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Abstract: A cubic m-polar fuzzy set (CmPFS) is a new hybrid extension of cubic set (CS) and m-polar

fuzzy set (mPFS). A CS comprises two parts; one part consists of a fuzzy interval (may sometimes

be a fuzzy number) acting as membership grade (MG), and the second part consists of a fuzzy

number acting as non-membership grade (NMG). An mPFS assigns m number of MGs against

each alternative in the universe of discourse. A CmPFS deals with single as well as multi-polar

information in the cubic environment. In this article, we explore some new aspects and consequences

of the CmPFS. We define score and accuracy functions to find the priorities of alternatives/objects

in multi-criteria decision-making (MCDM). For this objective, some new operations, like addition,

scalar/usual multiplication, and power, are defined under Dombi’s t-norm and t-conorm. We develop

several new aggregation operators (AOs) using cubic m-polar fuzzy Dombi’s t-norm and t-conorm.

We present certain properties of suggested operators like monotonicity, commutativity, idempotency,

and boundedness. Additionally, to discuss the application of these AOs, we present an advanced

superiority and inferiority ranking (SIR) technique to deal with the problem of conversion from a

linear economy to a circular economy. Moreover, a comparison analysis of proposed methodology

with some other existing methods is also given.

Keywords: cubic m-polar fuzzy set; Dombi’s operations; cubic m-polar fuzzy aggregation operators

with P-order (R-order); SIR technique; multi-criteria group decision making

1. Introduction

The three core concepts of conventional linear economy (CLE) are assemble, use, and
dispose. This illustrates the acquisition of raw materials and their conversion into products
that are ultimately discarded as waste. By depleting natural resources and adding toxins
to the atmosphere, such waste generation causes environmental degradation. Natural
resource extraction is inextricably linked to the so-called CLE [1–4]. The carcinogenic effects
of human activities on the environment, such as water scarcity, soil depletion, greenhouse
effect, and smog weather, are major global concerns. Climate change is, in reality, the
most pressing problem we face. As a result, the United Nations Environment Programme
(UNEP) has devised a broad definition of sustainable development, which is a concept that
includes not only economic growth and environmental protection, but also social inclusion.
Without a doubt, the CLE has aided humanity, but it has also been a big source of concern
due to the challenges it poses. We are all aware that our common environment is insecure
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and unsustainable. We are aware of its complexities, such as waste generation, natural
resource use, and biodiversity depletion, among others. Aside from these problems, we
want to help our economies and provide opportunities to the world’s growing population.

The ecological effects of CLE, while guaranteeing its benefits for humankind, cannot be
avoided, but can be minimized to some extent. The minimizing effort of the adversities of
CLE is referred as circular economy (CE) [1–4]. A CE is structured to recycle and regenerate
goods, parts, and resources, allowing for a considerable difference between technological
and biological processes at all periods of the recycling process. CE is not a new concept;
rather, it is a modification of CLE, which guarantees a minor net impact on the climate.
CE is intended to restore any harm to the resources while guaranteeing as little waste as
possible during the entire life cycle of a good. A CE is an adjunct to a CLE, where resources
are preserved as long as possible, and the optimum displacement is collected, retained,
and regenerated at the end of each access lifespan. Many biochemical and geochemical
cycles around the motivated the idea of circular economy. For instance, water evaporates
from the earth water bodies, forms rain drops, comes back to the earth and again becomes
a part of the rivers, seas, oceans etc. The idea of CE is being actively encouraged by many
corporations and governments round the world.

Although businesses are agile and well-equipped, many people worldwide have
attended series of conferences on sustainable practices, with discussions how well circular
economy guidelines could be coordinated and applied. If we assume that a lack of creative
business models would interfere with creating a sustainable future, it appears critical to
identify more forward-thinking alternatives. In this regard, we see the circular economy
as a modern way to practice sustainability that stems from the need for companies of all
sizes to retain flexibility in order to meet these challenges. Despite the growing popularity
of CE as a business model, there is still little formal empirical discussion in the literature
on enterprise risk management . Financial/sustainable success is also seen as a priority
over ecological, social, and ethical values in light of the numerous academic debates
on sustainable and environmentally responsible businesses. As a result, the circular
economy is a crucial and timely idea to investigate. The circular economy has captured
the minds of elected officials and business leaders in order to help meet the overwhelming
environmental goals. It is a practical way to improve asset flow efficiency and allocation
of current supply and frameworks through material transfer, recycling, and conservation,
with a focus on improving the effectiveness of existing performance measurement in
businesses. Many scientists have worked tirelessly to develop mathematical models for
solving CE decision problems in unpredictable environments. The readers are referred to
the following papers for ore information [5–9].

1.1. Literature Review

There is an overwhelming amount of uncertain and vague information in a wide
range of real scenarios. While dealing with real-life challenges such as decision-making,
medical diagnosis, pattern recognition, sustainability, and many others, uncertainties
play a significant role, and it is a challenging task for decision-makers to make sensible
decisions while dealing with imperfect, uncertain, or vague data. In fact, the majority of
the ideas we come across in our daily lives are ambiguous. In certain contexts, dealing
with apprehension or confusion is a significant problem. Vagueness or ambiguity can be
evident in a variety of ways, resulting in a wide range of concerns. As a result, there is a
need to deal with the uncertainties.
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This idea was discussed by Zadeh [10] in 1965, who introduced a revolutionary idea
of fuzzy set (FS) as a direct extension of crisp set. Researchers have introduced various
theories and models to cope with the uncertainties in the real-life problems. Atanassov [11]
introduced the intuitionistic fuzzy set (IFS), Molodtsov [12] originated the notion of a soft
set (SS), Zhang [13,14] presented the idea of bipolar fuzzy set (BFS), Smarandache [15,16]
proposed neutrosophic set, Cuong [17] introduced picture fuzzy set (PiFS), Yager [18,19]
proposed Pythagorean fuzzy set (PyFS), and Yager [20] proposed q-rung orthopair fuzzy
set (q-ROFS). These models have strong acceptance for modeling uncertainties in decision-
making problems [21–25]. Dombi aggregation operators for information aggregation in
the environment of different fuzzy sets have been studied by many researchers [26–32].
Chen et al. [33] introduced the idea of m-polar fuzzy sets to express multi-polarity in the
objects/alternatives. Jun et al. [34] introduced cubic sets and their internal and external
behaviors. Riaz and Hashmi [35] developed the notion of cubic m-polar fuzzy sets and
established cubic m-polar fuzzy averaging aggregation operators for agribusiness MAGDM.
Recently, Riaz and Hashmi [36–38] introduced some new extensions of fuzzy sets named as
linear Diophantine fuzzy set (LDFS), soft rough linear Diophantine fuzzy set, and spherical
linear Diophantine sets. Kamaci [39] introduced algebraic structure to LDFS with an
interesting application to coding theory, which is based on LDFS codes.

Innovation of multi-criteria decision-making (MCDM) in fuzzy set theory is still an
important topic at present. MCDM is a branch of decision science theory that is considered
a cognitive based human behavior for choosing the best option under multiple criteria and
has been widely applied across a variety of domains. One of the most difficult issues is to
address uncertainties in MCDM by an efficient fuzzy model. Another objective in MCDM
is to find ranking of feasible objects and then finally the selection of an optimal object.
In actual decision-making, the individual needs to provide the assessment of the choices
made by different types of assessment conditions, such as crisp numbers and intervals.
However, in many situations, it is difficult for a person to opt for the correct option due to
the existence of a variety of data inconsistencies that may occur due to lack of information
or human error. Many aggregation operators (AOs) have been defined for information
fusion [40–43]. Jain et al. [44] greatly contribution to circular economy by giving a DM
solution in green marketing strategy.

1.2. Objectives and Organization of the Paper

The first objective of this paper is to address uncertainties more effectively by using
cubic m-polar fuzzy numbers (CmPFNs). The second objective is to extend Dombi’s op-
erations to CmPFNs and develop various aggregation operators listed as follows. Cubic
m-polar fuzzy Dombi P-averaging operator (CmPFDPAO).Cubic m-polar fuzzy Dombi
R-averaging operator (CmPFDRAO). Cubic m-polar fuzzy Dombi weighted P-averaging
operator (CmPFDWPAO). Cubic m-polar fuzzy Dombi weighted R-averaging operator
(CmPFDWRAO). Cubic m-polar fuzzy Dombi ordered weighted P-averaging operator
(CmPFDOWPAO). Cubic m-polar fuzzy Dombi ordered weighted R-averaging operator
(CmPFDOWRAO). Cubic m-polar fuzzy Dombi hybrid P-averaging Operator (CmPFDH-
PAO). Cubic m-polar fuzzy Dombi hybrid R-averaging operator (CmPFDHRAO). The
third objective is to investigate certain properties of suggested operators like monotonicity,
commutativity, idempotency, and boundedness. Additionally, proposed Dombi’s AOs
are more useful to investigate ranking of objects/alternatives in MCDM with the help of
CmPFNs. The fourth objective to develop an advanced superiority and inferiority ranking
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(SIR) technique to deal with the problem of conversion from the linear economy to the
circular economy.

The remainder of the paper is organized as follows. In Section 2, some basic concepts
like fuzzy sets, m-polar fuzzy sets, and cubic sets are reviewed. In Section 3, we discuss
some results of cubic m-polar fuzzy sets. In Section 4, we present some Dombi’s operations
for cubic m-polar fuzzy environment. In Section 5, some cubic m-polar fuzzy Dombi
aggregation operators with P-order are defined. In Section 5, some cubic m-polar fuzzy
Dombi aggregation operators with R-order are developed. An interesting application to
the circular economy using the proposed operators is given in Section 7. An advanced
superiority and inferiority ranking (SIR) technique to deal with the problem of conversion
from the linear economy to the circular economy is developed in Section 7. Lastly, the
conclusion of this research work is given in Section 8.

2. Preliminaries

In this section, we review some basic concepts of fuzzy sets, m-polar fuzzy sets, and
cubic sets.

Definition 1 ([10]). A fuzzy set in the universe of discourse Q is defined as

F = {(h̄, µF(h̄)) : h̄ ∈ Q}

where the membership function is µF : Q→ [0, 1] and the membership degree (MD) of h̄ is µF(h̄).

Definition 2 ([34]). A cubic set C̈ on a universe Q is an object of the form

C̈ = {(h̄, A(h̄), B(h̄)) : h̄ ∈ Q}

where A(h̄) is a fuzzy interval and B(h̄) is a fuzzy number assigned to the alternative h̄ representing the
membership and non-membership grades, respectively. For short, the cubic set can be denoted as 〈A, B〉.

