrow HDE ρDE as

ρDE = CRh
2(∆−1). (5)

where Rh = radius of event horizon and C is constant. The deformation effect is quantified
by ∆. As the DM is in the form of a dust particle, we can consider it as pressureless DM,
i.e., pm = 0. The two Friedmann equations are 3H2 = ρDE + ρm and 6 ä

a = −(ρDE + ρm +
3(pDE + Π)), where Π = Viscous Pressure = −3Hξ and ξ = ξo + ξ1H + ξ2(Ḣ + H2).

The conservation equation for pressureless DM is ρ̇m + 3Hρm = 0. By solving the
expression, we get

ρm = ρm0a−3. (6)

Now we are introducing density parameters Ωm and ΩDE and they are given by

Ωm ≡
1

3H2 ρm, (7)

and
ΩDE ≡

1
3H2 ρDE. (8)

For ∆ = 1, the scenario coincides with ΛCDM cosmology with ρDE = constant = Λ.
Using density parameters from expressions (7) and (8) in the expressions (4) and (5), we
obtain ∫ ∞

x

dx
Ha

=
1
a

(
C

3H2ΩDE

) 1
2(1−∆)

. (9)
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Using ρm from Equation (6) in Equation (7), we obtain

Ωm = Ωm0
H0

2

a3H2 . (10)

where Ωm0H0
2 = ρm0

3 . Now using the Friedmann Equation Ωm + ΩDE = 1 and also using
Equations (8) and (10), we get

1
aH

=

√
a(1−ΩDE)

H0
√

Ωm0
. (11)

Inserting Equation (11) into (9) results in

∫ ∞

x

√
a(1−ΩDE)

H0
√

Ωm0
dx =

1
a

(
C

3H2ΩDE

) 1
2(1−∆)

. (12)

Differentiating Equation (12) with respect to x = lna, one gets

Ω
′
DE

ΩDE(1−ΩDE)
= 2∆ + 1 + Q(1−ΩDE)

∆
2(∆−1) (ΩDE)

1
2(1−∆) e

3∆
2(∆−1) x. (13)

where Q ≡ 2(1 − ∆)(C
3 )

1
2(∆−1) (H0

√
Ωm0)

∆
1−∆ . Equation (13) is the evolution of Barrow

HDE in a flat universe for dust matter. For ∆ = 0, it coincides with the usual HDE, i.e.,

Ω′DE]∆=0 = ΩDE(1−ΩDE)(1 + 2
√

3ΩDE
C ). Now from Equation (11), we have

H =
H0
√

Ωm0

a
√

a(1−ΩDE)
. (14)

From Equation (3) taking H from Equation (14), we get Rh as

Rh =
a
√
−a(ΩDE − 1)
H0
√

Ωm0
+ e

H0
√

Ωm0t

a
√
−a(ΩDE−1) C1. (15)

Now using this Rh in Equation (5), we obtain the reconstructed density of Barrow
HDE ρDE,rec as

ρDE,rec = C

(
C1e

H0
√

Ωm0t
a
√

a−aΩDE +
a
√

a− aΩDE

H0
√

Ωm0

)2(−1+∆)

. (16)

As now we have ρDE,rec (Equation (16)), H (Equation (14)) and let us take
pe f f = pDE + Π and using these in the conservation equation ρ̇DE,rec + 3H(ρDE,rec + pe f f ) = 0,
we obtain

pe f f =

1
3H0
√

Ωm0
a
√

a(1−ΩDE)

−
3CH0

C1e

H0
√

Ωm0t
a
√

a−aΩDE +
a
√

a−aΩDE
H0
√

Ωm0


2(−1+∆)

√
Ωm0

a
√

a(1−ΩDE)
−

2CC1e

H0
√

Ωm0t
a
√

a−aΩDE H0

C1e

H0
√

Ωm0t
a
√

a−aΩDE +
a
√

a−aΩDE
H0
√

Ωm0


−3+2∆

√
Ωm0(−1+∆)

a
√

a−aΩDE

.

