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Abstract: A hollow cylinder of incompressible material obeying Hill’s orthotropic quadratic yield
criterion and its associated flow rule is contracted on a rigid cylinder inserted in its hole. Friction
occurs at the contact surface between the hollow and solid cylinders. An axisymmetric boundary
value problem for the flow of the material is formulated and solved, and the solution is in closed
form. A numerical technique is only necessary for evaluating ordinary integrals. The solution may
exhibit singular behavior in the vicinity of the friction surface. The exact asymptotic representation
of the solution shows that some strain rate components and the plastic work rate approach infinity in
the friction surface’s vicinity. The effect of plastic anisotropy on the solution’s behavior is discussed.

Keywords: plastic anisotropy; friction; singularity; exact solution

1. Introduction

One can rarely find an analytical solution to an axisymmetric problem in plasticity.
Such solutions exist for the one-dimensional classical problems, such as expanding tubes
and spherical shells [1]. A solution for the flow of rigid perfectly plastic material through
an infinite conical channel has been presented in [2]. This solution is valid for an arbitrary
isotropic pressure-independent yield criterion. Several papers have generalized the solu-
tion [2]. In particular, a solution for the flow of rigid/linear-hardening materials has been
given in [3]. This solution has been further generalized on an arbitrary nonlinear strain-
hardening law in [4]. Paper [5] has dealt with the radial flow of rigid/linear-hardening
materials between two conical walls. The solution [2] has been used in [6,7] for constructing
a solution for the flow of multilayered material. The same approach in conjunction with the
solutions given in [4,5] has been adopted in [6] to include strain hardening into considera-
tion. The radial flow of viscoplastic solids has been studied in [8], where solutions for other
rate-dependent materials have been discussed. Solutions with non-zero circumferential
velocity have been derived in [9,10]. In both papers, the material response is rigid perfectly
plastic. Paper [11] has generalized the solution [2] on the double shearing model of ideal
granular material. The double shearing model is described in this paper as well. It is
worthy of note that of the solutions above, only the rigid perfectly plastic solutions are
exact. The other solutions involve more approximations or have more limitations than the
solution [2].

Another series of exact solutions has started from the solution given in [12]. Con-
sidered is a rigid/perfectly plastic hollow cylinder with a rigid solid cylinder inserted
in its hole. The rigid/perfectly plastic cylinder is subject to uniform contraction over its
outer surface. The constitutive equations comprise Tresca’s yield criterion and its associ-
ated flow rule. In [13] the solution [12] has been extended to the rigid/perfectly plastic
material model based on the yield criterion proposed in [14]. Papers [15] and [16] have
generalized the solution [12] on a model of viscous material and the double shearing
model, respectively.
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The importance of analytical solutions is at least twofold. Firstly, such solutions can be
used as benchmark problems for verifying numerical codes, which a necessary step before
using such codes [17,18]. Secondly, analytical solutions are useful for understanding the
qualitative behavior of general solutions. Of particular interest for rigid/plastic models is
the maximum friction surfaces where the velocity field may be singular [19]. This singular-
ity causes difficulty with numerical solutions. In particular, finite element solutions based
on typical shape functions do not converge [20,21].

One of the present paper’s objectives is to extend the solution [12] to a model of
anisotropic plasticity. It is known that even mild plastic anisotropy may significantly affect
some features of isotropic solutions [22]. An example of such an effect has been presented,
for example, in [23]. It is assumed that the material obeys Hill’s quadratic yield criterion
and its associate flow rule [1]. This model is widely used until now [24–27]. It is known that
plane strain solutions for this model may be singular [28]. This singularity is associated
with envelopes of characteristics. The equations for axisymmetric flow are not hyperbolic.
However, isolated characteristic surfaces in ideal plasticity may exist even if the equations
are not hyperbolic [29]. Another objective of the present paper is to demonstrate it for the
model adopted using a particular solution.

