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Abstract: We introduce a new class of distributions called the epsilon–positive family, which can be
viewed as generalization of the distributions with positive support. The construction of the epsilon–
positive family is motivated by the ideas behind the generation of skew distributions using symmetric
kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal,
log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and
survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite
scale mixture of positive distributions, facilitating the derivation and implementation of EM–type
algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate
the flexibility of this family to analyze censored and uncensored data using two real examples. One
of them was previously discussed in the literature; the second one consists of a new application to
model recidivism data of a group of inmates released from the Chilean prisons during 2007. The
results show that this new family of distributions has a better performance fitting the data than some
common alternatives such as the exponential distribution.

Keywords: censored data; EM algorithm; epsilon–exponential distribution; exponential distribution;
maximum likelihood; reliability analysis; survival analysis; stress-strength parameter

1. Introduction

The statistical analysis of reliability and survival data is an important topic in several
areas, including medicine, epidemiology, biology, economics, engineering, and environ-
mental sciences, to name a few. When using a parametric approach, one of the first steps
for modeling the data is to choose a suitable distribution that can capture relevant features
of the observations of interest. In this context, the gamma and Weibull distributions have
become popular choices due to their flexibility that allows for a non-constant hazard rate
function and to model skewed data. Although several alternatives were considered to
accommodate different cases, researchers have continued to develop extensions and modi-
fications of the standard distributions to increase the flexibility of the models see [1–3] for a
few examples.

In this paper, we consider a generalization of the distributions with positive support
and propose a new family of distributions, called the epsilon–positive family, whose construc-
tion is motivated by the ideas behind the generation of skew distributions using symmetric
kernels. Specifically, we build upon the ideas from [4], where the authors start with a
symmetric around zero distribution f , and define a family of distributions indexed by a
parameter γ > 0 as the set of densities of the form

h(x; γ) =
2

γ + γ−1

(
f (x/γ)1{x≥0} + f (γx)1{x<0}

)
, (1)
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where 1A denotes the indicator function of the set A. Some extensions of this family
include epsilon-skew-normal family introduced by [5] and the epsilon–skew–symmetric family
introduced by [6], both discussed in some details in [7].

Here, starting with a probability density function g with positive support, we obtain
a general class that extends the family of distributions with positive support, and that
contains the Weibull, gamma and exponential distributions as special cases, depending
on the choice of g. Furthermore, we discuss a stochastic representation and how to obtain
maximum likelihood estimators for the members of this family. We also derive the corre-
sponding survival and hazard functions and note that one interesting feature of this new
class is that the hazard function is not necessarily constant.

The rest of the paper is organized as follows: in Section 2 we define the epsilon–
positive family and obtain the hazard and survival functions, mean residual life and stress-
strength parameters for this family. In addition, we discuss maximum likelihood estimation
and how to obtain such estimates using an EM-type algorithm for the general case. In
Section 3, we focus on one specific member of the family introduced in Section 2, namely
epsilon–exponential distribution, and discuss its applicability in the analysis of survival data.
In Section 4 we discuss two real data examples and we finish with a brief discussion in
Section 5. We include Appendixes A and B with some of the technical details.

2. The Epsilon–Positive Family

Let g(·) = gY(·; Ψ) be a probability density function (pdf) with positive support and
parameters Ψ ∈ <p. Then, for 0 < ε < 1, the corresponding epsilon–positive (EP) family of
distributions is defined as

fX(x; Ψ, ε) =
1
2

[
g
(

x
1 + ε

)
+ g
(

x
1− ε

)]
, x > 0. (2)

If a random variable X has the density given in (2), we say that X has an epsilon–
positive distribution and write X ∼ EP(Ψ, ε).

Observe that as ε ↓ 0, fX(x; Ψ, ε)→ g(x)1{x>0} and therefore the distribution gY(·; Ψ)
can be seen as a particular member of the family.

The rth moment of X ∼ EP(Ψ, ε), r = 1, 2, . . . , is given by

E(Xr) =

(
(1 + ε)r+1

2
+

(1− ε)r+1

2

)
E(Yr), (3)

where E(Yr) is the rth moment of Y ∼ gY(·; Ψ). From (3) we obtain that the mean, variance,
skewness (CS) and kurtosis (CK) coefficients are (respectively)

E(X) = (1 + ε2)E(Y)

Var(X) = (1 + 3ε2)E
(

Y2
)
− (1 + ε2)2E2(Y)

CS =
(1 + 6ε2 + ε4)E(Y3)− 3(1 + 4ε2 + 3ε4)E(Y)E(Y2) + 2(1 + ε2)3E3(Y)

((1 + 3ε2)E(Y2)− (1 + ε2)2E2(Y))3/2

and
CK =

A
((1 + 3ε2)E(Y2)− (1 + ε2)2E2(Y))2 ,

A = (1 + 10ε2 + 5ε4)E(Y4)− 4(1 + 7ε2 + 7ε4 + ε6)E(Y)E(Y3)

+6(1 + 5ε2 + 7ε4 + 3ε6)E2(Y)E(Y2)− 3(1 + 4ε2 + 6ε4 + 4ε6 + ε8)E4(Y),

where E(Yr), r = 1, 2, 3, 4, are the first four moments of the random variable Y ∼ gY(·; Ψ).
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To draw observations from an epsilon–positive distribution, we first notice that for
0 < ε < 1, if Y ∼ gY(·; Ψ) and Uε (independent from Y) satisfies P(Uε = 1 + ε) = 1−
P(Uε = 1− ε) = (1 + ε)/2, then X = UεY ∼ EP(Ψ, ε).