(17)
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Therefore, thermodynamic pressure pDE = pe f f −Π. Hence,

pDE =
(

1
3a
√

a−aΩDE

)−aCH0
2√a− aΩDE

(
C1e

H0
√

Ωm0t
a
√

a−aΩDE + a
√

a−aΩDE
H0
√

Ωm0

)2∆

Ωm0

(
3a
√

a− aΩDE + C1e
H0
√

Ωm0t
a
√

a−aΩDE H0
√

Ωm0(1 + 2∆)

)
(

a
√

a− aΩDE + C1e
H0
√

Ωm0t
a
√

a−aΩDE H0
√

Ωm0

)−3

+ 9H0
√

Ωm0ξ

.

(18)

which is the thermodynamic pressure of DE involving the viscous term ξ. As the viscous
term is involved here, we can take pDE = effective pressure. Hence, effective pressure pe f f

is Equation (18). As we know the effective Eos, we f f =
pe f f

ρDE,rec
. Thereby, using pe f f from

Equation (18) and ρDE,rec from Equation (16), we get effective EoS as

we f f =

C1e

H0
√

Ωm0t
a
√

a−aΩDE +
a
√

a−aΩDE
H0
√

Ωm0


2−2∆

3aC
√

a−aΩDE

−aCH0
2√a− aΩDE

(
C1e

H0
√

Ωm0t
a
√

a−aΩDE + a
√

a−aΩDE
H0
√

Ωm0

)2∆

Ωm0

(
3a
√

a− aΩDE + C1e
H0
√

Ωm0t
a
√

a−aΩDE H0
√

Ωm0(1 + 2∆)

)
(

a
√

a− aΩDE + C1e
H0
√

Ωm0t
a
√

a−aΩDE H0
√

Ωm0

)−3

+ 9H0
√

Ωm0ξ

 .

(19)

Now we will insert ∆ in Π, to make it a viscous pressure in Barrow HDE. Now
using ρDE,rec from Equation (16), we f f from Equation (19) in the conservation equation
ρ̇DE,rec + 3HρDE,rec(1 + we f f ) = 0, we get H. Let us name it as Hrec, which is given by

Hrec =

−

2CC1e
H0
√

Ωm0t
a
√

a−aΩDE H0
3

(
C1e

H0
√

Ωm0t
a
√

a−aΩDE + a
√

a−aΩDE
H0
√

Ωm0

)2∆

Ωm0
3/2(−1 + ∆)


(
−9a4(−1 + ΩDE)

√
a− aΩDEξ − 27a3C1e

H0
√

Ωm0t
a
√

a−aΩDE H0(−1 + ΩDE)
√

Ωm0ξ+

9C1
3e

3H0
√

Ωm0t
a
√

a−aΩDE H0
3Ωm0

3/2ξ+

aC1e
H0
√

Ωm0t
a
√

a−aΩDE H0
2√a− aΩDEΩm0−2C

(
C1e

H0
√

Ωm0t
a
√

a−aΩDE + a
√

a−aΩDE
H0
√

Ωm0

)2∆

(−1 + ∆) + 27C1e
H0
√

Ωm0t
a
√

a−aΩDE ξ

−1

.

(20)

Let us assume the power-law form of scale factor as a(t) = a0(t− t0)
n. As we know

that H = ȧ
a , by using the power-law form of scale factor, we get H. Let us denote this H by

Hrecc, which is given by

Hrecc =
n

t− t0
. (21)

It is obvious that Hrecc is defined for the case t 6= t0, i.e., H will be having singularity
at t = t0. Now, by using Hrecc in place of H in ξ i.e., ξ = ξ0 + ξ1Hrecc + ξ2(Ḣrecc + H2

recc).
Then, using this ξ and H as Hrec from Equation (20) in Π = −3Hξ, we obtain the viscous
pressure in Barrow HDE as
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Π =(
6CC1el H0

3Ω3/2
m0

(
C1el + j

)2∆
(−1 + ∆)(k + (−1 + n)nξ2)

)
(

9C1
3e3l H0

3Ω3/2
m0 (k + (−1 + n)nξ2)− 27a0

3C1el H0(−1 + ΩDE)
√

Ωm0(t− t0)
3n

(k + (−1 + n)nξ2) + 9a0
3(t− t0)