Many theoretical and experimental studies have been devoted to the failure of contin-
uous fiber-reinforced ductile matrix composites [12,30–37]. All these works can be divided
into three groups, namely (i) matrix damage [30–32]; (ii) matrix-fiber interface fracture
(debonding) [33–36]; and (iii) fiber breakage [12,36,37]. An applied aspect of the solution
found is that it can be used for predicting the brittle fracture of fibers in such composites
using the approach proposed in [12]. The third objective of the present paper is to combine
this approach and the solution found.

2. Statement of the Problem

A rigid solid cylinder is inserted into the hole of a rigid/plastic hollow cylinder
(Figure 1). The radius of the rigid cylinder and the radius of the hollow cylinder’s hole
is denoted by a0, and the outer radius of the hollow cylinder by b0. The length of both
the cylinders is 2L. The hollow cylinder is subject to uniform contraction over its outer
surface. Cylindrical coordinates (r, θ, z) are taken, with the z-axis coinciding with the axis
of symmetry of each cylinder. The plane z = 0 is a plane of symmetry of the boundary
value problem. The solution is independent of θ. The boundary conditions are the same
as those in [12]. In particular, the boundary conditions at r = a0 and r = b0 are satisfied
exactly, except for the condition on the radial stress. The exact boundary conditions at
z = 0 and z = L are replaced with integral boundary conditions. Since z = 0 is the plane of
symmetry for the flow, it is sufficient to find the solution in the region 0 ≤ z ≤ L.
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The non-zero components of the stress tensor in the cylindrical coordinates are denoted
by σrr, σθθ , σzz, and σrz; and the non-zero components of the velocity vector by ur and uz.
Since the inner cylinder is rigid,

ur = 0, (1)
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for r = a0. The other velocity boundary condition that is exactly satisfied is

ur = −U, (2)

for r = b0. Here U > 0. The exact velocity boundary condition at the plane of symmetry is
replaced with

b0∫
a0

uzrdr = 0, (3)

for z = 0. The stress boundary conditions that are exactly satisfied are

σrz = 0, (4)

for r = b0 and Prandtl’s friction law at r = a0. This law depends on the constitutive
equations and will be formulated below. The integral stress boundary condition proposed
in [12] reads

L∫
0

σrr|r=b0
dz = 0. (5)

At the end of the hollow cylinder, an axial stress is required to deform it according
to the boundary conditions above. Once the boundary value problem has been solved,
the average value of this stress is calculated as

q =
2(

b2
0 − a2

0
) b0∫

a0

σzz|z=Lrdr. (6)

This stress is involved in the method for predicting the brittle fracture of fibers in
composites proposed in [12].

The material of the hollow cylinder is plastically orthotropic. The principal axes of
anisotropy coincide with coordinate curves of the cylindrical coordinate system. The elastic
portion of strain is neglected. The constitutive equations comprise the yield criterion
proposed in [1] and its associated flow rule. In the case under consideration, the yield
criterion reads

F(σθθ − σzz)
2 + G(σzz − σrr)

2 + H(σrr − σθθ)
2 + 2Mσ2

rz = 1. (7)

Here

2F =
1

Θ2 +
1

Z2 −
1

R2 , 2G =
1

Z2 +
1

R2 −
1

Θ2 , 2H =
1

R2 +
1

Θ2 −
1

Z2 .

where R is the tensile yield stress in the radial direction, Θ is the tensile yield stress in the
circumferential direction, Z is the tensile yield stress in the axial direction, and 1/

√
2M is

the shear yield stress with respect to the r-, z-axes. All of them are supposed to be constant.
The flow rule is

ξrr = λ[H(σrr − σθθ) + G(σrr − σzz)],
ξθθ = λ[F(σθθ − σzz) + H(σθθ − σrr)],
ξzz = λ[G(σzz − σrr) + F(σzz − σθθ)],

ξrz = λMσrz.

