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Abstract: As an alternative to available bivariate Birnbaum–Saunders (BS) models, a conditionally
specified distribution with BS conditionals is considered. The behavior of conditional or pseudo-
likelihood parameter estimates of the model parameters is investigated via simulation. A comparison
using a mineralogy data set suggests that the conditionally specified model outperforms competing
models (with BS marginals). An analogous comparison using a well-known data set of Australian
athletes also suggests the superiority of the conditionally specified model. Further investigation of
its possible general superiority is suggested.

Keywords: asymmetric distribution; Birnbaum–Saunders distribution; conditional specifications;
multivariate distribution

1. Introduction

The BS distribution, which is asymmetric, was initially introduced as a suitable model
for lifetimes in fatigue settings (see Leiva [1] and Balakrishnan and Kundu [2]). Other
recent extensions of the BS model are delivered in the works of Reyes et al. [3], Martínez-
Flórez et al. [4], Gómez-Déniz and Gómez [5] and Mazucheli et al. [6], among others.
However, it has also been shown to function as a suitable model for other non-negative
variables. Recently, certain bivariate BS models have been proposed in the literature. It
can and has been argued that the shape of appropriate conditional densities, which are
suggested by cross sections of bivariate histograms, are easier to visualize and that these
conditional features are more informative about appropriate two dimensional models than
any modeling suggestion based on marginal insights alone. With this in mind, in many
situations, it may be worthwhile to consider bivariate models with BS conditionals, as we
will, rather than models with BS marginals. For further discussion of the advantages of
conditional specification when compared with marginal specification, see Arnold et al. [7].

The available bivariate Birnbaum–Saunders models, while providing adequate marginal
fits, are not always capable of adapting to conditional features of the data. The goal of
the current paper is to introduce alternative models that are endowed with a dependence
structure that is driven by modeling conditional features of data sets.

In Section 2, we review the definition of the BS distribution and identify the general
bivariate model with BS conditionals. Algorithms for simulating draws from this condition-
ally specified model are then described. Parameter estimation is most easily implemented
via conditional (or pseudo) likelihood. In Section 4, the performance of this estimation
strategy is investigated via simulation, and in Section 5, the conditionally specified model
is compared with two recently proposed models with BS marginals when applied to two
data sets, one of a mineralogical nature and the other a subset of the Australian athletes
data as reported in Cook and Weisberg [8]. The performance of the conditionally specified
BS distribution is encouraging.
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2. The Proposed Conditionally Specified Model

The BS density with unit scale parameter is typically expressed in the following form

f (x; γ) =
1

2γ
√

2π
(x−1/2 + x−3/2) exp

[
− 1

2γ2 (x + x−1 − 2)
]

I(x > 0).

where γ > 0. We will reparametrize the model, defining θ = 1
2γ2 , so the density becomes

f (x; θ) =
√

θ
2
√

π
(x−1/2 + x−3/2) exp

[
−θ(x + x−1 − 2)

]
I(x > 0), (1)

=
√

θ
2
√

π
S(x) exp[−θT(x)]I(x > 0),

where S(x) = x−1/2 + x−3/2 and T(x) = x + x−1 − 2. Note that the parametrization in
Equation (1) belongs to the natural exponential family of distributions. This guarantees
that the parameter space for θ is convex. If a random variable X has (1) as its density, we
write X ∼ BS(1, θ); here the 1 refers to the fact that the scale parameter is set equal to 1. If
this random variable is multiplied by a positive scale parameter β, we denote the resulting
distribution by BS(β, θ). Clearly, with β = 1, this is a one parameter exponential family.
The corresponding parameter space is {θ : 0 < θ < ∞}. Using a result in Arnold and
Strauss [9], the most general family of bivariate densities with conditionals in this one
parameter family (1) (i.e., belonging to the natural exponential family of distributions) is of
the form

fX,Y(x, y; θ10, θ01, θ11) ∝ S(x)S(y) exp{−[θ10T(x) + (θ01 + θ11T(x))T(y)]}I(x > 0, y > 0), (2)

where θ10 > 0, θ01 > 0 and θ11 ≥ 0. The corresponding marginal density of X is

fX(x; θ10, θ01, θ11) ∝
S(x)e−θ10T(x)√
θ01 + θ11T(x)