3n(−a0(−1 + ΩDE)(t− t0)
n)3/2(k + (−1 + n)nξ2)+

a0C1e2l H0
2Ωm0(t− t0)

n
√
−a0(−1 + ΩDE)(t− t0)n(

−2Ce−l
(

C1el + j
)2∆

(t− t0)
2(−1 + ∆) + 27C1(k + (−1 + n)nξ2)

))−1
,

(22)

where, l = − H0(−1+ΩDE)
√

Ωm0t
(−a0(−1+ΩDE)(t−t0)n)3/2 , k = (t − t0)(tξ0 − t0ξ0 + nξ1),

j =
a0(t−t0)

n
√
−a0(−1+ΩDE)(t−t0)n

H0
√

Ωm0
. Now we will reconstruct a thermodynamic DE pres-

sure i.e., pDE,rec to make it thermodynamic pressure of viscous Barrow HDE. Thus, in
the conservation equation ρ̇DE,rec + 3H(ρDE,rec + pDE,rec + Π) = 0, using ρDE,rec from
Equation (16), Π from Equation (22), H as Hrec from Equation (20), we obtain pDE,rec,
which is a thermodynamic pressure of viscous Barrow HDE. Now using Taylor series
expansion in the term

√
1−ΩDE of Equation (11) and ignoring higher order derivatives,

we obtain 1
aH =

√
a

H0
√

Ωm0
(1− 1

2 ΩDE). From the above equation, we get ΩDE as

ΩDE = 2− 2H0
√

Ωm0

ȧ
√

a
. (23)

Now, using ΩDE from Equation (23) in Equation (19), we get we f f and plotted the
evolution of effective EoS (19) of viscous Barrow HDE against the redshift z in Figure 1.
In this figure, we have made the following choices of parameters: a0 = 0.2, C = 1045,
C1 = 0.00015, Ωm0 = 0.002, t0 = 0.20, ξ0 = 0.5, ξ1 = 0.1, ξ2 = 0.92, ∆ = 0.04. We
would like to mention that following Elizalde et al. [62], we have chosen H0 = 73.393 ±
0.1 km/s/Mpc . In this context we would like to mention that the parameters are not
chosen by any standard optimisation technique. Rather, we have confined ourselves to the
ranges already mentioned in the existing literature.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.999

-0.998

-0.997

-0.996

z

w
e
ff

Figure 1. Evolution of effective equation of state (EoS) (Equation (19)) of viscous Barrow Holo-
graphic Dark Energy against redshift z. The red, green and blue lines correspond to n = 0.7, 0.8, 0.9,
respectively.

From the figure we observe that behaviour of the effective EoS parameter we f f (19) is
quintessence. Now we will study the behaviour of ρDE,rec (Equation (16)) when ∆→ −1.
We have plotted the reconstructed density of Barrow HDE against redshift z in Figure 2 for
a range of values of ∆.
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0.0 0.2 0.4 0.6 0.8 1.0

2×1044

4×1044

6×1044

8×1044

1×1045

Δ

ρ
D
E
,r
e
c

Figure 2. Evolution of density of Barrow holographic dark energy (HDE) (Equation (16)) against ∆.
The red, green and blue line corresponds to z = −0.1, 0, 0.1, respectively.

In Figure 2 it is observed that density of Barrow HDE has an increasing tendency
when the deformation quantifying factor ∆ tends to 1. Moreover, at higher values of ∆, the
density converges to a point for early current and future universe. This indicates that at that
point we can study the evolution of the universe at large for different phases of evolution.

Using the expression of ΩDE from Equation (23) in the expression of bulk viscous
pressure of Barrow HDE Π, i.e., Equation (22), we have plotted Π versus redshift z versus
C in Figure 3. This figure shows that the constant of Barrow HDE has a significant role to
play in the bulk viscous pressure. The effect of bulk viscosity is more for the higher values
of C than the lower values. It is further observed that under the current framework the
effect of bulk viscosity has a decaying pattern with redshift.

Figure 3. Evolution of bulk viscous pressure of Barrow HDE (Equation (22)) against redshift z and
against C, as shown in Equation (2).