Definition 3. An m-polar fuzzy set (mPFS) with universe Q is a mapping, Q −→ [0, 1]m, that
assigns m-independent fuzzy membership grades to each element of Q. An mPFS can be written as

MP = {〈γ, (µi(γ))
m
i=1〉 : γ ∈ Q}

Definition 4 ([35]). A cubic m-polar fuzzy set (CmPFS) in a universe W is an object like
Ccm = {(x, [µ−1 (x), µ+

1 (x)], [µ−2 (x), µ+
2 (x)], · · · , [µ−m(x), µ+

m(x)], µ1(x), µ2(x), · · · , µm(x)) :
x ∈ W}, where [µ−j (x), µ+

j (x)] are fuzzy intervals and µj(x) are fuzzy numbers. µ−j are called
lower fuzzy numbers and µ+

j are called upper fuzzy numbers. Briefly, we can write CmPFN as
([µ−j , µ+

j ], µj)
m
j=1.

Definition 5 ([34]). Given two fuzzy intervals Ja = [µ−a , µ+
a ] and Jb = [ν−b , ν+b ], then

1 Ja ≤ Jb ⇔ µ−a ≤ ν−b and µ+
a ≤ ν+b

2 Ja ≥ Jb ⇔ µ−a ≥ ν−b and µ+
a ≥ ν+b

3 Ja = Jb ⇔ µ−a = ν−b and µ+
a = ν+b

Definition 6 ([35]). Let A = ([µ−j , µ+
j ], µj)

m
j=1 and B = ([ν−j , ν+j ], νj)

m
j=1, be the two CmPFNs.

1 (P-Order) A ≤P B⇔ [µ−j , µ+
j ] ≤ [ν−j , ν+j ] and µj ≤ νj.

2 (R-Order) A ≤R B⇔ [µ−j , µ+
j ] ≤ [ν−j , ν+j ] and µj ≥ νj.
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3 (Equality) A = B⇔ [µ−j , µ+
j ] = [ν−j , ν+j ] and µj = νj

for all j = 1, 2, · · · , m.

2.1. Operations for CmPFNs

In this part we discuss some operations on CmPFNs (see [35]). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1,

i ∈ Ω, be the collection of CmPFNs. Then

1 (Complement) Ac
i = ([1− µ+

ij , 1− µ−ij ], 1− µij)
m
j=1

2 (P-Maximum) ∨P Ai = ([supi∈Ω µ−ij , supi∈Ω µ+
ij ], supi∈Ω µij)

m
j=1

3 (P-Minimum) ∧P Ai = ([infi∈Ω µ−ij , infi∈Ω µ+
ij ], infi∈Ω µij)

m
j=1

4 (R-Maximum) ∨P Ai = ([supi∈Ω µ−ij , supi∈Ω µ+
ij ], infi∈Ω µij)

m
j=1

5 (R-Minimum) ∧P Ai = ([infi∈Ω µ−ij , infi∈Ω µ+
ij ], supi∈Ω µij)

m
j=1

3. Some Results on CmPFS

In this section, we give some basic results of CmPFS that will help in the next section
to better understanding of the proposed aggregation operators.

Definition 7. A CmPFS Cm = {〈q, ([µ−j (q), µ+
j (q)], µj(q))m

j=1〉 : q ∈ Q} on a discourse Q is
said to be an Internal Cubic m-Polar Fuzzy Set (ICmPFS) if µ−j (q) ≤ µj(q) ≤ µ+

j (q), for all
q ∈ Q and j = 1, 2, · · · , m.

Definition 8. A CmPFS Cm = {〈q, ([µ−j (q), µ+
j (q)], µj(q))m

j=1〉 : q ∈ Q} is referred to as
External Cubic m-Polar Fuzzy Set (ECmPFS) if it is not internal, that is, if µ−j (q) � µj(q) �
µ+

j (q), for some q ∈ Q or j = 1, 2, · · · , m.
Thus, ECmPFS is simply the negation of ICmPFS.

Definition 9. A CmPFS Cm = {〈q, (Aj(q), µj(q))m
j=1〉 : q ∈ Q} is characterized as a Null Cubic

m-Polar Fuzzy Set (NCmPFS) if Aj(q) = 0 and µj(q) = 1 for all q ∈ Q and j = 1, 2, · · · , m.

Definition 10. If for a CmPFS Cm = {〈q, (Aj(q), µj(q))m
j=1〉 : q ∈ Q}, Aj(q) = 1 and

µj(q) = 0 for all q ∈ Q and j = 1, 2, · · · , m, it is called an Absolute Cubic m-Polar Fuzzy
Set (ACmPFS).

Theorem 1. The set of all ICmPFSs on a discourse Q is closed under the operation of complement;
that is, A is ICmPFS if and only if Ac is ICmPFS.

Proof. Consider an Internal Cubic m-Polar Fuzzy Set Cm = {〈q, ([µ−j (q), µ+
j (q)], µj(q))m

j=1〉 :
q ∈ Q}. Then µ−j (q) ≤ µj(q) ≤ µ+

j (q), for all q ∈ Q and j = 1, 2, · · · , m. This implies that

1− µ+
j (q) ≤ 1− µj(q) ≤ 1− µ−j (q),

for all q ∈ Q and j = 1, 2, · · · , m. This shows that Cc = {〈q, ([1− µ+
j (q), 1− µ−j (q)], 1−

µj(q))m
j=1〉 : q ∈ Q} is also an ICmPFS.

Remark 1. Since ECmPFS is the negation of ICmPFS, and a certain CmPFS falls in exactly one of
the two categories (by definition), the above characterization immediately characterizes the closeness
of the set of all ECmPFSs on a certain discourse X.
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Theorem 2. For a collection of ICmPFNs Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i ∈ Ω, P-maximum and

P-minimum are also ICmPFN.

Proof. Since A′is are ICmPFNs, µ−ij (x) ≤ µij(x) ≤ µ+
ij (x). This implies that

sup
i∈Ω

µ−ij (x) ≤ sup
i∈Ω

µij(x) ≤ sup
i∈Ω

µ+
ij (x),

and
inf
i∈Ω

µ−ij (x) ≤ inf
i∈Ω

µij(x) ≤ inf
i∈Ω

µ+
ij (x), j = 1, 2, · · · , m.

This shows that∨P Ai = ([supi∈Ω µ−ij , supi∈Ω µ+
ij ], supi∈Ω µij)

m
j=1 and∧P Ai = ([infi∈Ω µ−ij ,

infi∈Ω µ+
ij ], infi∈Ω µij)

m
j=1 are also ICmPFS.

Remark 2. R-minimum and R-maximum of ICmPFNs may not be ICmPFN. Similarly, R-
minimum, R-maximum, P-minimum and P-maximum of ECmPFNs may not be ECmPFN. The
counter examples are easy to compute.

In any decision-making process, ranking is a basic tool. Decision makers are required
to rank the uncertainties on the basis of which the most favorite alternative is filtered.
To help decision makers rank the vagueness in CmPF environment, we define score and
accuracy functions for CmPFNs.

Definition 11. Let Ǎ = (=j,℘j)
m
j=1 be a CmPFN. The score and accuracy functions are, respec-

tively, defined as

S(Ǎ) =
Σm

j=1|`(=j)− ℘j|
m

(1)

and

α(Ǎ) =
Σm

j=1(`(=j) + ℘j)

2m
, (2)

where `(=j) is the length of the fuzzy interval =j. It is clear that S(Ǎ) ∈ [−1, 1] and α(Ǎ) ∈ [0, 1].

Proposition 1. The ranking of CmPFNs with the help of the proposed score and accuracy functions
is observed as follows.

If Am and Bm are two CmPFNs. Then

• Am < Bm if S(Am) < S(Bm),
• If S(Am) = S(Bm), then Am < Bm if α(Am) < α(Bm),
• If, however, S(Am) = S(Bm) and α(Am) = α(Bm), then Am = Bm.

Definition 12. Let Am = 〈[µ−1 , µ+
1 ], [µ

−
2 , µ+

2 ], · · · , [µ−m , µ+
m ], µ1, µ2, · · · , µm〉 = 〈[µ−j , µ+

j ],
µj〉mj=1 and Bm = 〈[ν−1 , ν+1 ], [ν−2 , ν+2 ], · · · , [ν−m , ν+m ], ν1, ν2, · · · , νm〉 = 〈[ν−j , ν+j ], νj〉mj=1 be two
cubic m-polar fuzzy sets.

The distance between the two CmPFSs is defined by

d(Am,Bm) =

[
m

∑
j=1

∣∣∣∣∣µ
−
j + µ+

j

2
−

ν−j + ν+j

2

∣∣∣∣∣
m

+
m

∑
j=1
|µj − νj|m

]1/m

. (3)
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4. Extension of Dombi’s T-norm and T-conorm to CmPFSs

In 1982, Dombi [26] proposed some special kinds of t-conorm and t-norm. These no-
tions laid the foundation of various operations in different uncertainty environments.
On the basis of these operations, various kinds of aggregation operators (AOs) were de-
fined, which made the MCDM process very effective. Dombi t-conorm and t-norm are,
respectively, defined as follows:

Dom∗(k, p) = 1− 1

1 +
{(

k
1−k

)s
+
(

p
1−p

)s}1/s

Dom(k, p) =
1

1 +
{(

1−k
k

)s
+
(

1−p
p

)s}1/s

where s ≥ 1 and k, p ∈ [0, 1].