I(x > 0), (3)

which is clearly not of the BS form unless θ11 = 0, which corresponds to the case in which
X and Y are independent. The conditional densities are indeed of the BS form. Thus,
specifically

X|Y = y ∼ BS(1, θ10 + θ11T(y)), (4)

and
Y|X = x ∼ BS(1, θ01 + θ11T(x)). (5)

For added flexibility, we introduce scale parameters βX and βY in this bivariate
density. Thus, if (X∗, Y∗) has density (2) and if we define X = βXX∗ and Y = βYY∗, then
we can say that (X, Y) has a general bivariate BS conditionals (BVBSC) distribution and
we will write (X, Y) ∼ BVBSC(βX , βY, θ10, θ01, θ11). Figure 1 shows the scatterplot for the
BVBSC(10, 10, θ01, θ10, θ11) distribution with different values for the vector (θ01, θ10, θ11).
Note that the model can assume different shapes for the bivariate scatterplot depending on
the values for the vector (θ01, θ10, θ11).

2.1. Drawing Values from the Model

One advantage of the model is that both conditional distributions are specified in
relatively simple forms. There is a well-known formula expressing a BS(β, θ) variable
denoted by U as a function of a standard normal variable Z, thus

U =
β

2

{
2 +

Z2

2θ
+

1√
2θ

Z
[

4 +
Z2

2θ

]}
. (6)

This can used whenever a BS draw is to be simulated.
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(a) θ10 = 1, θ01 = 1, θ11 = 0.5
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(b) θ10 = 2, θ01 = 2, θ11 = 15
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(c) θ10 = 3, θ01 = 1, θ11 = 0.5
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(d) θ10 = 1, θ01 = 3, θ11 = 0.5
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(e) θ10 = 0.15, θ01 = 0.10, θ11 = 0.5

x

y

 −5 
 −5.3 

 −5.5 

 −5.8  −6 

 −6.3 

 −6.7 

 −7 

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(f) θ10 = 1, θ01 = 0.05, θ11 = 2.5

Figure 1. Scatterplot for BVBSC(10, 10, θ01, θ10, θ11) distribution with different values for (θ01, θ10, θ11).

There are two approaches that can be used to simulate draws from a general BS
conditionals distribution. One approach involves simulation of a draw from the X marginal
followed by use of the conditional density of Y given X to find the corresponding second
coordinate of (X, Y). For this approach, we wish to avoid drawing values directly from the
marginal distribution because of possible problems in the computation of the normalizing
constant. For this reason, to draw values from the marginal distribution of X, we propose
the following steps based on the Metropolis–Hastings algorithm (Algorithm 1):

Algorithm 1 Metropolis–Hastings algorithm.

1. Set a start value z0. A proposal can be selected by considering z0 ∼ BS(1, θ10).
2. Given a last value, say zk−1, propose a new value as z∗k = xk−1 + ε, where ε ∼ N(0, τ).

A possible choice for τ can be τ = 1 + θ10, which corresponds to the variance of X for
the independence case θ11 = 0.

3. If zk > 0, set zk = z∗k with probability π = S(xk)e
−θ10T(zk)

S(zk−1)e
−θ10T(zk−1)

√
θ10+θ11T(zk−1)

θ10+θ11T(zk)
. Otherwise,

set zk = zk−1.
4. Repeat steps 2 and 3 as many times as necessary.

To eliminate the dependence among the drawn values, it is possible to consider a
burn-in period and to thin the resulting series. Having drawn a final sample for X, say
x∗1 , x∗2 , . . . , x∗n, we can simulate corresponding values for Y (using (5)) such that y∗i ∼
BS(1, θ01 + θ11T(x∗i )). Finally, the scale parameters can be introduced by setting xi = βXx∗i
and yi = βYy∗i for i = 1, . . . , n. The pairs (x1, y1), (x2, y2), . . . , (xn, yn) then constitute a
simulated random sample from the model.