From this stochastic representation, it follows that we can generate EP random vari-
ables according to the Algorithm 1:

Algorithm 1 Algorithm to generate observations from an epsilon–positive distribution.

Require: Initialize the algorithm fixing Ψ and ε

1: Generate Y from gY(·) and U from Ber
(

p = 1+ε
2

)
2: if U = 1 then
3: Uε ← 1 + ε
4: else
5: Uε ← 1− ε
6: end if
7: return X = UεY.

Finally, observe that the definition in (2) can be easily extended so we can represent
the epsilon–positive family as a finite scale mixture of positive distributions. In fact, for
any 0 < ε < 1 we can write

fX(x; Ψ, ε) = ∑
ξ∈J (ε)

πξ(ε)
1
ξ

g
(

x
ξ

)
, (4)

where x > 0, πξ(ε) > 0 are mixing proportions satisfying ∑ξ∈J (ε) πξ(ε) = 1, and J (ε)
is some finite subset of < that will typically depend on ε. For instance, taking J (ε) =
{1− ε, 1 + ε} and πξ(ε) = (1± ε)/2 we recover the expression in (2). This representation
will be particularly useful in order to obtain maximum likelihood estimates using EM–type
algorithms, as we discuss in Section 2.5.

2.1. Reliability Properties

From the definition, we obtain that the survival function SX(x; Ψ, ε) = P(X > x) for
this family is given by

SX(x; Ψ, ε) =

(
1 + ε

2

)
SY

(
x

1 + ε

)
+

(
1− ε

2

)
SY

(
x

1− ε

)
, (5)

where SY(·) is the survival function associated with the density gY(·; Ψ). Similarly, the
hazard function λX(x; Ψ, ε) = fX(x; Ψ, ε)/SX(x; Ψ, ε) is given by

λX(x; Ψ, ε) =
1 + r(x)

(1 + ε)R
( x

1+ε

)
+ (1− ε)R

( x
1−ε

)
r(x)

, (6)

where r(x) = gY
( x

1−ε

)
/gY

( x
1+ε

)
, and R(·) = SY(·)/gY(·) is the Mills ratio.

Table 1 shows some examples of the densities that can be extended using the definition
of the epsilon–positive family, with the corresponding densities, survival and hazard
functions. Figures 1 and 2 show the pdf, survival and hazard functions of the epsilon-
exponential, epsilon-Weibull, epsilon-log-logistic and epsilon-gamma distributions. We
can see that in the case of the epsilon-Weibull, epsilon-log-logistic and epsilon-gamma
distributions a bimodal shape is obtained when the value of the parameter ε is 0.9.
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Figure 1. Examples of the probability density f (x), survival S(x) and hazard λ(x) functions of
epsilon-exponential distribution, EE(σ, ε), and epsilon-Weibull distribution, EW(α, σ, ε). Please note
that the exponential and Weibull distributions correspond to the case ε = 0.
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Figure 2. Examples of the probability density f (x), survival S(x) and hazard λ(x) functions of
epsilon-log-logistic distribution, ELL(σ, ε), and epsilon-gamma distribution, EG(α, σ, ε). Please note
that the log-logistic and gamma distributions correspond to the case ε = 0.

Table 1. Hazard rate, λ(·), Survival, S(·), and density, f (·), functions of some probability models
that can be generalized using the definition in (2) In the table I(a, β) =

∫ a
0 Γ(β)−1uβ−1e−udu.

λ(y) S(y) f (y)

Exponential 1
σ (> 0) exp(− y

σ )
1
σ exp(− y

σ )

Weibull (
β

σβ )y(β−1) (β, σ > 0) exp(−[ y
σ ]

β) βy(β−1)

σβ exp(−[ y
σ ]

β)

Log-logistic ( β
σ )(

y
σ )

β−1

1+( y
σ )

β (β, σ > 0) (1 + [
y
σ ]

β)−1 ( β
σ )(

y
σ )

β−1

(1+( y
σ )

β)2

Gamma f (y)
S(y)

1− I(y/σ, β) y(β−1) exp(− y
σ )

σβΓ(β)

2.2. Mean Residual Life

The mean residual life or life expectancy is an important characteristic of the model. It
gives the expected additional lifetime given that a component has survived until time t.
For a non-negative continuous random variable X ∼ EP(Ψ, ε) the mean residual life (mlr)
function is defined as

mrl(t) = E(X− t|X > t) = E(X|X > t)− t (7)
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where t > 0. The above conditional expectation is given by

E(X|X > t) =
∫ ∞

t

x fX(x)
P(X > t)

dx =
∫ ∞

t

x fX(x)
1− FX(t)

dx =
1

SX(t)

∫ ∞

t
x fX(x)dx. (8)

Calculation of the integral in (8) is done in the same way as the calculation of the mean. Thus,

I =
∫ ∞

t
x fX(x)dx =

∫ ∞

t
x

1
2

[
gY

(
x

1 + ε

)
+ gY

(
x

1− ε

)]
dx.