4.1. Dombi P-operations for Cubic M-polar Fuzzy Environment

Owing to Dombi t-conorm and t-norm, we define some basic Dombi P-operations for
CmPFS. LetAm = {(x, [µ−1 (x), µ+

1 (x)], [µ−2 (x), µ+
2 (x)], · · · , [µ−m(x), µ+

m(x)], µ1(x), µ2(x), · · · ,
µm(x)) : x ∈ X} and Bm = {(x, [ν−1 (x), ν+1 (x)], [ν−2 (x), ν+2 (x)], · · · , [ν−m (x), ν+m (x)], ν1(x),
ν2(x), · · · , νm(x)) : x ∈ X} be two CmPFSs with underlying set X. Then

• Am ⊕P Bm =

{(
x,
[

1− 1

1+{(
µ−j (x)

1−µ−j (x)
)s+(

ν−j (x)

1−ν−j (x)
)s}1/s

, 1− 1

1+{(
µ+j (x)

1−µ+j (x)
)s+(

ν+j (x)

1−ν+j (x)
)s}1/s

]
,

1− 1

1+{(
µj(x)

1−µj(x) )
s+(

νj(x)

1−νj(x) )
s}1/s

)m

j=1

}
• Am ⊗P Bm =

{(
x,
[

1

1+{(
1−µ−j (x)

µ−j (x)
)s+(

1−ν−j (x)

ν−j (x)
)s}1/s

, 1

1+{(
1−µ+j (x)

µ+j (x)
)s+(

1−ν+j (x)

ν+j (x)
)s}1/s

]
,

1

1+{(
1−µj(x)

µj(x) )s+(
1−νj(x)

νj(x) )s}1/s

)m

j=1

}
• (P-Scalar Multiplication)

λAm =

{(
x,
[

1− 1

1+{λ(
µ−j (x)

1−µ−j (x)
)s}1/s

, 1− 1

1+{λ(
µ+j (x)

1−µ+j (x)
)s}1/s

]
, 1− 1

1+{λ(
µj(x)

1−µj(x) )
s}1/s

)m

j=1

}
• (P-Power)

Aλ
m =

{(
x,
[

1

1+{λ(
1−µ−j (x)

µ−j (x)
)s}1/s

, 1

1+{λ(
1−µ+j (x)

µ+j (x)
)s}1/s

]
, 1

1+{λ(
1−µj(x)

µj(x) )s}1/s

)m

j=1

}
where s > 1.

Theorem 3. Let Am, Bm and Cm be the CmPFSs. Then

1. Am ⊕P Bm = Bm ⊕P Am

2. Am ⊗P Bm = Bm ⊗P Am

3. Am ⊕P (Bm ⊕P Cm) = (Am ⊕P Bm)⊕P Cm = Am ⊕P Bm ⊕P Cm

4. Am ⊗P (Bm ⊗P Cm) = (Am ⊗P Bm)⊗P Cm = Am ⊗P Bm ⊗P Cm

5. µ(λAm) = (µλ)Am

6. λ(Am ⊕P Bm) = λAm ⊕P λBm

7. λ(Am ⊗P Bm) = λAm ⊗P λBm
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8. (Am ⊕P Bm)λ = Aλ
m ⊕P B

λ
m

9. (Am ⊗P Bm)λ = Aλ
m ⊗P B

λ
m

10. (Aλ
m)

µ = A
λµ
m = A

µλ
m

Proof. We prove (without any loss) our claim by considering CmPFNs,Am = ([µ−j , µ+
j ],

µj)
m
j=1, Bm = ([ν−j , ν+j ], νj)

m
j=1 and Cm = ([ω−j , ω+

j ], ωj)
m
j=1, corresponding to the alterna-

tive x ∈ X. We only prove the statements for lower fuzzy numbers. The rest of the cases
are similar.

1. 2. The proof follows from definition.
3. (Am ⊕P Bm)⊕P Cm = 1− 1

1+

{(
µ−j

1−µ−j

)s

+

(
ν−j

1−ν−j

)s}1/s ⊕P ω−j

= 1− 1

1+





1− 1

1+


 µ−j

1−µ−j

s

+

 ν−j
1−ν−j

s
1/s

1

1+


 µ−j

1−µ−j

s

+

 ν−j
1−ν−j

s
1/s



s

+

(
ω−j

1−ω−j

)s



1/s

= 1− 1

1+

{(
µ−j

1−µ−j

)s

+

(
ν−j

1−ν−j

)s

+

(
ω−j

1−ω−j

)s}1/s

= 1− 1

1+


(

µ−j
1−µ−j

)s

+



1− 1

1+


 ν−j

1−ν−j

s

+

 ω−j
1−ω−j

s
1/s

1

1+


 ν−j

1−ν−j

s

+

 ω−j
1−ω−j

s
1/s



s

1/s

= µ−j ⊕P 1− 1

1+

{(
ν−j

1−ν−j

)s

+

(
ω−j

1−ω−j

)s}1/s

= Am ⊕P (Bm ⊕P Cm)

4. Similar to 3.
5. λAm = 1− 1

1+{λ(
µ−j

1−µ−j
)s}1/s

⇒ µ(λAm) = 1− 1

1+


µ



1− 1

1+{λ(
µ−j

1−µ−j
)s}1/s

1

1+{λ(
µ−j

1−µ−j
)s}1/s



s

1/s

⇒ µ(λAm) = 1− 1

1+

{
µλ

(
µ−j

1−µ−j

)s}1/s = (µλ)Am

6. λ(Am ⊕P Bm) = 1− 1

1+

{
λ

(
µ−j

1−µ−j

)s

+λ

(
ν−j

1−ν−j

)s}1/s

= 1− 1

1+





1− 1

1+

λ

 µ−j
1−µ−j

s
1/s

1

1+

λ

 µ−j
1−µ−j

s
1/s



s

1− 1

1+

λ

 ν−j
1−ν−j

s
1/s

1

1+

λ

 ν−j
1−ν−j

s
1/s



s

1/s
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= 1− 1

1+

{
λ

(
µ−j

1−µ−j

)s}1/s ⊕P 1− 1

1+

{
λ

(
ν−j

1−ν−j

)s}1/s

= λAm ⊕P λBm

7. 8. 9. Similar to 6.
10. Follows from definition.

Theorem 4. Let Am = ([µ−j , µ+
j ], µj)

m
j=1 and Bm = ([ν−j , ν+j ], νj)

m
j=1 be two ICmPFSs (we are

referring to CmPFNs as CmPFSs without any loss). ThenAm⊕PBm,Am⊗PBm, λAm (P-scalar
multiplication) andAλ

m (P-power) are are also ICmPFS.

Proof. Since Am is ICmPFS, so µ−j ≤ µj ≤ µ+
j ⇒ 1− µ+

j ≤ 1− µj ≤ 1− µ−j ⇒
1

1−µ−j
≤

1
1−µj

≤ 1
1−µ+

j
⇒

µ−j
1−µ−j

≤ µj
1−µj

≤
µ+

j

1−µ+
j
⇒
(

µ−j
1−µ−j

)s
≤
(

µj
1−µj

)s
≤
(

µ+
j

1−µ+
j

)s
.

Similarly for ICmPFS Bm,
(

ν−j
1−ν−j

)s
≤
(

νj
1−νj

)s
≤
(

ν+j

1−ν+j

)s
.

Adding both inequalities, we have(
µ−j

1−µ−j

)s
+

(
ν−j

1−ν−j

)s
≤
(

µj
1−µj

)s
+
(

νj
1−νj

)s
≤
(

µ+
j

1−µ+
j

)s
+

(
ν+j

1−ν+j

)s
.

⇒ 1− 1

1+

{(
µ−j

1−µ−j

)s

+

(
ν−j

1−ν−j

)s}1/s ≤ 1− 1

1+
{(

µj
1−µj

)s
+

(
νj

1−νj

)s}1/s ≤ 1−

1

1+

{(
µ+j

1−µ+j

)s

+

(
ν+j

1−ν+j

)s}1/s ,

for all j = 1, 2, · · · , m.

Following the same root, it can be easily proved that Am ⊗P Bm, λAm and Aλ
m are

also ICmPFSs.

Remark 3. IfAm and Bm are ECmPFSs, thenAm ⊕P Bm,Am ⊗P Bm, λAm, andAλ
m may not

be ECmPFSs. Counter examples are easy to compute.

4.2. Dombi R-operations for Cubic M-polar Fuzzy Sets

Let Am and Bm be the CmPFSs as mentioned in Section 2.1. Then

• Am ⊕R Bm =

{(
x,
[

1− 1

1+{(
µ−j (x)

1−µ−j (x)
)s+(

ν−j (x)

1−ν−j (x)
)s}1/s

, 1− 1

1+{(
µ+j (x)

1−µ+j (x)
)s+(

ν+j (x)

1−ν+j (x)
)s}1/s

]
,

1

1+{(
1−µj(x)

µj(x) )s+(
1−νj(x)

νj(x) )s}1/s

)m

j=1

}
• Am ⊗R Bm =

{(
x,
[

1

1+{(
1−µ−j (x)

µ−j (x)
)s+(

1−ν−j (x)

ν−j (x)
)s}1/s

, 1

1+{(
1−µ+j (x)

µ+j (x)
)s+(

1−ν+j (x)

ν+j (x)
)s}1/s

]
,

1− 1

1+{(
µj(x)

1−µj(x) )
s+(

νj(x)

1−νj(x) )
s}1/s

)m

j=1

}
• (R-Scalar Multiplication)

λAm =

{(
x,
[

1− 1

1+{λ(
µ−j (x)

1−µ−j (x)
)s}1/s

, 1− 1

1+{λ(
µ+j (x)

1−µ+j (x)
)s}1/s

]
, 1

1+{λ(
1−µj(x)

µj(x) )s}1/s

)m

j=1

}
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• (R-Power)

Aλ
m =

{(
x,
[

1

1+{λ(
1−µ−j (x)

µ−j (x)
)s}1/s

, 1

1+{λ(
1−µ+j (x)

µ+j (x)
)s}1/s

]
, 1− 1

1+{λ(
µj(x)

1−µj(x) )
s}1/s

)m

j=1

}

where s > 1.

Theorem 5. Let Am, Bm and Cm be the CmPFSs. Then

1. Am ⊕R Bm = Bm ⊕R Am

2. Am ⊗R Bm = Bm ⊗R Am

3. Am ⊕R (Bm ⊕R Cm) = (Am ⊕R Bm)⊕R Cm = Am ⊕R Bm ⊕R Cm

4. Am ⊗R (Bm ⊗R Cm) = (Am ⊗R Bm)⊗R Cm = Am ⊗R Bm ⊗R Cm

5. µ(λAm) = (µλ)Am

6. λ(Am ⊕R Bm) = λAm ⊕R λBm

7. λ(Am ⊗R Bm) = λAm ⊗R λBm

8. (Am ⊕R Bm)λ = Aλ
m ⊕R B

λ
m

9. (Am ⊗R Bm)λ = Aλ
m ⊗R B

λ
m

10. (Aλ
m)

µ = A
λµ
m = A

µλ
m

Proof. Similar to Theorem 3.

Remark 4. If Am and Bm are ICmPFNs (or ECmPFNs), then Am ⊕R Bm, Am ⊗R Bm, λAm

(R-Scalar Multiplication), and Aλ
m (R-Power) may not be ICmPFNs (or ECmPFNs). Counter

examples can be easily computed.