(8)

Here λ is a non-negative multiplier.
Prandtl’s friction law for isotropic materials postulates that the friction stress τf is a

fraction of the shear yield stress. Therefore, it is reasonable in the case under consideration
to represent this law as

σrz = τf =
m√
2M

, (9)
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for r = a0. Here m is the friction factor, 0 ≤ m ≤ 1.
In what follows, it is convenient to use the nondimensional quantities:

ρ =
r
b0

, ζ =
z
b0

and a =
a0

b0
. (10)

3. Analytic Solution

The solution provided in [12] suggests that one looks for velocity solutions of the form

ur

U
= −η(ρ) and

uz

U
= Aζ + µ(ρ). (11)

Here η(ρ) and µ(ρ) are arbitrary functions only of ρ, and A is constant. Equation (8)
results in the equation of incompressibility ξρρ + ξθθ + ξzz = 0. In terms of the velocity
components, this equation becomes ∂ur/∂r + ur/r + ∂uz/∂z = 0. Or, using Equation (10),

∂ur

∂ρ
+

ur

ρ
+

∂uz

∂ζ
= 0. (12)

Substituting Equation (11) into Equation (12) one gets

dη

dρ
+

η

ρ
= A. (13)

This equation can be immediately integrated to give

η =
Aρ

2
+

A0

ρ
. (14)

Here A0 is constant. Equations (1), (2), (10), (11), and (14) combine to give

A0 = − a2

1− a2 and A =
2

1− a2 . (15)

Substituting Equation (15) into Equation (14) and the resulting equation into (11)
leads to

ur

U
= − 1

(1− a2)

(
ρ− a2

ρ

)
and

uz

U
=

2ζ

(1− a2)
+ µ(ρ). (16)

Then, using Equation (10), one can find the non-zero components of the strain rate
tensor referred to the cylindrical coordinates as

b0
U ξrr =

b0
U

∂ur
∂r = − 1

(1−a2)

(
ρ + a2

ρ2

)
, b0ξθθ

U = b0
U

ur
r = − 1

(1−a2)

(
1− a2

ρ2

)
,

b0ξzz
U = b0

U
∂uz
∂z = 2

(1−a2)
, b0ξrz

U = b0
2U

∂uz
∂r = 1

2
dµ
dρ .

(17)

In a generic meridian plane, the slope ϕ of the principal axes of strain rate with respect
to the r-axis is given by

tan 2ϕ =
2ξrz

ξrr − ξzz
=

(
∂ur

∂z
+

∂uz

∂r

)(
∂ur

∂r
− ∂uz

∂z

)−1
. (18)

Equations (17) and (18) combine to give

tan 2ϕ =
ρ2(a2 − 1

)
(a2 + 3ρ2)

dµ

dρ
. (19)
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The slope ϕ can also be expressed in terms of the stress components using Equations (8)
and (18). As a result,

tan 2ϕ =
2Mσrz

H(σrr − σθθ) + 2G(σrr − σzz)− F(σzz − σθθ)
. (20)

It is convenient to introduce the new stress variables p1, p2, and p3 as

p1 = H(σrr − σθθ), p2 = F(σθθ − σzz), p3 = G(σzz − σrr). (21)

It is evident that p1

H
+

p2

F
+

p3

G
= 0. (22)

Equations (20) and (21) combine to give

2Mσrz

p1 − 2p3 + p2
= tan 2ϕ. (23)

It follows from Equations (8) and (21) that ξrr(p2 − p1) = ξθθ(p1 − p3) or
(p2 − p1)∂ur/∂r = (p1 − p3)ur/r. Using Equations (10) and (16), one transforms the lat-
ter equation to

p1 − p3

p2 − p1
= t. (24)

One can solve Equations (22) and (24) for p3 and p2 to get

p2 = p1w and p3 = p1[1 + t(1− w)]. (25)

In Equations (24) and (25), t and w are functions of ρ defined as

t =
ρ2 + a2

ρ2 − a2 , w =

[
1
H

+
(1 + t)

G

](
t
G
− 1

F

)−1
. (26)

Equations (23) and (25) combine to give

2Mσrz = p1(w− 1)(1 + 2t) tan 2ϕ. (27)