Making the changes of variables z = x
1+ε and u = x

1−ε we have

I =
(1 + ε)2

2

∫ ∞

t/(1+ε)
zgY(z)dz +

(1− ε)2

2

∫ ∞

t/(1−ε)
ugY(u)du

=
(1 + ε)2

2
SY(t1)

∫ ∞

t1

zgY(z)
SY(t1)

dz +
(1− ε)2

2
SY(t2)

∫ ∞

t2

ugY(u)
SY(t2)

du

=
(1 + ε)2

2
SY(t1)E(Y|Y > t1) +

(1− ε)2

2
SY(t2)E(Y|Y > t2)

=
(1 + ε)2

2
SY(t1)(E(Y− t1|Y > t1) + t1) +

(1− ε)2

2
SY(t2)(E(Y− t2|Y > t2) + t2)

=
(1 + ε)2

2
SY(t1)(mrlY(t1) + t1) +

(1− ε)2

2
SY(t2)(mrlY(t2) + t2),

where t1 = t
1+ε , t2 = t

1−ε , and mrlY(ti) = E(Y − ti|Y > ti), i = 1, 2 corresponds to the
mean residual life of the random variable Y ∼ gY(·). Finally, Equation (7) can be written as

mrl(t) =
(1+ε)2

2 SY
( t

1+ε

)
(mlrY(t1) + t1) +

(1−ε)2

2 SY
( t

1−ε

)
(mrlY(t2) + t2)(

1+ε
2

)
SY
( t

1+ε

)
+
(

1−ε
2

)
SY
( t

1−ε

) − t. (9)

2.3. Stress-Strength Parameter

An important concept in reliability theory is the stress-strength parameter. Let X1
denote the strength of a system or component with a stress X2. Then, the stress-strength
parameter is defined as R = P(X2 < X1), which can be viewed as a measure of the
system performance. In the next theorem, we look at this quantity when X1 and X2 are
independent random variables with epsilon-positive distributions.

Theorem 1. Suppose X1 and X2 are random variables independently distributed as X1 ∼ EP(Ψ1, ε1)
and X2 ∼ EP(Ψ2, ε2), the reliability of the system with stress variable (X2) and strength variable
(X1) is given by

R = P(X2 < X1) =
(1 + ε2)

2

4
(aP(Y2 < aY1) + bP(Y2 < bY1))

+
(1− ε2)

2

4
(cP(Y2 < cY1) + dP(Y2 < dY1)), (10)

where a = 1+ε1
1+ε2

, b = 1−ε1
1+ε2

, c = 1+ε1
1−ε2

, d = 1−ε1
1−ε2

, and Yi ∼ gYi (·; Ψi), i = 1, 2, with Y1
independent of Y2.
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Proof of Theorem 1. Making the changes of variables z = x1
1+ε and u = x1

1−ε we have

P(X2 < X1) =
∫ ∞

0
FX2(x1) fX1(x1)dx1

=
∫ ∞

0

[(
1 + ε2

2

)
GY2

(
x1

1 + ε2

)
+

(
1− ε2

2

)
GY2

(
x1

1− ε2

)]
×
[

1
2

gY1

(
x1

1 + ε1

)
+

1
2

gY1

(
x1

1− ε1

)]
dx1

=
(1 + ε2)

2

4
a
∫ ∞

o
GY2(az)gY1(z)dz +

(1 + ε2)
2

4
b
∫ ∞

o
GY2(bu)gY1(u)du

× (1− ε2)
2

4
c
∫ ∞

o
GY2(cz)gY1(z)dz +

(1− ε2)
2

4
d
∫ ∞

o
GY2(du)gY1(u)du

=
(1 + ε2)

2

4
aP(Y2 < aY1) +

(1 + ε2)
2

4
bP(Y2 < bY1)+

(1− ε2)
2

4
cP(Y2 < cY1) +

(1− ε2)
2

4
dP(Y2 < dY1).

Observe that the same concept can be used to make comparisons between two systems.
For example, if X1 and X2 denote instead the lifetimes of systems S1 and S2 respectively,
then, a probability P(X1 < X2) > 0.5 would indicate that the system S2 is better than the
system S1 in a stochastic sense.

2.4. Maximum Likelihood Estimation

Let X̃n = (X1, . . . , Xn) be a random sample from an EP(Ψ, ε) distribution. Then, the
maximum likelihood estimator (MLE) of θ = (Ψ, ε)′ is given by

θMLE = (Ψ̂, ε̂)MLE = arg max
Ψ,ε

`(Ψ, ε; X̃n), (11)

where `(Ψ, ε; X̃n) = ∑n
i=1 log fXi (xi; Ψ, ε) is the log–likelihood.

Although the MLE for the EP family is conceptually straightforward, typically closed
form solutions are not available and the MLE need to be obtained numerically. One
possibility is the Newton–Raphson algorithm, with iteration equation

θ̂(k+1) = θ̂(k) − [H(θ̂(k))]−1u(θ̂(k)), (12)

where θ(k) be the current estimate of θ, u(θ) denote the vector of first derivatives of `(θ; X̃n),
and H(θ).

A disadvantage of this approach is that it requires redthe calculation of the second
derivatives of the likelihood function and repeated inversion of potentially large matri-
ces, which can be computationally intensive. Instead, we can consider an expectation–
maximization (EM) approach see [8] as a general iterative method for data sets with missing
(or incomplete) data.

The mixture representation proposed in (4) is particularly useful in order to use an EM–
type algorithm to estimate the model parameters, since it provides a hierarchical scheme
for the EP family. Next, we show how to implement maximum likelihood estimation using
an EM–type algorithm for the EP family.