3. Generalised Second Law of Thermodynamics of Viscous Barrow HDE

In this section, we will study the generalised second law of thermodynamics using
barrow entropy [46]. We consider the universe horizon to be the boundary of the thermo-
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dynamical system. We can take it as an apparent horizon, as it is the most appropriate one.
There are many choices in the literature and we chose here the apparent horizon [42–44].
The apparent horizon is given by

r̃A =
1√

H2 + k
a2

. (24)

where k quantifies the spatial curvature and hence k = 0, as we considered the universe to
be flat. Therefore Equation (24) becomes

r̃A =
1
H

. (25)

From the first Friedmann equation 3H2 = ρm + ρDE and Equation (25), we get

1
r̃2

A
=

1
3
(ρm + ρDE). (26)

Using ρm = ρm0a−3, a = a0(t− t0)
n and ρDE,rec from Equation (16) in place of ρDE in

Equation (26), we get apparent horizon r̃A.
Now we will check whether the total entropy of the system, i.e., sum of the entropy

enclosed by the apparent horizon plus entropy of the apparent horizon of the system is
a non-decreasing function of time or not. The apparent horizon r̃A is dependent on time.
Therefore, changes in apparent horizon dr̃A in time interval dt will contribute a change
in volume dV. Hence, the energy and entropy of the system will change by dE and dS,
respectively. The first law of thermodynamics is TdS = dE + PdV. Therefore, the dark
energy entropy and dark matter entropy will be [45]:

dSDE =
1
T
(PDEdV + dEDE), (27)

dSm =
1
T
(PmdV + dEm). (28)

where dSDE = DE entropy, dSm = DM entropy, PDE = DE pressure, Pm = DM pressure. V

is the universe volume bounded by apparent horizon and is given by V =
4πr̃3

A
3 . Therefore,

dV = 4π ˜rA
2dr̃A. We assume the system to be in equilibrium, so we can consider the

temperature of the universe fluids to be same. Dividing Equations (27) and (28) by t, we get

ṠDE =
1
T
(PDE4πr̃2

A ˙̃rA + ˙EDE), (29)

Ṡm =
1
T
(Pm4π ˜rA

2 ˙̃rA + Ėm). (30)

To consider the relationship between thermodynamical quantities ĖDE and Ėm with
cosmological quantities ρDE and ρm, we use

EDE =
4π

3
r̃3

AρDE, (31)

Em =
4π

3
r̃3

Aρm. (32)

Now we have r̃A, so we can find ˙̃rA, EDE from Equation (31), Em from Equation (32)
and hence ĖDE and Ėm. We consider T ≈ horizon temperature (Th) =

1
2πr̃A

. Therefore, we
can calculate ṠDE and Ṡm from Equations (29) and (30), respectively. Now we will calculate
horizon entropy Ṡh. Applying entropy expression to a deformed black hole Equation (1)
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with standard horizon area A = 4πr̃2
A, we get Sh = γr̃2(∆+1)

A , where γ ≡
(

4π
A0

)1+∆
.

Therefore, horizon entropy is given by

Ṡh = γ2(1 + ∆)r̃2∆+1
A

˙̃rA. (33)

Therefore, Ṡtotal = ṠDE + Ṡm + Ṡh. After calculating Ṡtotal , we plotted it in Figure 4.
In this figure, we have considered a0 = 0.001, C = 0.09, C1 = 0.00015, H0 = 73.32,
Ωm0 = 0.002, t0 = 0.20, ξ0 = 0.000005, ξ1 = 0.00001, ξ2 = 0.92, ρm0 = 0.32, A0 = 0.00905.
From the figure we have seen that Ṡtotal is positive and is non-decreasing. Hence, it satisfies
the second law of thermodynamics. This implies the validity of the generalised second
law of thermodynamics in the case of viscous Barrow HDE. It is further observed that
with evolution of the universe Ṡtotal is increasing. This indicates that the validity of the
generalised second law of thermodynamics is expected to occur with the evolution of the
universe in case of viscous Barrow HDE.

Figure 4. Plot of Ṡtotal of viscous Barrow HDE against the cosmic time t and ∆.