5. CmPF Dombi Aggregation Operators with P-order

In this section, we develop Dombi P-aggregation operators in cubic m-polar fuzzy
environment and give a brief description with the help of examples. These are cubic
m-polar fuzzy Dombi P-averaging operator (CmPFDPAO), Cubic m-polar fuzzy Dombi
weighted P-averaging operator (CmPFDWPAO), and cubic m-polar fuzzy Dombi ordered
weighted P-averaging operator (CmPFDOWPAO). We will examine some properties of the
proposed aggregation operators as well.

Definition 13. For the family of CmPFNs Am1 ,Am2 , · · · ,Amn , the cubic m-polar fuzzy Dombi
P-averaging operator is defined as

CmPFDPAO(Am1 ,Am2 , · · · ,Amn) = Am1 ⊕P Am2 ⊕P · · · ⊕P Amn .

Theorem 6. Let Ami = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the family of CmPFNs. Then their

aggregated value is again a CmPFN and

CmPFDPAO(Am1 ,Am2 , · · · ,Amn) =([
1− 1

1 + {Σn
i=1(

µ−ij
1−µ−ij

)s}1/s
, 1− 1

1 + {Σn
i=1(

µ+
ij

1−µ+
ij
)s}1/s

]
, 1− 1

1 + {Σn
i=1(

µij
1−µij

)s}1/s

)m

j=1

Proof. We can prove it by induction on n.
For n = 2, we have

CmPFDPAO(Am1 ,Am2) =
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([
1− 1

1+{(
µ−1j

1−µ−1j
)s+(

µ−2j
1−µ−2j

)s}1/s
, 1− 1

1+{(
µ+1j

1−µ+1j
)s+(

µ+2j
1−µ+2j

)s}1/s

]
, 1− 1

1+{(
µ1j

1−µ1j
)s+(

µ2j
1−µ2j

)s}1/s

)m

j=1

which is a CmPFN, by definition.
Suppose n > 2, and our proposed averaging formula is true for CmPFNs numbered

less than n.
Now we see that

CmPFDPAO(Am1 ,Am2 , · · · ,Amn) =([
1− 1

1+{Σn
i=1(

µ−ij
1−µ−ij

)s}1/s
, 1− 1

1+{Σn
i=1(

µ+ij
1−µ+ij

)s}1/s

]
, 1− 1

1+{Σn
i=1(

µij
1−µij

)s}1/s

)m

j=1

=

([
1− 1

1+{Σn−1
i=1 (

µ−ij
1−µ−ij

)s}1/s
, 1− 1

1+{Σn−1
i=1 (

µ+ij
1−µ+ij

)s}1/s

]
, 1− 1

1+{Σn−1
i=1 (

µij
1−µij

)s}1/s

)m

j=1

⊕P ([µ−nj, µ+
nj], µnj)

which is a CmPFN by induction hypothesis.

Remark 5. Theorem 4 implies that the aggregation of ICmPFNs Am1 ,Am2 , · · · ,Amn , under
CmPFDPAO is again an ICmPFN. However, there is no assurance about external aggregation.

Example 1. Let us consider four C3PFNs
Am1 = ([0.20, 0.27], [0.30, 0.41], [0.25, 0.31], 0.25, 0.80, 0.25)
Am2 = ([0.21, 0.29], [0.29, 0.40], [0.21, 0.33], 0.28, 0.77, 0.27)
Am3 = ([0.19, 0.25], [0.32, 0.38], [0.23, 0.29], 0.26, 0.82, 0.26)
Am4 = ([0.22, 0.26], [0.28, 0.39], [0.24, 0.32], 0.29, 0.81, 0.28).
For s = 4, the aggregation under C3PFDPAO is given by

CmPFDPAO(Am1 ,Am2 ,Am3 ,Am4) =([
1− 1

1+{Σ4
i=1(

µ−ij
1−µ−ij

)s}1/s
, 1− 1

1+{Σ4
i=1(

µ+ij
1−µ+ij

)s}1/s

]
, 1− 1

1+{Σ4
i=1(

µij
1−µij

)s}1/s

)3

j=1

=

([
1− 1

1+
{
( 0.2

1−0.2 )
4
+( 0.21

1−0.21 )
4
+( 0.19

1−0.19 )
4
+( 0.22

1−0.22 )
4}1/4 , 1− 1

1+
{
( 0.27

1−0.27 )
4
+( 0.29

1−0.29 )
4
+( 0.25

1−0.25 )
4
+( 0.26

1−0.26 )
4}1/4

]
,[

1− 1

1+
{
( 0.30

1−0.30 )
4
+( 0.29

1−0.29 )
4
+( 0.32

1−0.32 )
4
+( 0.28

1−0.28 )
4}1/4 , 1− 1

1+
{
( 0.41

1−0.41 )
4
+( 0.40

1−0.40 )
4
+( 0.38

1−0.38 )
4
+( 0.39

1−0.39 )
4}1/4

]
,[

1− 1

1+
{
( 0.25

1−0.25 )
4
+( 0.21

1−0.21 )
4
+( 0.23

1−0.23 )
4
+( 0.24

1−0.24 )
4}1/4 , 1− 1

1+
{
( 0.31

1−0.31 )
4
+( 0.33

1−0.33 )
4
+( 0.29

1−0.29 )
4
+( 0.32

1−0.32 )
4}1/4

]
,

1− 1

1+
{
( 0.25

1−0.25 )
4
+( 0.28

1−0.28 )
4
+( 0.26

1−0.26 )
4
+( 0.29

1−0.29 )
4}1/4 , 1− 1

1+
{
( 0.80

1−0.80 )
4
+( 0.77

1−0.77 )
4
+( 0.82

1−0.82 )
4
+( 0.81

1−0.81 )
4}1/4

1− 1

1+
{
( 0.25

1−0.25 )
4
+( 0.27

1−0.27 )
4
+( 0.26

1−0.26 )
4
+( 0.28

1−0.28 )
4}1/4

)
= ([0.27, 0.34], [0.35, 0.48], [0.30, 0.39], 0.35, 0.85, 0.34).

In the following, we see that CmPFDPAO is commutative.

Theorem 7 (Commutative). LetAmi = ([µ−ij , µ+
ij ], µij)

m
j=1 , i = 1, 2, · · · , n, be the assembly of

CmPFNs. Then

CmPFDPAO(Am1 ,Am2 , · · · ,Amn) = CmPFDPAO( ´Am1 , ´Am2 , · · · , ´Amn),

where ( ´Ami )
n
i=1 is a permutation of (Ami )

n
i=1.
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Definition 14. For a collection of CmPFNs A1, A2, · · · , An, the cubic m-polar fuzzy Dombi
weighted P-averaging operator is defined as

CmPFDWPAO(A1, A2, · · · , An) = w1 A1 ⊕P w2 A2 ⊕P · · · ⊕P wn An,

where w = (w1, w2, · · · , wn) is a weight vector with Σn
j=1wj = 1 and wj > 0.

Theorem 8. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of CmPFNs. Then

their aggregated value under CmPFDWPAO is again a CmPFN and
CmPFDWPAO(A1, A2, · · · , An)

=

([
1− 1

1+{Σn
i=1wi(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σn
i=1wi(

µ+ij
1−µ+ij

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µij
1−µij

)k}1/k

)m

j=1

Proof. We can prove it by induction on n.
For n = 2, we have

CmPFDWPAO(A1, A2)

=

([
1− 1

1+{w1(
µ−1j

1−µ−1j
)k+w2(

µ−2j
1−µ−2j

)k}1/k
, 1− 1

1+{w1(
µ+1j

1−µ+1j
)k+w2(

µ+2j
1−µ+2j

)k}1/k

]
,

1− 1
1+{w1(

µ1j
1−µ1j

)k+w2(
µ2j

1−µ2j
)k}1/k

)m

j=1

which is a CmPFN, by definition.
Suppose n > 2, and our proposed averaging formula is true for CmPFNs numbered

less than n.
Now we see that

CmPFDWPAO(A1, A2, · · · , An) = w1 A1 ⊕P w2 A2 ⊕P · · · ⊕P wn An

=

([
1− 1

1+{Σn
i=1wi(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σn
i=1wi(

µ+ij
1−µ+ij

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µij
1−µij

)k}1/k

)m

j=1

=

([
1− 1

1+{Σn−1
i=1 wi(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σn−1
i=1 wi(

µ+ij
1−µ+ij

)k}1/k

]
, 1− 1

1+{Σn−1
i=1 wi(

µij
1−µij

)k}1/k

)m

j=1

⊕P wn([µ
−
nj, µ+

nj], µnj)

which is surely a CmPFN by induction hypothesis.

Theorem 9. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n be the collection of ICmPFNs with a

weight vector w = (w1, w1, · · · , wn). Then CmPFDWPAO(A1, A2, · · · , An) is also an ICmPFN.

Proof. Since A′is are ICmPFNs, so

µ−ij ≤ µij ≤ µ+
ij ⇒ 1− µ+

ij ≤ 1− µij ≤ 1− µ−ij ⇒
µ−ij

1−µ−ij
≤ µij

1−µij
≤

µ+
ij

1−µ+
ij

⇒ ∑n
i=1 wi

(
µ−ij

1−µ−ij

)k
≤ ∑n

i=1 wi

(
µij

1−µij

)k
≤ ∑n

i=1 wi

(
µ+

ij

1−µ+
ij

)k

⇒ 1− 1

1+

∑n
i=1 wi

(
µ−ij

1−µ−ij

)k


1/k ≤ 1− 1

1+

{
∑n

i=1 wi

(
µij

1−µij

)k
}1/k ≤ 1− 1

1+

∑n
i=1 wi

(
µ+ij

1−µ+ij

)k


1/k ,

for all j = 1, 2, · · · , m. This proves our claim.