2.5. MLE via the EM Algorithm

From (4), the log–likelihood takes the form,

`(Ψ, ε; X̃n) =
n

∑
i=1

log
(

∑
ξ∈J (ε)

πξ(ε)
1
ξ

g
(

xi
ξ

))
,
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where the derivatives with respect to Ψ and ε typically lead to a system of equations with
no closed form solution. To address this problem, we can “augment” the data X̃n using
an unobservable matrix W = (wij), i = 1, . . . , n; j = 1, . . . , m = |J (ε)|, with elements wij
defined as

wij =

{
1, if observation xi comes from the distribution 1

ξ j
g
( x

ξ j

)
0, otherwise

,

where ξ1, . . . , ξm denote the distinct elements of J (ε). This way, each row of W contains
only one 1 and zero 0, and the (complete) log-likelihood for the augmented data Y =
(X̃n, W) is given by

`c(Ψ, ε; Y) =
n

∑
i=1

m

∑
j=1

wij

(
log

(
πξ j(ε)

ξ j

)
+ log g

(
xi
ξ j

))
.

Then, if we denote by θ̂(s) = (Ψ(s), ε(s)) the estimate of θ = (Ψ, ε) at iteration s, and by
Q(θ, θ̂(s)), the conditional expectation of `c(θ; Y) given X̃n and θ̂(s), we obtain

Q(θ, θ̂(s)) = E(`c(θ; Y)|X̃n, θ̂(s))

=
n

∑
i=1

m(s)

∑
j=1

w(s)
ij

(
log

(
πξ j(ε)

ξ j

)
+ log g

(
xi
ξ j

))
,

where m(s) = |J (ε(s))|, and

w(s)
ij =

π(ε(s))j
1
ξ j

g
(

xi
ξ j

)
∑

m(s)
j=1 πξ j(ε

(s)) 1
ξ j

g
(

xi
ξ j

) .

From here, it follows that for J (ε) = {1− ε, 1 + ε}, the iteration s of the EM algorithm
takes the form:

• E–step: For i = 1, . . . , n, compute

w(s)
ij =

g
(

xi
1+ε(s)

)
g
(

xi
1+ε(s)

)
+ g
(

xi
1−ε(s)

) , ξ j = 1 + ε.

• M–step: Given ε(s) and Ψ(s), compute

ε(s+1) =
2
n

n

∑
i=1

w(s)
ij − 1, j = 1 + ε,

Ψ(s+1) = arg max
Ψ
Q(θ, θ̂(s)).

The E and M steps are alternated repeatedly until a convergence criteria is satisfied.
For the variance estimation of the MLEs we consider the bootstrapping method suggested
in [9].

3. The Epsilon–Exponential Distribution

If we take gY(y; Ψ = σ) = 1
σ e−y/σ1{y>0}, the pdf of an exponential distribution, the

expression in (2) becomes

fX(x; σ, ε) =
1

2σ

[
e−x/(1+ε)σ + e−x/(1−ε)σ

]
, x > 0, (13)
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where σ > 0 and 0 < ε < 1. We say that a random variable X has epsilon–exponential (EE)
distribution with scale parameter σ and shape parameter ε if its density has the form in
(13), and we write X ∼ EE(σ, ε).

Recall that the rth moment, r = 1, 2, . . . , of Y ∼ Exp(σ) is E(Yr) = r!σr. From (3),
when X ∼ EE(σ, ε), we obtain that the mean, variance, skewness (CS) and kurtosis (CK)
coefficients are, respectively,

E(X) =
(

1 + ε2
)

σ

Var(X) = σ2
(

1 + 4ε2 − ε4
)

CS =

(
2 + 18ε2 − 6ε4 + 2ε6)
(1 + 4ε2 − ε4)

3/2

CK =

(
9 + 120ε2 + 18ε4 − 3ε8)

(1 + 4ε2 − ε4)
2 .

Please note that for any value of ε ∈ (0, 1), CS > 0 and CK > 0. It can be seen that
2 < CS < 2.3 and 9 < CK < 11.023. Figure 3 depicts the behavior of the skewness (CS) and
kurtosis (CK) coefficients as a function of ε. In the figures we observe that the maximum
skewness is attained ar ε = 0.4, while the maximum kurtosis coefficient is obtained when
ε = 0.37.

0.0 0.2 0.4 0.6 0.8 1.0

2.0
0

2.0
5

2.1
0

2.1
5

2.2
0

2.2
5

2.3
0

ε

CS

0.0 0.2 0.4 0.6 0.8 1.0

9.0
9.5

10
.0

10
.5

11
.0

ε

CK

Figure 3. Skewness (CS) and kurtosis (CK) coefficientes for X ∼ EE(σ, ε).

Recall that the survival function of the exponential distribution is of the form SY(y) =
e−y/σ1{y>0} and the mean residual life is of the form mrlY(t) = σ. Then, it follows from (5),
(6) and (9) that if X ∼ EE(σ, ε), then the survival and hazard functions and mean residual
life are (respectively)

S(x; σ, ε) =
(1 + ε)

2
e−x/(1+ε)σ +

(1− ε)

2
e−x/(1−ε)σ,

λ(x; σ, ε) =
1
σ

[
e−x/(1+ε)σ + e−x/(1−ε)σ

(1 + ε)e−x/(1+ε)σ + (1− ε)e−x/(1−ε)σ

]
and

mrl(t) = σ

[
(1 + ε)2e−t/(1+ε)σ + (1− ε)2e−t/(1−ε)σ

(1 + ε)e−t/(1+ε)σ + (1− ε)e−t/(1−ε)σ

]
.