4. Barrow HDE as a Specific NO HDE

In this section, we consider Barrow HDE as a particular case of NO HDE. The NO
HDE was proposed in the work of Nojiri and Odintsov [34]. This was further studied
in [11]. The DE density for NO HDE is defined as

ρNO =
3c2

L2 , (34)

with
c
L
=

1
Rh

(α0 + α1Rh + α2Rh
2), (35)

where Rh is the future event horizon discussed in Equations (3) and (4). For the choice of
power law form of scale factor a(t) = a0(t− t0)

n, we have IR cut off L as

L =
c

(n−1)α0
t+C2(n−1)(t−t0)n−t0

+ α1 +
(t−t0)α2

n−1 + C2(t− t0)nα2

. (36)

At this juncture, before passing on to the reconstruction approach let us have an
overview of the background of the NO HDE. In this context, it may be noted that Nojiri
and Odintsov [34] demonstrated a unifying approach to the early and late-time universe
through a phantom cosmology. They considered a gravity-scalar system containing the
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usual potential and scalar coupling function within the kinetic term. Their study [34]
resulted in the possibility of a phantom–non-phantom transition in such a manner that the
universe could have the phantom EoS in the early as well as in the late-time. Contrary to
the study of [34], our work, a specific case of NO HDE, has led to a quintessence behaviour
with no crossing of the phantom boundary; see Figure 1. In this connection, we further
note that the generalised HDE with NO cut-off, as proposed in [34], suggested a unified
cosmological scenario for tachyon phantoms and for time-dependent phantomic EoS. We
further take into account the study of Nojiri and Odintsov [63], where a generalised HDE
was proposed with infrared cut-off identified with the combination of the FRW universe
parameters. Their study took into account the Hubble rate H(t) = f0|ts − t|α. However, in
our study, we have taken into consideration a Hubble rate H = n

t−t0
, for which we could

get a universe where the generalised second law of thermodynamics has come out to be
valid. Hence, we can state that the Barrow HDE, a specific case of more general NO HDE
can lead to a universe where the generalised second law of thermodynamics is valid. Nojiri
et al. [64] established that at late times, the effective fluid can act as the driving force behind
the accelerated expansion in the absence of a cosmological constant. Consistent with the
findings of [64] in our work on a specific form of NO HDE, the generalised second law
appeared to be valid without any cosmological constant. In this context let us mention
the work of Nojiri et al. [65], who applied the HP at early times to realise the bounce
scenario. The current study with a specific NO HDE cut-off can be further extended to
check the realisation of holographic bounce and to study the mechanism of holographic
preheating [65] under this framework. Lastly, let us mention the study of Nojiri et al. [66],
which confronted the cosmological scenario arising from the application of non-extensive
thermodynamics with varying exponents. Their study could provide a description of
both inflation and late-time acceleration with the same choices of parameters. We further
reiterate that the current Barrow HDE can be examined for its realisation for early inflation
and late-time acceleration as a specific case of NO HDE.

Now we demonstrate Barrow HDE as a specific case of NO HDE.
In Equations (34)–(36), c, α0, α1 and α2 are numerical constants and C2 is the constant of
integration. Equation (36) represents the NO cut-off as a function of cosmic time t. Now,
we consider this NO cut-off as the cut-off for Barrow HDE and from this consideration,
we get Barrow HDE generalised by NO HDE and hence, we get the density for Barrow
HDE generalised through NO cut-off ρBarrowHDE, which is

ρBarrowHDE = C

 c
(n−1)α0

t+C2(n−1)(t−t0)n−t0
+ α1 +

(t−t0)α2
n−1 + C2(t− t0)nα2

2(−1+∆)

. (37)

We will find the thermodynamic pressure for Barrow HDE generalised through NO
cut-off, i.e., pBarrowHDE from the conservation equation ρ̇BarrowHDE + 3H(ρBarrowHDE +
pBarrowHDE) = 0, we get pBarrowHDE. Hence, the EoS parameter for Barrow HDE gener-
alised through NO cut-off i.e., wBarrowHDE can be calculated by using ρBarrowHDE from
Equation (37) and pBarrowHDE on equation wBarrowHDE = pBarrowHDE