Example 2. Consider the data of Example 1 and let the weights assigned to A′is be (0.31, 0.42, 0.17,
0.10)t. The dictation under CmPFDWPAO ( f ork = 4) is given by
CmPFDWPAO(A1, A2, A3, A4)
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=

([
1− 1

1+{Σ4
i=1wi(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σ4
i=1wi(

µ+ij
1−µ+ij

)k}1/k

]
, 1− 1

1+{Σ4
i=1wi(

µij
1−µij

)k}1/k

)3

j=1

=

([
1− 1

1+
{

0.31( 0.2
1−0.2 )

4
+0.42( 0.21

1−0.21 )
4
+0.17( 0.19

1−0.19 )
4
+0.10( 0.22

1−0.22 )
4}1/4 ,

1− 1

1+
{

0.31( 0.27
1−0.27 )

4
+0.42( 0.29

1−0.29 )
4
+0.17( 0.25

1−0.25 )
4
+0.10( 0.26

1−0.26 )
4}1/4

]
,[

1− 1

1+
{

0.31( 0.30
1−0.30 )

4
+0.42( 0.29

1−0.29 )
4
+0.17( 0.32

1−0.32 )
4
+0.10( 0.28

1−0.28 )
4}1/4 ,

1− 1

1+
{

0.31( 0.41
1−0.41 )

4
+0.42( 0.40

1−0.40 )
4
+0.17( 0.38

1−0.38 )
4
+0.10( 0.39

1−0.39 )
4}1/4

]
,[

1− 1

1+
{

0.31( 0.25
1−0.25 )

4
+0.42( 0.21

1−0.21 )
4
+0.17( 0.23

1−0.23 )
4
+0.10( 0.24

1−0.24 )
4}1/4 ,

1− 1

1+
{

0.31( 0.31
1−0.31 )

4
+0.42( 0.33

1−0.33 )
4
+0.17( 0.29

1−0.29 )
4
+0.10( 0.32

1−0.32 )
4}1/4

]
,

1− 1

1+
{

0.31( 0.25
1−0.25 )

4
+0.42( 0.28

1−0.28 )
4
+0.17( 0.26

1−0.26 )
4
+0.10( 0.29

1−0.29 )
4}1/4 ,

1− 1

1+
{

0.31( 0.80
1−0.80 )

4
+0.42( 0.77

1−0.77 )
4
+0.17( 0.82

1−0.82 )
4
+0.10( 0.81

1−0.81 )
4}1/4 ,

1− 1

1+
{

0.31( 0.25
1−0.25 )

4
+0.42( 0.27

1−0.27 )
4
+0.17( 0.26

1−0.26 )
4
+0.10( 0.28

1−0.28 )
4}1/4

)
.

= ([0.21, 0.28], [0.30, 0.40], [0.23, 0.32], 0.27, 0.80, 0.26).

The following properties can be easily proved for CmPFDWPAO.

Theorem 10 (Idempotency). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of

equal CmPFNs, say Ai = A = ([µ−j , µ+
j ], µj)

m
j=1. Then the aggregated value under CmPFDWPAO

is again a CmPFN A. Mathematically, CmPFDWPAO(A1, A2, · · · , An) = A.

Proof. CmPFDWPAO(A1, A2, · · · , An) = w1 A1 ⊕P w2 A2 ⊕P · · · ⊕P wn An = w1 A ⊕P

w2 A⊕P · · · ⊕P wn A

=

([
1− 1

1+{Σn
i=1wi(

µ−j
1−µ−j

)k}1/k
, 1− 1

1+{Σn
i=1wi(

µ+j
1−µ+j

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µj
1−µj

)k}1/k

)m

j=1

=

([
1− 1

1+{(
µ−j

1−µ−j
)k}1/k

, 1− 1

1+{(
µ+j

1−µ+j
)k}1/k

]
, 1− 1

1+{(
µj

1−µj
)k}1/k

)m

j=1

= ([µ−j , µ+
j ], µj)

m
j=1 = A

Theorem 11 (Monotonicity). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1 and Bi = ([ν−ij , ν+ij ], νij)

m
j=1, i =

1, 2, · · · , n, be the two collections of CmPFNs such that Ai ≤P Bi for all i. Then

CmPFDWPAO(A1, A2, · · · , An) ≤P CmPFDWPAO(B1, B2, · · · , Bn).

Proof. By our assumption we have
µ−ij ≤ ν−ij

⇒ wi

(
µ−ij

1−µ−ij

)k

≤ wi

(
ν−ij

1−ν−ij

)k
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⇒
{

1 + Σn
i=1wi

(
µ−ij

1−µ−ij

)k}1/k

≤
{

1 + Σn
i=1wi

(
ν−ij

1−ν−ij

)k}1/k

⇒ 1− 1{
1+Σn

i=1wi

(
µ−ij

1−µ−ij

)k}1/k ≤ 1− 1{
1+Σn

i=1wi

(
ν−ij

1−ν−ij

)k}1/k .

Using similar observations for µ+
ij ≤ ν+ij and µij ≤ νij, the result follows.

Theorem 12 (Boundedness). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of

CmPFNs. We define ∨P Ai = A+ and ∧P Ai = A−. Then

A− ≤ CmPFDWPAO(A1, A2, · · · , An) ≤ A+.

Proof. The proof is straightforward.

Definition 15. Let A1, A2, · · · , An be the family of CmPFNs; the cubic m-polar fuzzy Dombi
ordered weighted P-averaging operator is defined as

CmPFDOWPAO(A1, A2, · · · , An) = w1 Aσ(1) ⊕P w2 Aσ(2) ⊕P · · · ⊕P wn Aσ(n),

where w = (w1, w2, · · · , wn) is a weight vector with Σn
j=1wj = 1 and wj > 0, and σ(i) is a

permutation of (i)n
i=1 dictating Aσ(1) ≥P Aσ(2) ≥P · · · ≥P Aσ(n).

Theorem 13. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the knot of CmPFNs. Then the

accumulated/aggregated value under CmPFDOWPAO is a CmPFN and
CmPFDOWPAO(A1, A2, · · · , An)

=

([
1− 1

1+{Σn
i=1wi(

µ−
σ(i)j

1−µ−
σ(i)j

)k}1/k

, 1− 1

1+{Σn
i=1wi(

µ+
σ(i)j

1−µ+
σ(i)j

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µσ(i)j
1−µσ(i)j

)k}1/k

)m

j=1
.

The wi and σ(i) have usual meanings.

Proof. We can prove it by induction.
For n = 2, we have

CmPFDOWPAO(A1, A2)

=

([
1− 1

1+{w1(
µ−

σ(1)j
1−µ−

σ(1)j
)k+w2(

µ−
σ(2)j

1−µ−
σ(2)j

)k}1/k

, 1− 1

1+{w1(
µ+

σ(1)j
1−µ+

σ(1)j
)k+w2(

µ+
σ(2)j

1−µ+
σ(2)j

)k}1/k

]
,

1− 1
1+{w1(

µσ(1)j
1−µσ(1)j

)k+w2(
µσ(2)j

1−µσ(2)j
)k}1/k

)m

j=1

which is a CmPFN, by definition.
We can grip induction hypothesis. Now we see that

CmPFDOWPAO(A1, A2, · · · , An) = w1 Aσ(1) ⊕P w2 Aσ(2) ⊕P · · · ⊕P wn Aσ(n)

=

([
1− 1

1+{Σn
i=1wi(

µ−
σ(i)j

1−µ−
σ(i)j

)k}1/k

, 1− 1

1+{Σn
i=1wi(

µ+
σ(i)j

1−µ+
σ(i)j

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µσ(i)j
1−µσ(i)j

)k}1/k

)m

j=1

=

([
1− 1

1+{Σn−1
i=1 wi(

µ−
σ(i)j

1−µ−
σ(i)j

)k}1/k

, 1− 1

1+{Σn−1
i=1 wi(

µ+
σ(i)j

1−µ+
σ(i)j

)k}1/k

]
, 1− 1

1+{Σn−1
i=1 wi(

µσ(i)j
1−µσ(i)j

)k}1/k

)m

j=1

⊕P wn([µ
−
σ(n)j, µ+

σ(n)j], µσ(n)j)

which is surely a CmPFN by induction basis/hypothesis.
We can prove the following properties for CmPFDOWPAO.
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Theorem 14. CmPFDOWPAO ensures its compatibility for ICmPFNs. That is, if A1, A2, · · · , An

are ICmPFNs, then CmPFDOWPAO(A1, A2, · · · , An) is an ICmPFN.

Proof. The proof is similar to Theorem 9.

Theorem 15 (Idempotency). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the assemblage of

CmPFNs such that Ai = A = ([µ−j , µ+
j ], µj)

m
j=1 for all i. Then CmPFDOWPAO(A1, A2, · · · ,

An) = A.

Proof. Consider CmPFDOWPAO(A1, A2, · · · , An) = w1 Aσ(1)⊕P w2 Aσ(2)⊕P · · ·⊕P wn Aσ(n)

= w1 A⊕P w2 A⊕P · · · ⊕P wn A

=

([
1− 1

1+{Σn
i=1wi(

µ−j
1−µ−j

)k}1/k
, 1− 1

1+{Σn
i=1wi(

µ+j
1−µ+j

)k}1/k

]
, 1− 1

1+{Σn
i=1wi(

µj
1−µj

)k}1/k

)m

j=1

=

([
1− 1

1+{(
µ−j

1−µ−j
)k}1/k

, 1− 1

1+{(
µ+j

1−µ+j
)k}1/k

]
, 1− 1

1+{(
µj

1−µj
)k}1/k

)m

j=1

= ([µ−j , µ+
j ], µj)

m
j=1 = A,

w = (wi)
n
i=1 being the weight vector.

Theorem 16 (Monotonicity). For the two collections of CmPFNs Ai = ([µ−ij , µ+
ij ], µij)

m
j=1 and

Bi = ([ν−ij , ν+ij ], νij)
m
j=1, i = 1, 2, · · · , n, with Ai ≤P Bi for all i, CmPFDOWPAO(A1, A2, · · · ,

An) ≤P CmPFDOWPAO(B1, B2, · · · , Bn).

Proof. Theorem is the same as Theorem 3.

Theorem 17 (Boundedness). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of

CmPFNs. We define ∨P Ai = A+ and ∧P Ai = A−. Then

A− ≤P CmPFDOWPAO(A1, A2, · · · , An) ≤P A+

Proof. Straightforward. To date, we have discussed CmPFDPAO, CmPFDWPAO, and
CmPFDOWPAO and related properties for CmPFEs. These operators have their own
advantages. However, they have some limitations as well. CmPFDPAO does not work
in a weighted environment, CmPFDWPAO weights only CmPF values, and only ordered
positions are weighted under CmPFDOWPAO. To overcome this limitation, we define a
new aggregation operator that is a hybrid of CmPFDWPAO and CmPFDOWPAO and will
weight CmPF values as well as their ordered positions.