Interestingly, in contrast to the exponential distribution, it can be shown that the
hazard function λ(x; σ, ε) of the EE distribution is not constant, but decreasing in x. This
feature can be easily observed in Figure 1 (top panel), where we show the pdf, survival
and hazard functions of the EE distribution for different values of the parameter ε when
σ = 1. Please note that λ(x; σ, ε) −→ λY(x; σ) = 1/σ as ε −→ 0. Additionally, mrl(t) −→
mrlY(t) = σ as ε −→ 0.
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Suppose X1 and X2 are random variables independently distributed as X1 ∼ EE(σ1, ε1)
and X2 ∼ EE(σ2, ε2), using Theorem 1 the reliability of the system with stress variable (X2)
and strength variable (X1) is given by

R =
(1 + ε2)

2

4

(
a2σ1

aσ1 + σ2
+

b2σ1

bσ1 + σ2

)
+

(1− ε2)
2

4

(
c2σ1

cσ1 + σ2
+

d2σ1

dσ1 + σ2

)
.

Please note that when (ε1, ε2) −→ (0, 0), R −→ σ1
σ1+σ2

which corresponds to the
stress-strength reliability model of the exponential distributions with parameter σ1 for X1
(strength), and with parameter σ2 for X2 (stress), respectively.

Maximum likelihood estimations for the parameters σ and ε of the epsilon-exponential
distribution, can be obtained following the strategy described in Sections 2.4 and 2.5 (see
the Appendix B for details). Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be random samples from
EE(σ1, ε1) and EE(σ2, ε2), respectively. Having estimates of (σ1, ε1, σ2, ε2), say (σ̂1, ε̂1, σ̂2, ε̂2),
by the invariance property of the MLE, the MLE of R becomes

R̂ =
(1 + ε̂2)

2

4

(
â2σ̂1

âσ̂1 + σ̂2
+

b̂2σ̂1

b̂σ̂1 + σ̂2

)
+

(1− ε̂2)
2

4

(
ĉ2σ̂1

ĉσ̂1 + σ̂2
+

d̂2σ̂1

d̂σ̂1 + σ̂2

)
.

Numerical Experiments

To illustrate the properties of the estimators we performed a small simulation study
considering 5000 simulated datasets for different pair of values of σ and ε using Algorithm 1.
The goal of the study is to observe the behavior of the MLEs for the model parameters
using our proposed EM algorithm considering different sample sizes.

Table 2 summarizes the simulation results. In the table, the columns labeled as
“estimate” show the average of the estimators obtained in the simulations, and the columns
labeled “SD” show the sample standard deviation of the corresponding estimators. To
obtain the standard errors we used the bootstrap method with B = 150 samples. We
observe that the estimates are quite stable and fairly accurate, reporting (on average)
numbers close to the true values of the parameters in all cases. Please note that as expected,
the precision of the estimates improves as the sample size increase.

Table 2. Summary of simulation results.

True Value
n

σ ε

σ ε Estimate SD Estimate SD

n = 50 0.286 0.047 0.376 0.126
n = 100 0.292 0.037 0.350 0.127

0.3 n = 200 0.292 0.030 0.335 0.118
n = 500 0.295 0.022 0.317 0.106
n = 1000 0.299 0.017 0.302 0.089

n = 50 0.287 0.054 0.558 0.133
n = 100 0.290 0.043 0.542 0.129

0.3 0.5 n = 200 0.294 0.037 0.527 0.123
n = 500 0.297 0.030 0.512 0.111
n = 1000 0.298 0.023 0.506 0.091

n = 50 0.299 0.059 0.818 0.126
n = 100 0.299 0.047 0.809 0.122

0.8 n = 200 0.301 0.038 0.801 0.108
n = 500 0.303 0.029 0.794 0.088
n = 1000 0.302 0.022 0.794 0.069
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Table 2. Cont.

True Value
n

σ ε

σ ε Estimate SD Estimate SD

n = 50 0.476 0.079 0.379 0.125
n = 100 0.484 0.062 0.355 0.125

0.3 n = 200 0.486 0.049 0.337 0.121
n = 500 0.494 0.037 0.316 0.107
n = 1000 0.497 0.029 0.303 0.088

n = 50 0.477 0.088 0.558 0.133
n = 100 0.484 0.074 0.542 0.131

0.5 0.5 n = 200 0.488 0.059 0.528 0.124
n = 500 0.494 0.048 0.512 0.109
n = 1000 0.498 0.039 0.502 0.091

n = 50 0.484 0.104 0.838 0.129
n = 100 0.499 0.076 0.809 0.119

0.8 n = 200 0.503 0.064 0.799 0.110
n = 500 0.505 0.049 0.793 0.089
n = 1000 0.504 0.038 0.793 0.070

n = 50 0.762 0.125 0.374 0.124
n = 100 0.771 0.099 0.356 0.125

0.3 n = 200 0.779 0.080 0.336 0.120
n = 500 0.789 0.058 0.314 0.105
n = 1000 0.796 0.046 0.301 0.089

n = 50 0.765 0.139 0.555 0.134
n = 100 0.771 0.116 0.543 0.134

0.8 0.5 n = 200 0.782 0.096 0.528 0.123
n = 500 0.789 0.076 0.515 0.110
n = 1000 0.797 0.062 0.503 0.091

n = 50 0.791 0.153 0.815 0.130
n = 100 0.800 0.126 0.804 0.122

0.8 n = 200 0.798 0.103 0.798 0.106
n = 500 0.806 0.079 0.794 0.089
n = 1000 0.807 0.060 0.793 0.070