An alternative approach is one involving Gibbs sampler simulation utilizing the
relative simplicity of the two corresponding conditional distributions (and the ease of
drawing from univariate BS distributions). For it, we begin with an arbitrary value for X,
say x∗0 . Then, we use the conditional distribution of Y given X = x∗0 ( as in (5)) to simulate a



Symmetry 2021, 13, 762 4 of 9

corresponding y∗0 . Next, we generate a simulated value of X, say x∗1 , using the conditional
distribution of X given Y = y∗0 ( as in (4)), and continue in this fashion using (5) and (4)
alternately. Use of burn-in and thinning is also recommended for this approach.

3. Estimation

Up to an additive constant, the log-likelihood function for ψ = (βX, βY, θ10, θ01, θ11)
can be written as

`(ψ) =
n

∑
i=1

[
log S

(
xi
βX

)
+ log S

(
yi
βY

)
− θ01T

(
yi
βY

)
− (θ10 + θ11)T

(
xi
βX

)]
+ n log C, (7)

where

C−1 = [C(θ10, θ01, θ11)]
−1 =

∫ ∞

0

S(u)e−θ10T(u)√
θ01 + θ11T(u)

du.

However, the maximization of (7) can be challenging because of the need to repeatedly
compute the quantity C(θ10, θ01, θ11). For this reason, we recommend the implementation
of the (conditional or) pseudo-likelihood approach. Besag [10] (see also Arnold and
Strauss [11]) defined the pseudo-maximum likelihood estimator as that parameter vector
that maximizes the pseudo-likelihood function, which for the bivariate case is given by

L(ψ) =
n

∏
i=1

fXi |Yi
(xi | yi, ψ) fYi |Xi i(yi | xi, ψ).

For our proposed bivariate density, up to an additive constant, the log-pseudo-likelihood
function is given by

`(ψ) =
n

∑
i=1

[
log S

(
xi
βX

)
+ log S

(
yi
βY

)
− 1

2
log
(

θ10 + θ11T
(

yi
βY

))
− θ10 − θ01

− 1
2

log
(

θ01 + θ11T
(

xi
βX

))
− θ11

(
T
(

xi
βX

)
+ T

(
yi
βY

))]
. (8)

The pseudo-likelihood estimates of the parameters are then obtained by numerically
maximizing this expression.

4. Simulation Study

In this section, we present a brief simulation study in order to assess the recovery
of parameter values based on the pseudo-maximum likelihood estimation discussed in
Section 3. The data were drawn based on the first method described in Section 2.1, con-
sidering a burn-in period and a thinning of 1000 and 10, respectively. We consider ten
different combinations for β1, β2, θ10, θ01 and θ11. We also consider three sample sizes: 50,
100 and 200. For each combination of parameters and sample sizes, we consider 10,000
replicates. We present the average bias (AB), the mean of the standard errors (SE) based
on the hessian matrix and the root of the mean squared error (

√
MSE) for those replicates.

Results are presented in Table 1. It can be observed that accurate estimation of the depen-
dence parameter θ11 appears to require a quite large sample size. This is not unexpected
since dependence parameters are routinely more elusive in conditionally specified models.
Simulation and applications codes were written in the R programming language R [12].
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Table 1. Simulation study to assess the recovery parameters for the BVBSC model under different scenarios and based on
the pseudo-maximum likelihood estimation method.

True Value n = 50 n = 100 n = 200

β1 β2 θ10 θ01 θ11 est. AB SE
√

MSE AB SE
√

MSE AB SE
√

MSE

1 1 0.5 0.5 0.5 β̂1 0.006 0.092 0.129 0.002 0.065 0.087 0.000 0.046 0.061
β̂2 0.007 0.092 0.114 0.002 0.065 0.077 0.002 0.046 0.053
θ̂10 0.036 0.159 0.198 0.023 0.108 0.137 0.011 0.074 0.095
θ̂01 0.017 0.154 0.174 0.011 0.106 0.116 0.005 0.073 0.079
θ̂11 0.186 0.275 0.468 0.082 0.174 0.267 0.038 0.116 0.168