Definition 16. A cubic m-polar fuzzy Dombi hybrid P-averaging operator (CmPFDHPAO) is a
function from n-dimensional CmPF space to CmPF space. If we have a collection of CmPFNs Ai =

([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, then the CmPFDHPAO weighted by w = (w1, w2, · · · , wn),

wi > 0, Σn
i=1wi = 1 is defined as

CmPFDHPAO(A1, A2, · · · , An) = w1 A′σ(1) ⊕P w2 A′σ(2) ⊕P · · · ⊕P wn A′σ(n),

where A′i = nfi Ai; n is balancing factor, f = (fi)
n
i=1 is weight vector for A′i=1 with the condition

fi > 0 and Σn
i=1fi = 1. Here, σ has usual meanings as in Definition 3.

Interestingly, CmPFDHPAO becomes CmPFDWPAO if we take w = (1/n, 1/n, · · · ,
1/n), and it becomes CmPFDOWPAO if we take f = (1/n, 1/n, · · · , 1/n). Therefore,
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CmPFDHPAO is the generalized one with CmPFDWPAO and CmPFDOWPAO as its special
cases.

6. CmPF Dombi Averaging Aggregation Operators with R-order

In this section, we introduce some Dombi R-aggregation operators for CmPF informa-
tion. We will discuss some properties of these AOs.

Definition 17. For a collection of CmPFNs A1, A2, · · · , An, the cubic m-polar fuzzy Dombi
R-averaging operator is defined as

CmPFDRAO(A1, A2, · · · , An) = A1 ⊕R A2 ⊕R · · · ⊕R An.

Theorem 18. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of CmPFNs. Then

the aggregated value under CmPFDRAO is again a CmPFN and

CmPFDRAO(A1, A2, · · · , An) =

([
1− 1

1+{Σn
i=1(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σn
i=1(

µ+ij
1−µ+ij

)k}1/k

]
,

1

1+{Σn
i=1(

1−µij
µij

)k}1/k

)m

j=1

Proof. Proof is the same as Theorem 6.

Theorem 19 (Commutative). For any collection of CmPFNs Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i =

1, 2, · · · , n,
CmPFDRAO(A1, A2, · · · , An) = CmPFDRAO(Á1, Á2, · · · , Án), where (Ái)

n
i=1 is a

permutation of (Ai)
n
i=1.

Proof. Follows from definition.

Definition 18. For a collection of CmPFNs A1, A2, · · · , An, the Cubic m-Polar Fuzzy Dombi
Weighted R-Averaging Operator is defined as
CmPFDWRAO(A1, A2, · · · , An) = w1 A1⊕R w2 A2⊕R · · ·⊕R wn An, where w = (w1, w2, · · · ,
wn) is a weight vector with Σn

j=1wj = 1 and wj > 0.

Theorem 20. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of CmPFNs. Then

the aggregated value under CmPFDWRAO is again a CmPFN and
CmPFDWRAO(A1, A2, · · · , An)

=

([
1− 1

1+{Σn
i=1wi(

µ−ij
1−µ−ij

)k}1/k
, 1− 1

1+{Σn
i=1wi(

µ+ij
1−µ+ij

)k}1/k

]
, 1

1+{Σn
i=1wi(

1−µij
µij

)k}1/k

)m

j=1

Proof. The following properties can be easily proved for CmPFDWRAO.

Theorem 21 (Idempotency). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the assembly of

CmPFNs such that Ai = A = ([µ−j , µ+
j ], µj)

m
j=1. Then, CmPFDWRAO(A1, A2, · · · , An) = A.

Theorem 22 (Monotonicity). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1 and Bi = ([ν−ij , ν+ij ], νij)

m
j=1, i =

1, 2, · · · , n, be the two collections of CmPFNs such that Ai ≤R Bi for all i. Then
CmPFDWRAO(A1, A2, · · · , An) ≤R CmPFDWRAO(B1, B2, · · · , Bn).
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Theorem 23 (Boundedness). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of

CmPFNs. We define ∨R Ai = A+ and ∧R Ai = A−. Then

A− ≤R CmPFDWRAO(A1, A2, · · · , An) ≤R A+

Definition 19. Let A1, A2, · · · , An be the fabrication of CmPFNs, the Cubic m-Polar Fuzzy
Dombi Ordered Weighted R-Averaging Operator is defined as
CmPFDOWRAO(A1, A2, · · · , An) = w1 Aσ(1) ⊕R w2 Aσ(2) ⊕R · · · ⊕R wn Aσ(n), where w =

(w1, w2, · · · , wn) is a weight vector with Σn
j=1wj = 1 and wj > 0, and σ(i) is a permutation of

(i)n
i=1 dictating Aσ(1) ≥R Aσ(2) ≥R · · · ≥R Aσ(n).

Theorem 24. Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the knot of CmPFNs. Then, the

accumulated value under CmPFDOWRAO is a CmPFN and
CmPFDOWRAO(A1, A2, · · · , An)

=

([
1− 1

1+{Σn
i=1wi(

µ−
σ(i)j

1−µ−
σ(i)j

)k}1/k

, 1− 1

1+{Σn
i=1wi(

µ+
σ(i)j

1−µ+
σ(i)j

)k}1/k

]
, 1

1+{Σn
i=1wi(

1−µσ(i)j
µσ(i)j

)k}1/k

)m

j=1
.

The wi and σ(i) have usual meanings.

We can prove the following properties for CmPFDOWRAO.

Theorem 25 (Idempotency). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the assemblage of

CmPFNs such that Ai = A = ([µ−j , µ+
j ], µj)

m
j=1, say, for all i. Then, CmPFDOWRAO(A1, A2,

· · · , An) = A.

Theorem 26 (Monotonicity). For any two collections of CmPFNs Ai = ([µ−ij , µ+
ij ], µij)

m
j=1 and

Bi = ([ν−ij , ν+ij ], νij)
m
j=1, i = 1, 2, · · · , n, with Ai ≤R Bi for all i, CmPFDOWRAO(A1, A2, · · · ,

An) ≤R CmPFDOWRAO(B1, B2, · · · , Bn).

Theorem 27 (Boundedness). Let Ai = ([µ−ij , µ+
ij ], µij)

m
j=1, i = 1, 2, · · · , n, be the collection of

CmPFNs. We define ∨R Ai = A+ and ∧R Ai = A−. Then,

A− ≤R CmPFDOWRAO(A1, A2, · · · , An) ≤R A+.

We have discussed CmPFDRAO, CmPFDWRAO, and CmPFDOWRAO and related
properties for CmPFEs. These operators have some limitations already mentioned in
Section 3. Therefore, hybridization of CmPFDWRAO and CmPFDOWRAO is mandatory.

Definition 20. A cubic m-polar fuzzy Dombi hybrid R-averaging operator (CmPFDHRAO) is a
function CmPFDHRAO : An → A. For CmPFNs Ai = ([µ−ij , µ+

ij ], µij)
m
j=1, i = 1, 2, · · · , n, the

CmPFDHRAO weighted by w = (w1, w2, · · · , wn), wi > 0, Σn
i=1wi = 1 is defined as

CmPFDHRAO(A1, A2, · · · , An) = w1 A′σ(1) ⊕R w2 A′σ(2) ⊕R · · · ⊕R wn A′σ(n),

where A′i = nfi Ai, n is balancing factor, f = (fi)
n
i=1 is weight vector for A′i=1 with the

condition fi > 0 and Σn
i=1fi = 1. Here, σ is a permutation on {1, 2, · · · , n} which dictates A′is

in descending order. CmPFDWRAO and CmPFDOWRAO can be observed as special cases of
CmPFDHRAO by taking w = (1/n, 1/n, · · · , 1/n) and f = (1/n, 1/n, · · · , 1/n), respectively.
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7. MCDM towards the Circular Economy

In this section, we develop a multi-criteria decision-making (MCDM) technique under
cubic m-polar fuzzy information and its application to circular economy (CE). The circular
economy (CE) is currently a common concept advocated by many white collar countries
and many businesses around the world. However, the science and research fabric of the
CE theory is simplistic and unfocused. CE, no doubt, is the best alternative of the linear
economy, but its applicability is reduced until its complexities are alleviated.
The word “circular economy” has both a descriptive and linguistic sense. In latter sense,
it is opposite to CLE, which is characterized as the conversion of natural resources into
waste through processing. Such waste generation leads to environmental destruction by
depleting natural resources and increasing pollution. The word “linear economy” has
been extensively used since the birth of “circular economy”, which is an economy with a
minor or no net impact on the climate. It is intended to restore any harm to the resources
while guaranteeing little waste during the entire manufacturing period. There are many
biochemical and geochemical cycles on the earth that inspired the idea of CE. For instance,
water evaporates from the earth water bodies, forms rain drops, comes back to the earth
and again becomes a part of the rivers, seas, oceans etc. Similar biogeochemical cycles
can be observed on the earth. Each cycle has its own time perio, e.g., water cycle takes
about 9 to 10 days, carbon dioxide takes 4.5 years, oxygen in the atmosphere takes 3.8
years to complete. Such biogeochemical cycles in nature are the reason of the existence of
humankind on the earth. The water cycle is shown in the Figure 1.

Figure 1. Water cycle.

The practice of CLE has altered almost every cycle. In order to safeguard the existing
cycles in nature, it is advisable to promote CE. What makes CE implementable are recycling,
repairing, recovering, regenerating etc. The most important and achievable of these is
recycling. Recycling refers to the process of transferring sludge into new materials and
products. This definition also includes energy recovery from waste materials. The ability
of a material to reclaim the properties it had in its pure state determines its renewability.
Recycling can help to reduce waste from genuinely useful products while also lowering
the cost of new raw materials. Recycling is a central facet of current waste diversion and
is the third level of the “Reduce, Reuse, and Recycle” hierarchy. The materials that can
be recycled include glass, cardboard, plastic, paper, tires, textiles, metals, and electronics.
Each of these are recycled in a unique way. For example, if we focus on recycling plastic
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materials, three major processes are frankly useful depending on the type of the plastic
under consideration.

• Chemical recycling
• Heat compression
• Mechanical recycling

Chemical recycling.
Polymers are a special type of plastic manufactured chemically. These are basically

complex chemical combinations of monomers. A wide range of polymers may be converted
back into monomers. PET, for example, is a well-known polymer. It is converted to dialkyl
terephthalate if treated with alcohol and an appropriate catalyst. The terephthalate diester
is then treated with ethylene glycol, yielding a pure form of a new polymer known as
polyester polymer. As a result, various types of plastics can be effectively recycled using
chemical methods.
Heat compression.

In heat compression, plastics of all sorts are mixed together, compressed, and rolled in
a large heated and rolling tumbler. This is a beneficial way to recycle the plastic. However,
the tumblers involved render this process uneconomical because it again involves the
usage of natural resources like coal, oil, gas etc. to rotate the tumbler and for compression
purpose. Therefore, this process bears some criticism.
Mechanical recycling.