4. Survival and Reliability Analysis

Let T ≥ 0 represent the survival time until the occurrence of a “death” event. In
this context, suppose we have n subjects with lifetimes determined by a survival function
S(t), and that the ith subject is observed for a time ti. If the individual dies at time ti,
its contribution to the likelihood function is given by Li = f (ti), where f (t) = −S′(t) is
the event density associated with S(t), or equivalently, Li = S(ti)λ(ti), where λ(t) is the
corresponding hazard function. On the other hand, if the ith individual is still alive at
time ti and therefore, under non–informative censoring, all we can say is that their lifetime
exceeds ti. It follows that the contribution of a censored observation to the likelihood is
simply given by Li = S(ti). Notice that in either case we evaluate the survival function at
time ti, because in both cases the ith subject was alive until (at least) time ti. A death will
multiply this contribution by the hazard λ(ti), but a censored observation will not.

We can combine these contributions into a single expression using a death indicator
di, taking the value one if individual i died and the value zero otherwise. The resulting
likelihood function L is of the form

L =
n

∏
i=1

λ(ti)
di S(ti) =

n

∏
i=1

f (t)di S(t)1−di .

In the next section we will assume that the random variable T follows an epsilon–
positive family, and show how estimate the model parameters using the EM algorithm.
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4.1. Estimation Using the EM Algorithm

Let T1, . . . , Tn denote the survival times, Ti ∼ EP(Ψ, ε). Using the notation introduced in
the previous section, the observed data are a collection of pairs X̃n = {(T1, d1), . . . , (Tn, dn)},
where the di, i = 1, . . . , n, are the censoring indicators.

In order implement the EM algorithm, we augment the observed data X̃n with the
unobservable matrix W defined in Section 2.5, and obtain the (complete) likelihood is
given by

Lc(θ; X̃n, W) =
n

∏
i=1

m

∏
j=1

πξ j(ε)

[
1
ξ j

g

(
ti
ξ j

)]di
[

S

(
ti
ξ j

)]1−di


wij

with corresponding (complete) log–likelihood `c = logLc.
Then, if θ̂(s) = (Ψ(s), ε(s))′ be the estimate of θ = (Ψ, ε)′ at iteration s, and we denote

by Q(θ, θ̂(s)) the conditional expectation of `c(θ; X̃n, W) given the observed data X̃n and
θ̂(s), we obtain

Q(θ, θ̂(s)) = E(`c(θ; X̃n, W)|X̃n, θ̂(s))

=
n

∑
i=1

m(s)

∑
j=1

w(s)
ij

{
log πξ j(ε) + di log

[
1
ξ j

g

(
ti
ξ j

)]
+ (1− di) log S

(
ti
ξ j

)}
,

where

w(s)
ij =

πξ j(ε)
[

1
ξ j

g
(

ti
ξ j

)]di
[
S
(

ti
ξ j

)]1−di

∑
m(s)
j=1 πξ j(ε)

[
1
ξ j

g
(

ti
ξ j

)]di
[
S
(

ti
ξ j

)]1−di
.

Then, for J (↑) = {1− ε, 1 + ε}, the iteration s of the algorithm takes the form:

• E–step: For i = 1, . . . , n, compute

w(s)
ij =

wi,+

wi,+ + wi,−
, for ξ j = 1 + ε,

where

wi,+ =

[
g
(

ti

1 + ε(s)

)]di
[
(1 + ε(s))S

(
ti

1 + ε(s)

)]1−di

and

wi,− =

[
g
(

ti

1− ε(s)

)]di
[
(1− ε(s))S

(
ti

1− ε(s)

)]1−di

.

• M–step: Given ε(s) and Ψ(s), compute

ε(s+1) =
2
n

n

∑
i=1

w(s)
ij − 1, ξ j = 1 + ε,

Ψ(s+1) = arg max
Ψ
Q(θ, θ̂(s)).

4.1.1. EM Algorithm for the Epsilon-Exponential Distribution

Suppose that the survival times Ti ∼ EE(σ, ε). Then the EM algorithm takes the form:

• E–step: For i = 1, . . . , n, compute

w(s)
ij =

wi,+

wi,+ + wi,−
, for ξ j = 1 + ε,
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where

wi,+ =

[
1
σ

e−ti/(1+ε(s))σ(s)
]di[

(1 + ε(s))e−ti/(1+ε(s))σ(s)
]1−di

and

wi,− =

[
1
σ

e−ti/(1−ε(s))σ(s)
]di[

(1− ε(s))e−ti/(1−ε(s))σ(s)
]1−di

.

• M–step: Given ε(s) and σ(s), compute

ε(s+1) =
2
n

n

∑
i=1

w(s)
ij − 1, ξ j = 1 + ε,

σ(s+1) =
n

∑
i=1

∑
j∈J (ε(s))

w(s)
ij

(
ti
j

)/ n

∑
i=1

∑
j∈J (ε(s))

w(s)
ij di.

5. Real Data Examples

In this section, we use two examples to illustrate the proposed distributions using
(un)censored data sets.

5.1. Example 1: Maintenance Data

First, we consider a real data set originally analyzed by [10]. The complete data set
correspond active repair times (in hours) for an airborne communication transceiver, and
can be found in Table 3.