Substituting Equation (21) into Equation (7) and using Equations (25) and (27), one ar-
rives at the following equation for p1

p2
1 =

{
w2

F
+

[1 + t(1− w)]2

G
+

1
H

+
tan2 2ϕ(w− 1)2(1 + 2t)2

2M

}−1

. (28)

Assuming that the components of the deviatoric stress tensor are independent of z,
the equilibrium equations reduce to

∂σ

∂ρ
+

dτrr

dρ
+

τrr − τθθ

ρ
= 0 and

dσrz

dρ
+

∂σ

∂ζ
+

σrz

ρ
= 0. (29)

Here σ is the hydrostatic stress, τrr = σrr − σ, and τθθ = σθθ − σ. The third normal
component of the deviatoric stress tensor is τzz = σzz − σ. The Equations in (29) are
compatible if √

2Mσ = 2Bζ +
√

2Mσ0(ρ), (30)

where B is constant and σ0(ρ) is a function of ρ. Substituting Equation (30) into Equation (29),
one gets

dσ0

dρ
+

dτrr

dρ
+

τrr − τθθ

ρ
= 0 and

dσrz

dρ
+

σrz

ρ
= −
√

2B√
M

. (31)
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The second equation in Equation (31) can be immediately integrated to give

√
2Mσrz =

C
ρ
− Bρ, (32)

where C is constant. The boundary conditions in Equations (4) and (9) serve for determining
B and C. As a result, using Equation (10),

C = B =
ma

1− a2 . (33)

Then, Equation (32) becomes

√
2Mσrz =

ma
(1− a2)

(
1
ρ
− ρ

)
. (34)

Equations (27) and (34) combine to give

p1 =
m
√

2Ma
(
1− ρ2)

ρ(1− a2)(w− 1)(1 + 2t) tan 2ϕ
. (35)

Eliminating p1 between Equations (28) and (35), one arrives at the following equation
for tan 2ϕ

tan2 2ϕ =
2Mm2a2(1− ρ2)2

(w− 1)2(1 + 2t)2
[
ρ2(1− a2)

2 −m2a2(1− ρ2)
2
]{w2

F
+

[1 + t(1− w)]2

G
+

1
H

}
. (36)

Substituting tan 2ϕ back into Equation (35) leads to

p1 = ±

√
ρ2(1− a2)

2 −m2a2(1− ρ2)
2

ρ(1− a2)

√
w2

F + [1+t(1−w)]2

G + 1
H

. (37)

It is seen from Equation (26) that t > 0, t→ ∞ as ρ→ a , and dt/dρ < 0 for all ρ.
Moreover, w→ 1 as t→ ∞ (or ρ→ a ) and dw/dt < 0 for all t. Summarizing the relations
above, one can conclude that the direction of the friction stress (Figure 1) demands that
dµ/dρ > 0. Then, Equations (19) and (36) combine to give

w ≥ 1 and t > 0. (38)

dµ

dρ
=

√
2Mma

(
1− ρ2)(a2 + 3ρ2)

(1− a2)(w− 1)(1 + 2t)ρ2
√

ρ2(1− a2)
2 −m2a2(1− ρ2)

2

√
w2

F
+

[1 + t(1− w)]2

G
+

1
H

. (39)

Here, Equation (38) has been taken into account. It follows from Equation (39) that

µ =

√
2Mma

(1− a2)

ρ∫
1

(
1− χ2)(a2 + 3χ2)

(w− 1)(1 + 2t)χ2
√

χ2(1− a2)
2 −m2a2(1− χ2)

2

√
w2

F
+

[1 + t(1− w)]2

G
+

1
H

dχ + µ0. (40)

Here, µ0 is constant. Its value is found applying Equation (3). Using Equations (10),
(11) and (40), one gets

µ0 = −2
√

2Mma

(1− a2)
2

1∫
a

ρ

ρ∫
1

(
1− χ2)(a2 + 3χ2)

(w− 1)(1 + 2t)χ2
√

χ2(1− a2)
2 −m2a2(1− χ2)

2

√
w2

F
+

[1 + t(1− w)]2

G
+

1
H

dχdρ. (41)