Some plastics are melted down to shape new objects. For example, PET plastic can
be processed into polyester, which is intended for clothes. A downside of this recycling
method is that the polymer’s molecular mass can alter with each remelt, and the amounts
of fish waste in the plastic can increase.

Plastic recycling process can be categorized into three steps: Collection, Reprocessing,
and Production. The main contribution to these three steps mainly comes from collectors,
suppliers, sorters, and recyclers.
Collection.

Recycling operation starts with the contribution of garbage pickers and dealers. A re-
cycling organization involves a network of formal collectors participating in collecting
and sorting of recyclable plastic materials. Garbage pickers include two categories: those
who work legally with a company and those who are not bound to any specific organi-
zation. The second type of picker is critical to the industry. They work independently,
inconsistently, and they do not bother the liability of the industry. However, the plastic
recycling industry relies on them, to some extent, indirectly. Due to their informal and
erratic work hours, recyclables are not routinely supplied to recyclers, and hence it is not
beneficial to the industry. Therefore, to secure a reliable position in the market, a recycler
must minimize its dependance on critical pickers.
Reprocessing.

After the waste plastic is collected, it is supplied to the recycling plants by the dealers,
where it undergoes one of the above mentioned recycling process followed by resorting.
Resorting is indispensable for the circular economy. Some plastic materials are economically
recycled under heat compression, some using chemical and some mechanical methods
according to their resin type. This categorization is accomplished in reprocessing.
Production.
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When sorted, plastic recyclables are eviscerated for mechanical, chemical, or heated
recycling. The pieces are shredded and treated in order to extract impurities such as paper
annotations. The material is melted or chemically treated to produce other items.

In order to make unanimous, clever and well-suited decisions in cubic m-polar
premises, we propose an extended SIR method that is based on coding superiority in-
dex/flow and inferiority index/flow and that dictates the affirmation of the most de-
sired/ideal option in contrast. We first give an algorithm/technique and then apply it to
deal with the problem of selecting the most effective recycling plant that can help transform
a CLE into a CE in an ideal way. An extended superiority and inferiority ranking (SIR)
technique under CmPFSs is developed in the following Algorithm 1.

Algorithm 1: (SIR method)
Consider a set of alternatives X = {x1, x2, · · · , xm}, a group of decision makers

E = {e1, e2, · · · , el}, fuzzy weights W = {W1, W2, · · · , Wl}, and a set of criterion
C = {c1, c2, · · · , cn}. Let pk

ij be the cubic m-polar fuzzy number assigned to ith

alternative, with respect to the jth criteria, by the kth expert. Construct the cubic
m-polar fuzzy decision matrices P(k) = (pk

ij)m×n, k = 1, 2, · · · , l. Assume that wk
j

is the cubic m-polar fuzzy wight value of the criteria cj given by the expert ek,
and construct the criteria decision matrix w = (wk

j )l×n. The most suited
alternative is filtered by the technique proposed below.

Step 1: Determine the relative proximity coefficient by the formula

ξk =
d(Wk, W−)

d(Wk, W−) + d(Wk, W+)
, (4)

where W− and W+ denote, respectively, the P-minimum and P-maximum. It immediately
follows from the formula that if Wk → W+, then ξk → 1. Similarly, if Wk → W−, then
ξk → 0. Furthermore, 0 ≤ ξk ≤ 1.
Step 2: If the ξk are in normal form, that is, if they sum up to unity, name them as ζk.
Otherwise, normalize them by the formula

ζk =
ξk

∑l
k=1 ξk

. (5)

In this way, we obtain normalized estimation degrees ζ = (ζ1, ζ2, · · · , ζl).
Step 3: Obtain the combined cubic m-polar decision matrix p = ( p̄ij)m×n and the weight
vector w̄ = (w̄j)

n
j=1 using one of the proposed operators, where

p̄ij = CmPFDWPAO(p1
ij, p2

ij, · · · , pl
ij) = CmPFDWPAO(pk

ij)
l
k=1, (6)

w̄j = CmPFDWPAO(w1
j , w2

j , · · · , wl
j) = CmPFDWPAO(wk

j )
l
k=1. (7)

(In the end, we give a comparison analysis of CmPFDWPAO with the other proposed
operators.)
Step 4: Construct the relative performance relation

fij =
d( p̄ij, p̄−)

d( p̄ij, p̄−) + d( p̄ij, p̄+)
, (8)
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where p̄+ = maxi p̄ij and p̄− = mini p̄ij. Clearly, if p̄ij → p̄−, then fij → 0 and if p̄ij → p̄+,
then fij → 1. Furthermore, 0 ≤ fij ≤ 1.

After this, construct superiority matrix S = (Sij)m×n and inferiority matrix I =

(Iij)m×n, where

Sij =
m

∑
t=1

φ( fij − ftj); (9)

and

Iij =
m

∑
t=1

φ( ftj − fij). (10)

φ(x) being the threshold function given by

φ(x) =

{
0.01 0 < x < 1
0.00 x ≤ 0 or x ≥ 1.

Step 5: The superiority index and inferiority index can be calculated, respectively, as
follows.

φ>(xi) = CmPFDWPAOSij(w̄j)
n
j=1 = (Si1w̄1 ⊕P Si2w̄2 ⊕P · · · ⊕P Sinw̄n), (11)

and
φ<(xi) = CmPFDWPAOIij(w̄j)

n
j=1 = (Ii1w̄1 ⊕P Ii2w̄2 ⊕P · · · ⊕P Iinw̄n). (12)

Step 6: Calculate the score functions of φ<(xi) and φ>(xi), for all i = 1, 2, · · · , m, using the
Formula (1).
Step 7: Find the superiority flow and inferiority flow according to the following rules.
Superiority Flow Rules (SFRs)

• xi > xt if S(φ>(xi)) > S(φ>(xt)) and S(φ<(xi)) < S(φ<(xt)),
• xi > xt if S(φ>(xi)) > S(φ>(xt)) and S(φ<(xi)) = S(φ<(xt)),
• xi > xt if S(φ>(xi)) = S(φ>(xt)) and S(φ<(xi)) < S(φ<(xt)),

Inferiority Flow Rules (SFRs)

• xi < xt if S(φ>(xi)) < S(φ>(xt)) and S(φ<(xi)) > S(φ<(xt)),
• xi < xt if S(φ>(xi)) < S(φ>(xt)) and S(φ<(xi)) = S(φ<(xt)),
• xi < xt if S(φ>(xi)) = S(φ>(xt)) and S(φ<(xi)) > S(φ<(xt)).

Step 8: SF rules coupled with IF rules can filter the optimal alternative.

7.1. Numerical Example

The evidence gained in tandem with the circular recycling curriculum is used for the
purpose of elucidating model implementation in response to mutually beneficial channels
of the program and the towns where it functions and identifies compassionate economic
policies for foragers for recyclable materials. A city mayor plans to initiate the practice of
CE in their city. The first step for this purpose is to install a recycling plant. The mayor
hires three economists e1, e2, e3 and assigns them the credibility weights W1, W2, W3 (shown
in Table 1). They chose three companies/recycling plants x1, x2 and x3, which are currently
contributing to CE in certain areas. (Note: We are restricting ourselves to three alternatives
and three criteria because our intention is to propose a mathematical model for selecting
an optimal recycling plant. The same model is efficient for a big data). Each of the three
companies claims that it is the best option for recycling plastic materials, rubber wastes,
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glass wastes, etc. These companies recycle the things in three steps “collection, reprocessing
and production”. The main problem is to filter the best plant to be installed in the city.
The efficiency of each plant is observed on the basis of three criteria shown in Table 2. Their
individual assessment turn out to be cubic m-polar fuzzy matrices (shown in Tables 3–5).
Step 1: Find W− = 〈[0.10, 0.30], [0.20, 0.70], [0.30, 0.80], 0.12, 0.11, 0.50〉 and
W+ = 〈[0.80, 0.90], [0.83, 0.91], [0.85, 0.93], 0.90, 0.81, 0.76〉. Utilize the Formula (3) to calcu-
late
d(W1, W−) = 0.49852; d(W2, W−) = 0.727081; d(W3, W−) = 0.947559;
d(W1, W+) = 0.856648; d(W2, W+) = 0.847022; d(W3, W+) = 0.539338.
Calculate the relative proximity coefficients (using Formula (4))

ξ = (0.3679, 0.4619, 0.6373).

Step 2: Normalize the estimated proximity degree (using the Formula (5))

ζ = (0.2508, 0.3148, 0.4344).

Step 3: Aggregate the cubic m-polar fuzzy decision information (for k = 4), provided by
the three economists, to figure out the joint information (given in Table 6). The identified
criterions are given in Table 7.

Furthermore, obtain the unanimous criteria weights using Equation (7),

w̄1 = 〈[0.28, 0.589], [0.32, 0.717], [0.329, 0.821], 0.346, 0.749, 0.208〉

w̄2 = 〈[0.161, 0.72], [0.255, 0.711], [0.436, 0.47], 0.159, 0.649, 0.325〉

w̄3 = 〈[0.143, 0.532], [0.448, 0.77], [0.85, 0.976], 0.13, 0.145, 0.878〉.

Step 4: The relative performance matrix (using the Formula (8)) is given by

( fij) =

 0.604 0.289 0.300
0.311 0.615 0.796
0.608 0.456 0.106

.

Construct the superiority and inferiority decision matrices using the Equations (9)
and (10), respectively.

S =

 0.01 0.00 0.01
0.00 0.02 0.02
0.02 0.01 0.00


and

I =

 0.01 0.02 0.01
0.02 0.00 0.00
0.00 0.01 0.02

.

Steps 5, 6: The superiority and inferiority indices of the alternatives and their respective
score functions are given in Tables 8 and 9.
Step 7: The superiority flow is given by

x2 > x1 > x3,
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and the inferiority flow is given by

x2 > x1 > x3.

Step 8: Both the superiority and inferiority flow agree at the optimal alternative x2.

Table 1. Credibility weights.