Table 3. Repair times (in hours) of 46 transceivers.

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0
3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0
7.5 8.8 9.0 10.3 22.0 24.5

Using the EM algorithm described in Section 4.1.1 we fit an epsilon–exponential
(EE) distribution to the active repair times. We obtain that the maximized log–likelihood
value −103.806. Alternatively, we also fit an exponential (Exp), exponentiated–exponential
(EExp) and Weibull (Wei) distribution, obtaining the maximized log–likelihood values
of −105.006, −104.983 and −104.470, respectively. For model comparison, we use the
Akaike information criterion (AIC) introduced in [11], given by AIC = −2l̂ + 2k where
l̂ is the maximized log–likelihood and k is the number of parameters of the distribution
under consideration.

The best model is deemed to be the one with the smallest AIC. For the data set in
the example, we obtain AICEE = 211.611, AICExp = 212.012, AICEExp = 213.966, and
AICWei = 212.939. It follows that in terms of the AIC criteria, the epsilon–exponential
shows the best performance when fitting these data. Figure 4 shows the fit of the different
models used in the example. Figure 5 displays the three estimated survival functions for
this data set.
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Figure 4. The density functions of the fitted epsilon exponential, exponential, Weibull and exponen-
tiated exponential distributions.
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Figure 5. Fit of the survival functions: Kaplan–Meier estimator (solid line), exponential (dashed line
red) and epsilon–exponential (dashed line blue) distributions.

5.2. Example 2: Recidivism Data

For the second example we use real data obtained from the official records of Gen-
darmerie of Chile on all inmates released from the Chilean prisons during 2007 after serving
a sentence of imprisonment by robbery.

The data set contains records of 9477 inmates and the follow–up period from release
until 30 April 2012. In this study, recidivism is defined to occur when a released prisoner
goes back to prison for the original or any other offense.
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Overall, 52.2% of the inmates in the cohort were convicted of one or more offenses
and returned to prison within 64 months of release. About 11.8% of the cohort returned to
prison within three months of release, and 30% returned within a year of release.

Table 4 shows the observed proportion of the cohort returning to prison within 1, 3, 6,
12, 18, 24, 36, 48 and 64 months of release. We observe that the cumulative proportion of
recidivism grew quickly over the first 12 months after release, increasing by more than 7%
every 3 months. After that, the percent increases were smaller and over longer periods.

Table 4. Observed recidivism by time after release.

Time after Release % Observed Recidivists

1 month 4.7%
3 month 11.8%
6 month 19.9%

12 month 30.0%
18 month 35.9%
24 month 40.8%
36 month 46.6%
48 month 50.4%
64 month 52.2%

To analyze the time to recidivism, we determined the number of days between an
inmate’s release and his return to prison. Because some inmates did not reoffend, we
have censored data and we used the EM algorithm described in Section 4.1.1 to fit an
epsilon–exponential distribution to the time to recidivism. The maximized log–likelihood
value for an assumed epsilon–exponential distribution is easily calculated to be −42,067.84.
In comparison, we also fit an exponential distribution yielding a maximized log–likelihood
value of −42,632.81.

Looking at the AIC values, we obtain AICEE = 84,139.68 and AICExp = 85,267.62 for
the epsilon–exponential and exponential model respectively, and therefore we conclude,
the epsilon–exponential is a better model for these data, based on this criteria.

Finally, we also analyzed the survival time using the Kaplan–Meier estimator. Figure 5
displays the three estimated survival functions for this data set. We observe a close agree-
ment between the Kaplan–Meier survival curve and the epsilon–exponential distribution.

6. Discussion

We introduced a new class of distributions with positive support called epsilon–
positive which are generated from any distributions with positive support. This new class
of distributions includes the exponential, Weibull, log–normal, etc. ones as special cases.
We discussed a stochastic representation for this family, as well as parameter estimation,
using the maximum likelihood approach via the Newton–Raphson. In addition, we showed
that the elements of this new family can be expressed as a finite scale mixture of positive
distributions, which facilitates the implementation of EM-type of algorithms.

We then focused on particular member of this family, called epsilon–exponential
distribution, and discuss its applicability in the analysis of survival and reliability data.
In this context, we considered the censored data case, and we show how we can use this
new family to analyze this type of data sets. For the new class of distributions and, in
particular, for the epsilon–exponential distribution we estimate the model parameters using
the EM algorithm. An interesting feature of the hazard function of the epsilon–exponential
distribution is that is not constant at difference of the exponential one. This feature increases
the flexibility of the models allowing its use in a broader range of scenarios.

This greater flexibility is corroborated in the two examples considered in this paper
where the AIC criteria shows a better performance our proposed epsilon–exponential
model when compared to commonly used alternatives such as the exponential one. The
results suggests that the epsilon–exponential distribution should be considered to be a
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legitimate alternative for the analysis of survival and reliability data in both the censored
and uncensored case.
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Appendix A. The EE–MLE

For a sample of n independent identically distributed (i.i.d.) observations X̃n =
(X1, . . . , Xn) from EE(σ, ε), θ = (σ, ε)′, has to be estimated from the data. The log–
likelihood function is given by

` = `(σ, ε; X̃n) = −n log(2σ)

+
n

∑
i=1

log
(

e−xi/(1+ε)σ + e−xi/(1−ε)σ
)

. (A1)

Differentiating (A1) with respect to σ and ε and equating to 0 respectively, we obtain
the likelihood equations