ρBarrowHDE
. In Figure 5, we have

plotted the EoS parameter for Barrow HDE as a specific case of NO HDE. In this figure, the
evolution of the reconstructed EoS parameter is demonstrated for ∆ = 0.4 and the range
of values of 1.5 ≤ n ≤ 2. It is apparent from this figure that for smaller values of n, the
transition from quintessence to phantom is happening at an earlier stage of the universe.
However, for n ≈ 2, the transition is happening at a later stage. Therefore, in general
we can say that the EoS parameter for Barrow HDE reconstructed through NO HDE is
characterise by quintom behaviour. Moreover, for n ≈ 1.56, we have wBarrowHDE ≈ −1
for z = 0 and hence, it is consistent with the observation. Hence, we can conclude that
as the IR cut-off for Barrow HDE is reconstructed through NO HDE, the transition from
quintessence to phantom is available. It further indicates that under this reconstruction
scheme the universe may end with a Big-Rip in the future.
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Figure 5. Evolution of the EoS parameter for Barrow HDE generalised through the Nojiri–Odintsov
(NO) cut-off, i.e., wBarrowHDE against the redshift z and against n.

4.1. Generalised Second Law of Thermodynamics for Barrow HDE with NO Cut-Off

In this subsection, we have studied the generalised second law of thermodynamics
for Barrow HDE with NO cut-off using Barrow entropy as in Section 3. We have proceeded
similarly as Section 3 just by taking the scale factor as a(t) = a0(t− t0)

n, with n > 0. We
have calculated the total entropy of the Barrow HDE with NO cut-off, i.e., Ṡtotal,BarrowHDE,
and plotted this in Figure 6 against the cosmic time t. In this figure, we have considered
a0 = 0.001, c = 0.06, α0 = 0.004, α1 = 0.005, α2 = 0.0003, C = 0.00015, C2 = 0.09, t0 = 0.20,
∆ = 0.04, ρm0 = 0.32, A0 = 0.00905. Figure 6 indicates that Ṡtotal,BarrowHDE is positive and
non-decreasing. Therefore, we have observed the validity of the generalised second law of
thermodynamics when Barrow HDE is considered as a specific case of NO HDE.
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0.000000

5.×10-6
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0.000015
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to
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l,
B
a
rr
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Figure 6. Plot of Ṡtotal,BarrowHDE of Barrow HDE with NO cut-off against the cosmic time t. The red,
green and blue lines correspond to n = 0.9 , 0.8 and 0.7, respectively.

5. Concluding Remarks

Motivated by the work of Saridakis [41], the present study attempts to probe the
cosmological consequences of Barrow HDE and its thermodynamics. In the first phase
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of the study, we have studied the effect of bulk viscosity in the presence of Barrow HDE.
We have reconstructed the density of Barrow HDE as ρDE,rec in Equation (16). We also
found effective pressure pe f f of viscous Barrow HDE as in Equation (18). After finding
pe f f (Equation (18)), we have derived effective EoS of viscous Barrow HDE we f f as in
Equation (19). Thereafter, we calculated viscous pressure Π in Equation (22) and we also
reconstructed thermodynamic pressure pDE,rec of viscous Barrow HDE. In Figure 1, we
have plotted we f f (Equation (19)) versus redshift z. From Figure 1, we observed that
the behaviour of we f f (Equation (19)) is quintessence. Next, we studied the behaviour
of ρDE,rec (Equation (16)) as ∆ → 1 (see Figure 2). It is apparent from this figure that
there is an increasing tendency of ρDE,rec (Equation (16)) as the deformation quantifying
factor ∆ → 1, which indicates that we can study the evolution of the universe in its
different phases. In addition, we have studied the behaviour of the bulk viscous pressure Π
(Equation (22)) under the purview of Barrow HDE with the evolution of the universe for a
range of values of C in Figure 3. The study demonstrated above shows the decaying effect of
bulk viscous pressure with the evolution of the universe. Furthermore, the positive impact
of the deformation quantifying factor on the bulk viscous pressure is understandable from
this figure. This is in contrast with the finding of [67], where the effect of bulk viscosity
was found to have an increasing pattern under the purview of holographic Ricci DE.