The integrals in Equations (40) and (41) should be evaluated numerically.
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Equation (21) is equivalent to

p1 = H(τrr − τθθ), p2 = F(τθθ − τzz), p3 = G(τzz − τrr). (42)

These equations can be solved for the components of the deviatoric stress tensor. As
a result,

τrr =
1
3

(
2p1

H
+

p2

F

)
, τθθ =

1
3

( p2

F
− p1

H

)
, τzz = −

1
3

(
2p2

F
+

p1

H

)
. (43)

Substituting Equation (43) into the first equation in Equation (31), one finds

d(σ0 + τrr)

dρ
= − p1

ρH
. (44)

Equations (19), (35), and the inequality dµ/dρ > 0 demands that p1 < 0. Then,
the lower sign should be chosen in Equation (37). Using this equation, one can rewrite
Equation (44) as

d(σ0 + τrr)

dρ
=

√
ρ2(1− a2)

2 −m2a2(1− ρ2)
2

Hρ2(1− a2)

√
w2

F + [1+t(1−w)]2

G + 1
H

. (45)

Integrating and using Equation (43) gives

σ0 + τrr =
1

H(1− a2)

ρ∫
1

√
χ2(1− a2)

2 −m2a2(1− χ2)
2

χ2
√

w2

F + [1+t(1−w)]2

G + 1
H

dχ + D. (46)

Equation (5) serves for determining D. The radial stress is found from Equations (30),
(33) and (46) as

σrr =
2maζ√

2M(1− a2)
+ σ0 + τrr =

2maζ√
2M(1− a2)

+
1

H(1− a2)

ρ∫
1

√
χ2(1− a2)

2 −m2a2(1− χ2)
2

χ2
√

w2

F + [1+t(1−w)]2

G + 1
H

dχ + D. (47)

Substituting Equation (47) into Equation (5) and using Equation (10) gives

D = − ma√
2M(1− a2)

(
L
b0

)
. (48)

This equation completes the solution.
Summarizing the solution above, one finds the velocity field from Equations (16), (40)

and (41). Equations (34), (47), and (48) supply the shear and radial stresses. The other
normal stresses follow from Equations (30) and (33), and the equations σθθ = σ + τθθ and
σzz = σ+ τzz. The deviatoric stress components involved in these equations are determined
from Equations (25), (37) and (43). Having found the axial stress, one calculates the value
of q from Equation (6).

The plastic work rate W can be calculated as [1]:

W = σξ, (49)

where σ and ξ are the equivalent stress and strain rate, respectively, which are given by

σ =

√
3

2(F + G + H)

√
F(σθθ − σzz)

2 + G(σzz − σrr)
2 + H(σrr − σθθ)

2 + 2Mσ2
rz, (50)
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ξ =

√
2(F + G + H)

3

√
F
(

Gξθθ − Hξzz

FG + GH + HF

)2
+ G

(
Hξzz − Fξrr

FG + GH + HF

)2
+ H

(
Fξrr − Gξθθ

FG + GH + HF

)2
+

2ξ2
rz

M
. (51)

4. Asymptotic Analysis

Many rigid/plastic solutions are singular in the vicinity of maximum friction sur-
faces [19,28]. In the case under consideration, the maximum friction surface is ρ = a if
m = 1. Equation (39) at m = 1 becomes

dµ

dρ
=

√
2Ma

(
1− ρ2)(a2 + 3ρ2)

(1− a2)(w− 1)(1 + 2t)ρ2
√

ρ2(1− a2)
2 − a2(1− ρ2)

2

√
w2

F
+

[1 + t(1− w)]2

G
+

1
H

. (52)

It is seen from Equation (26) that t→ ∞ as ρ→ a . However,

lim
ρ→a

[t(ρ)(1− w(ρ))] = −G
F
− G

H
− 1. (53)

Therefore, the function ρ2(1− a2)2 − a2(1− ρ2)2 controls the behavior of the right-
hand side of Equation (52) as ρ→ a . Since