Economists Weights

e1 W1 = 〈[0.20, 0.30], [0.50, 0.70], [0.45, 0.93], 0.61, 0.11, 0.50〉
e2 W2 = 〈[0.80, 0.90], [0.83, 0.91], [0.85, 0.80], 0.12, 0.30, 0.70〉
e3 W3 = 〈[0.10, 0.80], [0.20, 0.75], [0.30, 0.85], 0.90, 0.81, 0.76〉
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Table 2. Criteria weights assigned by the economists.

c1 c2 c3

e1 〈[0.27, 0.57], [0.30, 0.75], [0.32, 0.80], 0.30, 0.70, 0.19〉 〈[0.14, 0.70], [0.24, 0.67], [0.40, 0.45], 0.14, 0.67, 0.31〉 〈[0.11, 0.55], [0.44, 0.79], [0.87, 0.95], 0.10, 0.10, 0.90〉
e2 〈[0.29, 0.60], [0.32, 0.72], [0.29, 0.78], 0.33, 0.73, 0.17〉 〈[0.16, 0.74], [0.27, 0.70], [0.46, 0.49], 0.17, 0.62, 0.34〉 〈[0.13, 0.54], [0.47, 0.77], [0.85, 0.93], 0.13, 0.14, 0.83〉
e3 〈[0.28, 0.59], [0.33, 0.67], [0.35, 0.84], 0.37, 0.77, 0.23〉 〈[0.17, 0.71], [0.25, 0.73], [0.43, 0.47], 0.16, 0.65, 0.32〉 〈[0.16, 0.51], [0.43, 0.75], [0.83, 0.98], 0.14, 0.16, 0.87〉

Table 3. Decision matrix by e1.

e1 c1 c2 c3

x1 〈[0.60, 0.70], [0.50, 0.80], [0.40, 0.90], 0.40, 0.90, 0.10〉 〈[0.70, 0.90], [0.40, 0.70], [0.50, 0.80], 0.10, 0.20, 0.30〉 〈[0.45, 0.55], [0.55, 0.75], [0.75, 0.85], 0.90, 0.10, 0.70〉
x2 〈[0.60, 0.80], [0.50, 0.70], [0.30, 0.60], 0.45, 0.85, 0.15〉 〈[0.60, 0.84], [0.43, 0.74], [0.55, 0.83], 0.12, 0.23, 0.34〉 〈[0.43, 0.54], [0.54, 0.77], [0.85, 0.93], 0.88, 0.13, 0.73〉
x3 〈[0.55, 0.70], [0.60, 0.75], [0.35, 0.80], 0.43, 0.83, 0.25〉 〈[0.66, 0.88], [0.39, 0.79], [0.60, 0.87], 0.16, 0.28, 0.32〉 〈[0.41, 0.55], [0.57, 0.75], [0.78, 0.81], 0.87, 0.14, 0.71〉

Table 4. Decision matrix by e2.

e2 c1 c2 c3

x1 〈[0.59, 0.71], [0.49, 0.81], [0.39, 0.91], 0.37, 0.87, 0.08〉 〈[0.69, 0.91], [0.39, 0.71], [0.49, 0.81], 0.07, 0.17, 0.27〉 〈[0.44, 0.56], [0.54, 0.76], [0.74, 0.86], 0.87, 0.13, 0.67〉
x2 〈[0.59, 0.81], [0.49, 0.71], [0.29, 0.61], 0.42, 0.83, 0.13〉 〈[0.59, 0.85], [0.42, 0.75], [0.54, 0.84], 0.09, 0.21, 0.32〉 〈[0.42, 0.55], [0.53, 0.78], [0.84, 0.94], 0.88, 0.13, 0.73〉
x3 〈[0.53, 0.72], [0.58, 0.77], [0.33, 0.82], 0.38, 0.80, 0.22〉 〈[0.64, 0.90], [0.37, 0.81], [0.59, 0.89], 0.13, 0.25, 0.29〉 〈[0.39, 0.57], [0.55, 0.77], [0.76, 0.83], 0.84, 0.11, 0.68〉

Table 5. Decision matrix by e3.

e3 c1 c2 c3

x1 〈[0.64, 0.66], [0.54, 0.76], [0.44, 0.86], 0.38, 0.89, 0.13〉 〈[0.73, 0.87], [0.43, 0.66], [0.53, 0.78], 0.12, 0.21, 0.30〉 〈[0.49, 0.52], [0.59, 0.71], [0.79, 0.82], 0.92, 0.17, 0.70〉
x2 〈[0.64, 0.77], [0.55, 0.65], [0.33, 0.57], 0.47, 0.85, 0.17〉 〈[0.65, 0.82], [0.47, 0.70], [0.50, 0.80], 0.14, 0.25, 0.35〉 〈[0.40, 0.51], [0.58, 0.73], [0.89, 1.00], 0.90, 0.17, 0.73〉
x3 〈[0.58, 0.68], [0.63, 0.73], [0.38, 0.79], 0.43, 0.83, 0.24〉 〈[0.68, 0.86], [0.42, 0.76], [0.65, 0.83], 0.17, 0.29, 0.33〉 〈[0.44, 0.53], [0.59, 0.73], [0.75, 0.80], 0.87, 0.18, 0.70〉

Table 6. Combined/Aggregated decision matrix.

c1 c2 c3

x1 〈[0.62, 0.69], [0.52, 0.79], [0.42, 0.9], 0.38, 0.89, 0.11〉 〈[0.71, 0.90], [0.41, 0.69], [0.51, 0.80], 0.11, 0.20, 0.29〉 〈[0.47, 0.54], [0.57, 0.74], [0.77, 0.85], 0.91, 0.15, 0.69〉
x2 〈[0.62, 0.79], [0.52, 0.69], [0.31, 0.59], 0.45, 0.84, 0.16〉 〈[0.63, 0.84], [0.45, 0.73], [0.53, 0.82], 0.13, 0.24, 0.44〉 〈[0.42, 0.53], [0.56, 0.76], [0.87, 1.00], 0.89, 0.15, 0.73〉
x3 〈[0.56, 0.70], [0.61, 0.75], [0.36, 0.80], 0.42, 0.82, 0.24〉 〈[0.67, 0.88], [0.40, 0.80], [0.63, 0.87], 0.16, 0.27, 0.31〉 〈[0.42, 0.55], [0.58, 0.75], [0.76, 0.82], 0.86, 0.16, 0.69〉
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Table 7. Identified criterions.

c1 Global Warming Mitigation

c2 Friendly to the environment
c3 Low energy consumption

Table 8. CmPF-SI with their scores.

Alternatives Superiority Indices Scores

x1 〈[0.11, 0.33], [0.209, 0.532], [0.642, 0.928], 0.144, 0.486, 0.695〉 0.216
x2 〈[0.075, 0.494], [0.235, 0.573], [0.681, 0.939], 0.072, 0.410, 0.730〉 0.297
x3 〈[0.128, 0.459], [0.155, 0.511], [0.208, 0.633], 0.166, 0.533, 0.137〉 0.210

Table 9. CmPF-II with their scores.

Alternatives Superiority Indices Scores

x1 〈[0.113, 0.496], [0.211, 0.555], [0.642, 0.928], 0.145, 0.502, 0.695〉 0.268
x2 〈[0.128, 0.35], [0.15, 0.489], [0.156, 0.633], 0.166, 0.529, 0.09〉 0.211
x3 〈[0.068, 0.453], [0.234, 0.566], [0.681, 0.939], 0.064, 0.369, 0.73〉 0.277

7.2. Comparison Analysis

In Table 10, we compare suggested aggregation operators with some existing operators
to examine the harmony of the proposed model with previous existing operators. The
analysis provided therein demonstrates that our proposed model is compatible with
those already in the literature. The proposed operators make a credible and legitimate
contribution to dealing with uncertainties by utilizing cubic m-polar fuzzy information.

Table 10. Comparative analysis of the proposed operators and existing ones.

Method Ranking of Alternatives The Optimal Alternative

PFDOWA (Jana [30]) x2 � x3 � x4 x2
PFDHWA (Jana [30]) x2 � x3 � x1 x2
PFOWA (Garg [24]) x2 � x1 � x3 x2
PFHA (Garg [24]) x2 � x1 � x3 x2
CqROFBM (Liu et al. [41]) x2 � x3 � x4 x2
IFEIO (Liu and Wang [42]) x2 � x4 � x1 x2
CMPFWAO (Riaz and Hashmi [35]) x2 � x1 � x4 x2
CMPFOWAO (Riaz and Hashmi [35]) x2 � x1 � x4 x2
CMPFHAO (Riaz and Hashmi [35]) x2 � x1 � x4 x2
CmPFDPAO (Proposed) x2 � x1 � x4 x2
CmPFDRAO (Proposed) x2 � x1 � x4 x2
CmPFDWRAO (Proposed) x2 � x1 � x4 x2
CmPFDOWPAO (Proposed) x2 � x1 � x4 x2
CmPFDOWRAO (Proposed) x2 � x1 � x4 x2
CmPFDHPAO (Proposed) x2 � x1 � x4 x2
CmPFDHRAO (Proposed) x2 � x1 � x4 x2

8. Conclusions

A cubic m-polar fuzzy set (CmPFS) is a powerful model for dealing with various
uncertainties in multi-criteria decision making (MCDM) problems. A cubic set (CS) can
express vague information using two components: one is a fuzzy interval and the other
is a fuzzy number. While an m-polar fuzzy set (mPFS) assigns m degrees to each alter-
native in the discourse universe. We focus on CmPFS, which is more efficient to address
uncertainties in the multi polar information with a group of m fuzzy intervals and m fuzzy
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numbers. We investigate some new aspects and consequences of CmPFSs. We define score
and accuracy functions to find the ranking of alternatives/objects in MCDM. Addition-
ally, we introduced some new operations, like addition, scalar/usual multiplication and
power, under Dombi’s t-conorm and t-norm. We developed several new aggregation oper-
ators (AOs) named cubic m-polar fuzzy Dombi P-averaging operator (CmPFDPAO), cubic
m-polar fuzzy Dombi R-averaging operator (CmPFDRAO), cubic m-polar fuzzy Dombi
weighted P-averaging operator (CmPFDWPAO), cubic m-polar fuzzy Dombi weighted
R-averaging operator (CmPFDWRAO), cubic m-polar fuzzy Dombi ordered weighted
P-averaging operator (CmPFDOWPAO), cubic m-polar fuzzy Dombi ordered weighted
R-averaging operator (CmPFDOWRAO), cubic m-polar fuzzy Dombi hybrid P-averaging
Operator (CmPFDHPAO) and cubic m-polar fuzzy Dombi hybrid R-averaging operator
(CmPFDHRAO). Certain properties, like, monotonicity, commutativity, idempotency, and
boundedness are explored. An advanced superiority and inferiority ranking (SIR) tech-
nique is developed to deal with the problem of conversion from linear economy to circular
economy. Lastly, a comparison analysis of proposed methodology with some other existing
methods is also given.
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