In Section 3, we have demonstrated the generalised second law of thermodynamics
under the purview of the bulk-viscosity of the Barrow HDE. Here, for the study we have
taken apparent horizon as the enveloping horizon of the universe. We have calculated the
total entropy Ṡtotal of the system. The Ṡtotal has been plotted in Figure 4, which shows that
Ṡtotal corresponding to the viscous Barrow HDE is increasing and is staying at a positive
level. Therefore, we conclude that the generalised second law of thermodynamics is obeyed
by this model [68]. This finding is consistent with the study of [68], where the validity of
generalised second law of thermodynamics was examined in the presence of viscous DE
and it was observed that the generalised second law of thermodynamics is fulfilled in the
presence of bulk viscosity. However, the approach of the current study differs from Setare
and Sheykhi [68] in the sense that the standard Eckart approach is adopted here.

In Section 4, we have demonstrated reconstructed schemes of Barrow HDE as a specific
NO HDE. We have reconstructed the density, i.e., ρBarrowHDE in Equation (37) for Barrow
HDE generalised through NO cut-off. We have also reconstructed the EoS parameter
wBarrowHDE for Barrow HDE generalised through NO cut-off and plotted it in Figure 5.
This figure shows the quintom behaviour of wBarrowHDE. Moreover, wBarrowHDE ≈ −1 at
z = 0 for some values of n. It also suggests that the universe may end with a Big-Rip in the
future. Finally, for this reconstructed Barrow HDE we have demonstrated the generalised
second law of thermodynamics. For the Barrow HDE with NO cut-off it is observed that
(see Figure 6) the time derivative of the total entropy is staying at a positive level and
hence, it is concluded that the generalised second law holds if we consider Barrow HDE as
a specific case of NO HDE.

While concluding, let us have a look into the reconstructed Barrow HDE for its
attainability of a ΛCDM fixed point. It is done through statefinder parameters [69,70]
r =

...a
aH3 , s = r−1

3(q− 1
2 )

, where q is the deceleration parameter given by q = −ä
aH2 . The

trajectories in the {r− s} plane can exhibit different behaviours for different models. The
deviation from the point (1, 0) indicates the departure of a model from ΛCDM model. In
the present study, the reconstructed Barrow HDE is tested for its deviation from ΛCDM
model through the statefinder trajectory plotted in Figure 7 for different values of n. It
is observed that this reconstructed Barrow HDE can attain r ≈ 1, s ≈ 0. Hence, we can
conclude that this model is very close to ΛCDM. Furthermore, it is also observed that the
statefinder trajectories cannot go beyond the ΛCDM fixed point. In this context, let us
comment on the departure of the model from ΛCDM. The attaintment of ΛCDM leads
us to interpret that ΛCDM-type cosmology can be reconstructed by Barrow HDE with
the Nojiri–Odintsov cut-off in the present formulation that included dark matter. The
asymptotic behaviour of density at late times has been observed under this formulation



Symmetry 2021, 13, 562 13 of 15

and hence we can interpret that even without a cosmological constant we can reproduce
ΛCDM cosmology under the current framework. Hence, we can finally comment that
although the current model is deviated from ΛCDM, with appropriate formulation the
model can reproduce ΛCDM at late times. However, as the statefinder trajectories could
not go beyond the ΛCDM fixed point, we can say that the current model cannot interpolate
between dust and ΛCDM.

ΛCDM

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

r

s

Figure 7. The statefinder trajectory for the reconstructed Barrow HDE. The ΛCDM fixed point is
found to be attainable by the model.

We propose to carry out a similar viscous cosmology under the purview of modified
theories of gravity in future with the background evolution as Barrow HDE. While con-
cluding we would like to draw the attention of the readers to the previously published
two works [22,23] by the authors of the present paper, where the inflationary cosmology
was demonstrated through a scalar field model and a generalised version of HDE. In a
similar manner we propose to investigate the slow roll parameters under the consideration
of Barrow HDE with NO cut-off as the fluid responsible for the inflationary expansion.
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