ρ2
(

1− a2
)2
− a2

(
1− ρ2

)2
= 2a

(
1− a4

)
(ρ− a) + o[(ρ− a)], (54)

as ρ→ a , it is evident from Equation (52) that

dµ

dρ
= O

(
1√

ρ− a

)
, (55)

as ρ→ a . Then, it follows from Equation (11) that the shear strain rate approaches infinity
in the vicinity of the maximum friction surface. In particular,

ξrz = O
(

1√
ρ− a

)
, (56)

as ρ→ a . The normal strain rates referred to the cylindrical coordinate system are not singular.
Using Equations (53) and (54), one can rewrite Equation (45) as

d(σ0 + τrr)

dρ
= O

[√
ρ− a

]
, (57)

as ρ→ a . Integrating
σ0 + τrr = O

[
(ρ− a)3/2

]
+ D, (58)

as ρ→ a . It follows from Equations (25) and (37) in which the lower sign is chosen, (53),
and (54) that

p1 = −
√

2(1+a2)
a(1−a2)

[
1
F + 1

H + 1
G

(
G
F + G

H + 1
)2
]−1/2√

ρ− a + o(
√

ρ− a),

p2 = −
√

2(1+a2)
a(1−a2)

[
1
F + 1

H + 1
G

(
G
F + G

H + 1
)2
]−1/2√

ρ− a + o(
√

ρ− a),

p3 =

√
2(1+a2)
a(1−a2)

(
G
F + G

H

)[
1
F + 1

H + 1
G

(
G
F + G

H + 1
)2
]−1/2√

ρ− a + o(
√

ρ− a),

(59)

as ρ→ a . If F 6= H, Equations (43) and (59) combine to give

τrr = O
(√

ρ− a
)
,τθθ = O

(√
ρ− a

)
,andτzz = O

(√
ρ− a

)
, (60)
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as ρ→ a . If F = H, the second equation in Equation (60) transforms to

τθθ = o
(√

ρ− a
)
, (61)

as ρ→ a . Comparing Equations (58) and (60), one concludes that

σ0 = O
(√

ρ− a
)
+ D, (62)

as ρ→ a . At any ζ, it follows from Equations (30) and (62) that

σ = O
(√

ρ− a
)
+ D1, (63)

as ρ→ a . Equations (58), (60), and (63) show that the absolute values of the derivatives
∂σθθ/∂ρ and ∂σzz/∂ρ approach infinity as ρ→ a but the absolute value of the derivative
∂σrr/∂ρ does not.

The asymptotic Expansions (56), (60), (61) and (63) show that traditional finite elements
are not capable of solving this problem. It has been already demonstrated in [21] for an
isotropic model that calculation does not converge. These asymptotic expansions can be
used in conjunction with the extended finite element method [38].

Equations (51) and (56) show that the equivalent strain rate approaches infinity near
the bi-material interface. This strain rate controls the evolution of many material properties.
Therefore, Equations (51) and (56) predict a high gradient of such properties near the bi-
material interface. This phenomenon has been known for a long time (see, for example, [39]).
In particular, the generation of microstructure in the vicinity of bi-material interfaces has
been studied in [40,41]. Nevertheless, the asymptotic expansions found cannot be directly
used in conjunction with conventional evolution equations for material properties because
ξ → ∞ as ρ→ a . An approach to overcome this difficulty for isotropic materials has been
proposed in [42]. Equation (56) suggests that a similar approach can be developed for
anisotropic materials.

5. Numerical Example

The numerical example provided in this section evaluates the effect of the hollow
cylinder’s material anisotropy on the stress and strain fields. It was assumed that the
hollow cylinder is made from aluminum alloy AA5086. Due to various parameters of
the manufacturing process, the same material may exhibit different anisotropic properties
characterized by the symmetry of mechanical properties with respect to the principal axes
of anisotropy [43–45]. The following types of anisotropy were considered: isotropic, trans-
versely isotropic (mechanical properties are identical in any direction in the zθ-coordinate
surface but differ from the properties in the other coordinate surfaces) and orthotropic
materials. The AA5086 alloy’s mechanical properties involved in yield criterion (7) are
available in the literature [46]. The mechanical properties responsible for plastic anisotropy
are summarized in Table 1.