2 β̂1 0.001 0.064 0.087 0.000 0.045 0.060 0.000 0.032 0.043
β̂2 0.002 0.064 0.085 0.002 0.045 0.058 0.001 0.032 0.041
θ̂10 0.048 0.185 0.226 0.024 0.124 0.150 0.013 0.085 0.107
θ̂01 0.023 0.178 0.195 0.011 0.121 0.128 0.006 0.084 0.086
θ̂11 0.463 0.702 1.131 0.214 0.452 0.668 0.109 0.307 0.433

2 0.5 β̂1 0.010 0.112 0.161 0.003 0.080 0.113 0.002 0.056 0.079
β̂2 0.003 0.060 0.068 0.001 0.043 0.046 0.001 0.031 0.033
θ̂10 0.032 0.139 0.173 0.017 0.094 0.121 0.012 0.065 0.088
θ̂01 0.041 0.536 0.591 0.023 0.369 0.405 0.015 0.258 0.281
θ̂11 0.382 0.521 0.965 0.160 0.329 0.528 0.072 0.223 0.330

2 β̂1 0.005 0.092 0.128 0.002 0.065 0.087 0.001 0.046 0.061
β̂2 0.001 0.049 0.058 0.001 0.035 0.040 0.001 0.025 0.028
θ̂10 0.040 0.160 0.205 0.023 0.108 0.135 0.013 0.074 0.096
θ̂01 0.076 0.617 0.687 0.036 0.420 0.460 0.024 0.293 0.313
θ̂11 0.710 1.094 1.848 0.314 0.694 1.041 0.152 0.464 0.686

2 0.5 0.5 β̂1 0.002 0.060 0.071 0.001 0.043 0.048 0.001 0.031 0.034
β̂2 0.009 0.113 0.131 0.003 0.080 0.087 0.001 0.056 0.060
θ̂10 0.046 0.538 0.607 0.024 0.370 0.419 0.014 0.258 0.291
θ̂01 0.007 0.134 0.147 0.004 0.092 0.100 0.005 0.065 0.071
θ̂11 0.385 0.515 0.939 0.173 0.329 0.532 0.069 0.220 0.326

2 0.5 2 β̂1 0.001 0.048 0.059 0.001 0.034 0.042 0.000 0.024 0.029
β̂2 0.007 0.092 0.113 0.003 0.065 0.076 0.001 0.046 0.053
θ̂10 0.070 0.616 0.697 0.036 0.420 0.475 0.014 0.292 0.320
θ̂01 0.015 0.154 0.174 0.009 0.105 0.115 0.004 0.073 0.077
θ̂11 0.763 1.093 1.842 0.331 0.690 1.065 0.166 0.462 0.673

2 0.5 β̂1 0.003 0.065 0.076 0.002 0.047 0.052 0.001 0.033 0.036
β̂2 0.004 0.065 0.072 0.002 0.047 0.049 0.001 0.033 0.034
θ̂10 −0.015 0.483 0.534 0.009 0.335 0.361 −0.001 0.234 0.255
θ̂01 −0.020 0.483 0.513 0.002 0.334 0.354 −0.002 0.234 0.246
θ̂11 1.254 1.238 2.655 0.562 0.747 1.375 0.254 0.500 0.810

2 β̂1 0.002 0.060 0.071 0.001 0.043 0.049 0.001 0.031 0.034
β̂2 0.002 0.060 0.068 0.001 0.043 0.047 0.000 0.031 0.032
θ̂10 0.047 0.537 0.611 0.017 0.369 0.405 0.016 0.258 0.288
θ̂01 0.030 0.532 0.593 0.011 0.367 0.397 0.017 0.258 0.281
θ̂11 1.504 2.043 3.769 0.684 1.308 2.098 0.301 0.885 1.321

2 5 0.5 0.5 0.5 β̂1 0.009 0.183 0.253 −0.005 0.129 0.170 0.001 0.092 0.123
β̂2 0.041 0.462 0.566 0.001 0.325 0.385 0.009 0.231 0.265
θ̂10 0.042 0.160 0.204 0.022 0.108 0.134 0.013 0.074 0.096
θ̂01 0.019 0.155 0.173 0.009 0.105 0.115 0.006 0.073 0.080
θ̂11 0.186 0.277 0.465 0.082 0.174 0.265 0.037 0.116 0.168