∂`

∂σ
=
−n
σ

+
1

σ2(1 + ε)(1− ε)

n

∑
i=1

xiai(σ, ε) = 0

∂`

∂ε
=

1
σ(1 + ε)2(1− ε)2

n

∑
i=1

xibi(σ, ε) = 0,

where

ai(σ, ε) =
(1− ε)e−xi/(1+ε)σ + (1 + ε)e−xi/(1−ε)σ

e−xi/(1+ε)σ + e−xi/(1−ε)σ
(A2)

and

bi(σ, ε) =
(1− ε)2e−xi/(1+ε)σ + (1 + ε)2e−xi/(1−ε)σ

e−xi/(1+ε)σ + e−xi/(1−ε)σ
. (A3)

Please note that no closed form solutions are available to obtain the MLEs of σ and
ε, respectively. Therefore, the Newton–Raphson algorithm can be implemented. Let
u(θ) = ∂`

∂θ and H2×2(θ) = ∂2`
∂θ∂θ′ for the epsilon–exponential distribution. Let u(θ) =

(∂`/∂σ, ∂`/∂ε)′ the vector of first derivatives. Define

H11 =
∂2`

∂σ2 , H12 =
∂2`

∂σ∂ε
and H22 =

∂2`

∂ε2 .
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The entries Hrs, r, s = 1, 2, of the symmetric matrix of second partial derivatives for
the epsilon–exponential distribution are

H11 =
∂2`

∂σ2 =
n
σ2 −

2
σ3(1 + ε)(1− ε)

n

∑
i=1

xiai(σ, ε)

− 1
σ4(1 + ε)2(1− ε)2

n

∑
i=1

x2
i a2

i (σ, ε) +
n

∑
i=1

xibi(σ, ε).

H22 =
∂2`

∂ε2 =
4ε

σ(1 + ε)3(1− ε)3

n

∑
i=1

xibi(σ, ε)

+
1

σ2(1 + ε)4(1− ε)4

n

∑
i=1

x2
i hi(σ, ε)

− 1
σ(1 + ε)(1− ε)

n

∑
i=1

x2
i b2

i (σ, ε).

H12 =
∂2`

∂ε∂σ
= − 1

σ2(1 + ε)2(1− ε)2

n

∑
i=1

xibi(σ, ε)

+
1

σ2(1 + ε)4(1− ε)4

n

∑
i=1

xici(σ, ε)

− 1
σ3(1 + ε)6(1− ε)6

n

∑
i=1

x2
i b2

i (σ, ε),

where

ci(σ, ε) =
(1− ε)3e−xi/(1+ε)σ + (1 + ε)3e−xi/(1−ε)σ

e−xi/(1+ε)σ + e−xi/(1−ε)σ
,

and

hi(σ, ε) =
(1− ε)4e−xi/(1+ε)σ + (1 + ε)4e−xi/(1−ε)σ

e−xi/(1+ε)σ + e−xi/(1−ε)σ
,

and the quantities ai(σ, ε) and bi(σ, ε) are defined in Equations (A2) and (A3), respec-
tively.

The functions u(θ) and H2×2(θ) define the terms of the Newton–Raphson iteration
equation given in (12). To implement the Newton–Raphson algorithm, we can use the
moments estimates for σ and ε as starting values.

Next, we show that the EM–type algorithm describe in Section 2.5 can be implemented
to find the MLEs of the parameters of the epsilon–exponential distribution.

Appendix B. An EM–Type Algorithm for the EE–MLE

In order to implement the EM algorithm to estimate the model parameters of the
epsilon–exponential distribution we need to choose g(u) = 1

σ e−u/σ in the EM algorithm
described in Section 2.5. Let X̃n = (X1, . . . , Xn) be a random sample from EE(σ, ε). The
complete log–likelihood is

`c(σ, ε; Y) =
n

∑
i=1

m

∑
j=1

wij

(
log

(
πξ j(ε)

ξ j

)
− xi

ξ jσ
− log σ

)
.
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Let θ̂(s) = (σ(s), ε(s))′ be the estimate of θ = (σ, ε)′ at iteration s, and denote by
Q(θ, θ̂(s)) the conditional expectation of `c(θ; Y) given the observed data X̃n and θ̂(s).
We obtain

Q(θ, θ̂(s)) = E
(
`c(θ; Y)|X̃n, θ̂(s)

)
=

n

∑
i=1

m(s)

∑
j=1

w(s)
ij

(
log

(
πξ j(ε)

ξ j

)
− xi

ξ jσ

)
− n log σ,

where w(s)
ij =

πξ j(ε
(s)) 1

ξ j
e−xi/ξ jσ

(s)

∑
m(s)
j=1 πξ j(ε

(s)) 1
ξ j

e−xi/ξ jσ
(s) . Therefore, the iteration s of the algorithm takes

the form:

• E–step: For i = 1, . . . , n, compute

w(s)
ij =

e−xi/(1+ε(s))σ(s)

e−xi/(1+ε(s))σ(s)
+ e−xi/(1−ε(s))σ(s) , ξ j = 1 + ε.

• M–step: Given ε(s) and σ(s), compute

ε(s+1) =
2
n

n

∑
i=1

w(s)
ij − 1, ξ j = 1 + ε,

σ(s+1) =
1
n

n

∑
i=1

m(s)

∑
j=1

w(s)
ij

(
xi
ξ j

)
.
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