Table 1. Input data for all the cases considered.

Material Z, MPa F, 10−6

MPa−2
G, 10−6

MPa−2
H, 10−6

MPa−2
M, 10−6

MPa−2

Isotropic 191 13.7 13.7 13.7 41.1
Transversely

isotropic 191 9.0 18.4 18.4 36.4

Orthotropic 191 10.8 16.6 20.8 43.7

The solution provided in Section 3 has been applied to calculate the distribution of the
velocities, strain rates, stresses, and plastic work rate at m = 1. It has also been assumed
that a2 = 1/2 and L/b0 = 10. The first equation in Equation (16) supplies the radial
distribution of the radial velocity at any value of a. This simple formula does not require a
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graphical illustration. No material properties affect the radial velocity. The second equation
in Equation (16) shows that the function µ(ρ) completely controls the influence of plastic
anisotropy on the axial velocity. Figure 2 illustrates this function. Using this Figure, one can
visualize the radial distribution of the axial velocity with ease by adding the first term on
the second equation’s right-hand side in Equation (16). This term is constant at any value of
ζ. It is seen from Figure 2 that the influence of plastic anisotropy on the axial velocity is not
significant. However, one can see an interesting qualitative feature of the solution that the
magnitude of this velocity in the vicinity of the friction surface is largest for transversely
isotropic material, even though this material model is intermediate with respect to the
other two models. Another qualitative feature of the solution is that the magnitude of the
axial velocity in the cylinder of transversely isotropic material is the largest in the vicinity
of the friction surface but is the smallest at the outside radius, as compared to the other
two models. The curves in Figure 2 are in qualitative agreement with Equation (55).
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transversely isotropic material.

The strain rate tensor’s normal components are given by the simple formulae pre-
sented in Equation (17). Therefore, no graphical illustration of these components is required.
The last equation in Equation (17) shows that the function µ(ρ) completely controls the
influence of plastic anisotropy on the shear strain rate component. The variation of this
component with the dimensionless radius is depicted in Figure 3. The effect of plastic
anisotropy is not significant. As in the case of the axial velocity, the curve corresponding
to transversely isotropic material does not lie between the curves corresponding to the
isotropic and orthotropic materials. The magnitude of the shear strain rate approaches
infinity in the vicinity of the friction surface in accordance with Equation (56).
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material; ···· - transversely isotropic material.

The simple formula in Equation (34) gives the solution for the shear stress. The effect
of plastic anisotropy vanishes if this stress is normalized by

√
M. Therefore, no graphical

illustration of this stress is required. The most significant influence of plastic anisotropy
is observed on τrr, τθθ , and σ (Figure 4). The change of the type of anisotropy affects
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these distributions quantitively. In particular, the isotropic model results in the largest
absolute value of τrr, the smallest absolute value of τθθ , and the intermediate value of σ.
The transversely isotropic model results in the smallest absolute value of τrr, the largest
absolute value of τθθ , and the largest absolute value of σ. The orthotropic model results
in the intermediate absolute values of both τrr and τθθ , and the smallest absolute value
of σ. The effect of the type of plastic anisotropy on the deviatoric stress τzz is negligible.
The difference in the value of σ between the orthotropic and transversely isotropic mod-
els is about 10%. This result is important for predicting the brittle fracture of fibers in
composites using the method proposed in [12]. It is seen from Figure 4 that the tangents
to all the curves corresponding τrr, τzz, and σ tend to a vertical line in the vicinity of the
inner radius. This behavior of the curves is in accordance with Equations (60) and (63).
The curves corresponding to τθθ reveal the same feature for the orthotropic and transversely
isotropic models but not for the isotropic model. The latter agrees with Equation (61) since
F = H = G in the case.
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The radial distribution of the plastic work rate calculated using Equations (49)–(51)
is depicted in Figure 5. Since the stresses and normal strain rates are bounded, it is seen
from these equations and Equation (56) that W = O(1/