0.25 0.75 0.5 0.5 2 β̂1 0.001 0.016 0.028 0.000 0.011 0.015 0.002 0.008 0.011
β̂2 0.007 0.049 0.135 0.002 0.034 0.043 0.002 0.024 0.096
θ̂10 0.034 0.180 0.235 0.027 0.124 0.154 0.006 0.084 0.113
θ̂01 0.025 0.179 0.198 0.011 0.121 0.127 0.023 0.087 0.094
θ̂11 0.449 0.695 1.136 0.215 0.453 0.674 0.110 0.308 0.450
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5. Applications

In this section, we present two applications to compare our proposal with two other
bivariate BS distributions that have been considered in the literature. The parameter
estimation was performed based on the pseudo-maximum likelihood (ML) estimation
method for the BVBSC model and the traditional ML estimation method for the other
models. Both data sets (Sections 5.1 and 5.2) have been used in many papers, particularly
in univariate distributional settings.

Regarding the first application, the variable Neodymium was used in Reyes et al. [3]
and Bourguignon and Gallardo [13] in a univariate context. For the second application,
Arellano-Valle et al. [14] used the variable weight, also in a univariate context.

5.1. Minerals Data Set

This data set corresponds to lanthanum and neodymium measurements collected by
the Department of Mines of the University of Atacama, Chile, representing 86 samples of
both minerals (see Supplementary Materials). Some descriptive statistics for this data set
are presented in Table 2.

Table 2. Descriptive measure for minerals data set.

Variable Min. Max. Median Mean s.d. Skewness Kurtosis

lanthanum 1 331 37 52.24 70.47 2.65 8.85
neodymium 4 219 28.5 35.02 34.23 3.65 18.22

We fitted the bivariate BS (BVBS) discussed in Kundu et al. [15] and the bivariate BS
(BVBS2) proposed by Lemonte et al. [16]. The formulas for the densities corresponding to
these models are displayed in the Appendix A. Results are presented in Table 3. In order
to compare the models, the AIC (see Akaike [17]) and BIC (see Schwarz [18]) criteria are
considered. The conditionally specified model appears to be markedly superior to the other
two bivariate BS models. It should be remarked, however, that, since the conditionally
specified model fails to have BS marginals, it might be difficult to convince a scientist to
use it if they feel that there are valid scientific reasons to believe that BS marginals are
appropriate. Figure 2 shows the better fit for the mineral data set of the BVBSC when
compared with the BVBS and BVBS2 models.

Table 3. Estimates for different bivariate BS-type models in the minerals data set based on the pseudo-
ML estimation (BVBSC) model and the ML estimation (BVBS and BVBS2 models) and standard errors
in brackets.

Parameter BVBS BVBS2 BVBSC

α1 1.4139 (0.1080) 1.4144 (0.1080) -
α2 0.7577 (0.0578) 0.7576 (0.0578) -
β1 25.2075 (3.0529) 25.2044 (3.0525) 25.7728 (1.9685)
β2 27.2319 (2.0786) 27.1446 (2.0719) 27.3922 (2.0886)
ρ 0.0110 (0.0012) - -
λ - 0.0723 (0.0078) -

θ10 - - 0.1448 (0.0175)
θ01 - - 0.5193 (0.0396)
θ11 - - 0.9133 (0.0989)

AIC 1623.33 1623.29 1568.93
BIC 1635.60 1635.56 1581.20
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Figure 2. Scatterplot of minerals data and contour level of the fitted models. BVBS (left panel),
BVBS2 (center panel) and BVBSC (right panel).

5.2. Australian Athletes Data Set

These data are related to measurements of 202 Australian athletes found in Cook
and Weisberg [8]. For each athlete various characteristics of the blood were determined
together with data regarding the sport, body size and gender of the athlete. In particular,
we consider two measurements, the Body fat percentage (Bfat) and the weight in kg. Some
descriptive statistics for this data set are presented in Table 4.

Table 4. Descriptive measure for athletes data set.

Variable Min. Max. Median Mean s.d. Skewness Kurtosis

Bfat 5.63 35.52 11.65 13.51 6.19 0.76 2.83
Weight 37.80 66.53 74.40 75.01 13.93 0.24 3.39

We fitted the same three bivariate BS models to these data as were fitted in Section 5.1.
Results are presented in Table 5. Again, the conditionally specified model appears to be
superior to the other two bivariate BS models. Figure 3 shows the better fit for the athlete
data set of the BVBSC when compared with the BVBS and BVBS2 models.

Table 5. Estimates for different bivariate BS-type models in the athlete data set based on the pseudo-
ML estimation (BVBSC) model and the ML estimation (BVBS and BVBS2 models) and standard errors
in brackets.

Parameter BVBS BVBS2 BVBSC

α1 0.4583 (0.0228) 0.4583 (0.0228) -
α2 0.1912 (0.0095) 0.1912 (0.0095) -
β1 12.2255 (0.3838) 12.2245 (0.3838) 11.8503 (0.5896)
β2 73.6622 (0.9862) 73.6632 (0.9862) 74.5503 (3.7090)
ρ −0.0040 (0.0003) - -
λ - −0.0097 (0.0007) -

θ10 - - 1.5367 (0.0482)
θ01 - - 7.3707 (0.0987)
θ11 - - 50.3277 (3.5410)

AIC 2908.67 2908.67 2856.04
BIC 2925.21 2925.21 2872.58
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Figure 3. Scatterplot of athlete data and contour level of the fitted models. BVBS (left panel),
BVBS2 (center panel) and BVBSC (right panel).

6. Discussion

The BS density has been utilized in a wide range of scientific and economic settings as
a suitable model for non-negative data. As was remarked in the Introduction, its genesis
was in the context of fatigue life distributions, but its relative simplicity has led to successful
application in many other fields. There are, of course, many ways in which we might
seek to develop suitable bivariate BS models. One approach involves the use of copulas
to link BS marginals. An example of this approach is the Kundu et al. [15] model, which
can be viewed as utilizing a classical bivariate normal copula. The model proposed by
Lemonte et al. [16] involves marginal transformations of a well-known bivariate skew
normal model. The proposal, in the current paper, of using a conditionally specified model
does have the drawback of not having BS marginals, but, as has been demonstrated, it fares
well, when compared to the two models described above, in terms of fitting the data sets
discussed here.

The field is, of course, open for the development of alternative bivariate BS distribu-
tions distinct from those discussed here. It must be kept in mind that we cannot expect to
find an overall best bivariate BS model. Some will be good for certain kinds of data, while
others will be better for different data configurations.

Supplementary Materials: This manuscript contains the mineral data set presented in Section 5.1 as
Supplementary Materials, available at https://www.mdpi.com/article/10.3390/sym13050762/s1.
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Appendix A

The BVBS density presented in Kundu et al. [15] is

fT1,T2(t1, t2) = φ2(a1, a2; ρ)A1 A2, (t1, t2) ∈ R+
2 ,

https://www.mdpi.com/article/10.3390/sym13050762/s1
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where aj = aj(αj, β j) and Aj = Aj(αj, β j) are defined as

aj =
1
αj

[√
tj

β j
−
√

β j

tj

]
and Aj =

t−3/2
j

(
tj + β j

)
2αj

√
β j

, j = 1, 2 (A1)

and φ2(u, v; ρ) denotes the joint probability density of the bivariate standard normal distri-
bution with correlation parameter equal to ρ, i.e.,

φ2(u, v; ρ) = 2π(1− ρ2)−1/2 exp
{
− (u2 + v2 − 2ρuv)

2(1− ρ2)

}
.

On the other hand, the BVBS2 density studied by Lemonte et al. [16] is

fT1,T2(t1, t2) = 2φ(a1)φ(a2)Φ(λa1a2)A1 A2, (t1, t2) ∈ R+
2 ,

where aj and Aj are presented in (A1) and φ(·) and Φ(·) denote the density and cumulative
distribution functions for the univariate standard normal distribution.
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