√
ρ− a) as ρ→ a . This asymptotic

representation of the solution is visible in Figure 5.
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6. Prediction of the Brittle Fracture of Fibers in Composites

The solution above can be used for predicting the failure of composite sheets made
of ductile matrix and brittle fibers subject to tension in the direction of fibers using the
approach suggested in [12]. According to this approach, the failure occurs by plastic flow
of the matrix if L < Lc and by brittle fracture of the fiber if L > Lc. The critical length Lc
should be found from the solution. The criterion for finding this length is that both failure
mechanisms occur simultaneously. Equation (6) at L = Lc supplies the tensile load qc at
which the fiber breaks. The parameters from Section 5 have been used in the calculation.
In addition, the mean tensile stress at which the fiber breaks, T, is required. Its magnitude
has been varied in the range typical for the fibrous composites [47].

The change of the type of anisotropy affects the ultimate tensile strength quantitively
(Figure 6). In particular, the orthotropic model results in the largest values of qc on the
range of T, the smallest values of qc correspond to the transversely isotropic model; the
isotropic model results in the intermediate values. The lower the difference between the
ultimate stress of the fiber and the yield stress of the matrix, the greater the effect of the
plastic properties anisotropy on the brittle fracture of the fiber.
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7. Conclusions

An exact axisymmetric solution has been found for the stress and velocity fields in
a hollow rigid/plastic anisotropic cylinder contracted a solid rigid cylinder. Three types
of anisotropy have been adopted for obtaining quantitative results: orthotropic material,
transversely isotropic material, and isotropic material. The following conclusions have
been reached from this theoretical analysis:

1. The type of anisotropy has a negligible effect on kinematics variables and the plastic
work rate. This feature is attributed to the boundary conditions that specify the radial
velocity at both the inner and outer radii of the rigid/plastic cylinder and the equation of
incompressibility valid for all the models adopted.

2. The type of anisotropy has a significant effect on the radial and circumferential
deviatoric stress and hydrostatic stress. The type of anisotropy has a negligible effect on
the axial deviatoric stress. A consequence of such a solution’s behavior is that the type of
anisotropy has a significant effect on the axial stress involved in Equation (6).

3. If the friction factor is equal to unity, then the solution becomes singular in the
vicinity of the inner radius of the rigid/plastic cylinder. In particular, the shear strain
rate and plastic work rate approach infinity near this radius according to an inverse
square root rule. This behavior may cause difficulties with solving other problems using
numerical methods.

4. The solution found can be used in conjunction with the approach proposed in [12]
for predicting the brittle fracture of fibers in composites.
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Nomenclature

a0 Radius of rigid cylinder [mm]
b0 Outer radius of hollow cylinder [mm]
2L Length of both cylinders [mm]
Lc Critical fiber length [mm]
ρ, ζ, a Nondimensional quantities
(r, θ, z) Cylindrical coordinates
σrr, σθθ , σzz, σrz Components of the stress tensor in the cylindrical coordinates [MPa]
τf Friction stress [MPa]
ξrr, ξθθ , ξzz, ξrz Components of the strain rate tensor in the cylindrical coordinates [s−1]
ur, uz Components of the velocity vector [mm/s]
U Radial velocity at te outer radius [mm/s]
q Average value of axial stress [MPa]
qc Tensile load at which the fiber breaks in composite [MPa]
σ Hydrostatic stress [MPa]
τrr, τθθ , τzz Components of the deviatoric stress tensor [MPa]
F, G, H, M Hill’s coefficients [MPa−2]
R, Θ, Z Tensile yield stresses in the radial, circumferential and axial directions [MPa]
λ Non-negative multiplier
m Friction factor
η, µ, t, w, σ0 Functions of
ϕ Slope of the principal axes of strain rate with respect to the r-axis
A, A0, B, C, µ0, D Constants
p1, p2, p3 Stress variables [MPa−1]
W Plastic work rate [MPa/s]
σ Equivalent stress [MPa]
ξ Equivalent strain rate [s−1]
T Mean tensile stress at which the fiber breaks [MPa]
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