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Abstract: Plastic anisotropy significantly affects the behavior of structures and machine parts. Given
the many parameters that classify a structure made of anisotropic material, analytic and semi-analytic
solutions are very useful for parametric analysis and preliminary design of such structures. The
present paper is devoted to describing the plastic collapse of a thin orthotropic hollow disk inserted
into a rigid container. The disk is subject to a uniform temperature field and a uniform pressure is
applied over its inner radius. The condition of axial symmetry in conjunction with the assumption
of plane stress, permits an exact analytic solution. Two plastic collapse mechanisms exist. One of
these mechanisms requires that the entire disk is plastic. According to the other mechanism, plastic
deformation localizes at the inner radius of the disk. Additionally, two special solutions are possible.
One of these solutions predicts that the entire disk becomes plastic at the initiation of plastic yielding
(i.e., plastic yielding simultaneously initiates in the entire disk). The other special solution predicts
that the plastic localization occurs at the inner radius of the disk with no plastic region of finite size.
An essential difference between the orthotropic and isotropic disks is that plastic yielding might
initiate at the outer radius of the orthotropic disk.

Keywords: plastic anisotropy; thin disk; collapse; thermomechanical loading; exact solution

1. Introduction

Elastic/plastic plane stress solutions attract considerable interest due to their capability
to describe such important engineering structures and machine parts, as thin disks are
subject to various types of loading, rotating disks, and open-ended cylinders. A review
of solutions for thin hollow disks subject to thermomechanical loading is provided in [1].
The recent study [2] analyzed the available solutions for rotating disks. Several numerical
codes were developed to specifically deal with plane stress problems [3–7]. It was noted
in [5] that the application of computational models to plane stress problems leads to
specific difficulties that are non-existent in other formulations. On the other hand, closed-
form solutions, when available, are more computationally efficient than FEM and other
numerical solutions [8,9]. Therefore, an analytic method is used in the present study.

Plastic anisotropy is a common property of many metallic materials. It is known
that even mild plastic anisotropy significantly affects some features of elastic/plastic
solutions [10]. It is, therefore, crucial to study the effect of elastic and plastic anisotropy on
the solution behavior for various structures and machine parts. Several solutions for polar
orthotropic rotating disks were proposed in [11–14]. Some studies [11,12,14] deal with
elastic anisotropy. Another study [11] emphasizes the influence of orthotropy and gradient
on the elastic stress and strain field, especially the circumferential stress distribution, in
hollow annular plates rotating at a constant angular speed about its axis. The closed-form
expressions were found for the gradient of power–law profiles. In [12], analytical plane
stress solutions were developed for polar orthotropic functionally graded annular disks,
rotating with a constant angular velocity. A non-linear function involving three parameters,
controls the radial variation of the elasticity moduli and thickness. No restriction is imposed
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on the radial variation of density. Poisson’s ratio is constant. Uniform rotating discs made
of radial, functionally graded polar orthotropic materials were studied in [14], using both
analytical and numerical methods. Several possible boundary conditions and frequently
used distributions of materials properties were adopted. The complementary functions
method was used as a numerical technique to solve the governing equation with variable
coefficients. Study [13] emphasizes the importance of accounting for plastic anisotropy in
elastic/plastic solutions, for thin rotating disks.

A thin disk inserted into a rigid container and subject to simultaneous loading by
a uniform pressure over its inner radius and a uniform temperature field, was studied
in [15,16]. Another study [15] deals with an elastic, perfectly plastic model of pressure-
independent plasticity. This paper revealed several qualitative features of the solution at
plastic collapse. In particular, two plastic collapse mechanisms were identified. According
to one of these mechanisms, the entire disk becomes plastic. The other mechanism predicts
the localization of plastic deformation at the inner radius of the disk. Such solution behavior
in the vicinity of holes was first discovered in [17], for an isotropic rigid/plastic model.
This phenomenon was further investigated in [18] for an isotropic elastic/plastic model. A
particular case of the boundary value problem considered in [15,16] with no mechanical
loading was solved in [19], assuming temperature-dependent material properties. It was
found that the magnitude of plastic strain at plastic collapse is very small, which justifies
adopting the perfectly plastic models.

The present study extends the formulation of the boundary value problem in [15,16]
to include plastic anisotropy. It was assumed that the disk was polar orthotropic. Hill’s
quadratic yield criterion was adopted [17]. The solution was semi-analytic. A numerical
technique was only necessary to solve transcendent equations.

2. Statement of the Problem

A thin hollow disk of outer radius b0 and inner radius a0 was inserted into a rigid
container of radius b0. The disk was subject to a uniform temperature field T and pressure
P was uniformly distributed over its inner radius (Figure 1). Here, T was the increase in
temperature from its reference value. It is natural to use a cylindrical coordinate system
(r, θ, z) whose z-axis coincides with the disk’s axis of symmetry. Let σr, σθ , and σz be the
normal stresses referred to this coordinate system. These stresses are the principal stresses.
Moreover, the state of stress was plane, σz = 0. The stress boundary condition was:

σr = −P for r = a0. (1)
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Figure 1. Geometry of the boundary value problem and the boundary conditions.

Since the container was rigid, the displacement boundary condition was

ur = 0 for r = b0. (2)
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Here, ur is the radial displacement. The circumferential displacement vanished.
Let εr, εθ , and εz be the total normal strains referred to the cylindrical coordinate

system. The classical Duhamel–Neumann law was adopted in the elastic region. In the
case under consideration, this law reduced to:

εr =
σr − νσθ

E
+ αT, εθ =

σθ − νσr

E
+ αT, and εz = −

ν(σr + σθ)

E
+ αT. (3)

Here, E is Young’s modulus, ν is Poisson’s ratio, and α is the thermal coefficient of
linear expansion. Hill’s quadratic yield criterion [17] was adopted in the plastic region,
assuming that the anisotropy’s principal axes coincide with the cylindrical coordinate
system’s coordinate curves. In the case under consideration, this criterion becomes [1]:

σ2
r +

(
σθ

η1

)2
− η

η1
σθσr = σ2

0 . (4)

Here, η, η1, and σ0 are expressible through the yield stresses, with respect to the
principal axes of anisotropy. In particular [20],

η = XY
(

1
X2 +

1
Y2 −

1
Z2

)
, η1 =

Y
X

, and σ0 = X

where X, Y, and Z are the yield stresses in the r-, θ− and z-directions, respectively.
In the case of traditional metallic materials,

ηη1 < 2. (5)

In what follows, it was assumed that this inequality was satisfied. No other constitu-
tive equations were required in the plastic region. The only equilibrium equation that was
not satisfied automatically was:

∂σr

∂r
+

σr − σθ

r
= 0. (6)

It was convenient to introduce the following dimensionless quantities:

ρ =
r
b0

, τ =
αTE
σ0

, p =
P
σ0

, and a =
a0

b0
. (7)

Then, the boundary conditions (1) and (2) become:

σr

σ0
= −p for ρ = a (8)

And,
ur = 0 for ρ = 1, (9)

respectively.

3. Purely Elastic Solution and the Initiation of Plastic Yielding

The purely elastic solution is well-known [1]. Using (7), one can represent this solution as:

σr

σ0
=

A
ρ2 + B,

σθ

σ0
= − A

ρ2 + B,
E
σ0

ur

a0
= (1− ν)Bρ− (1 + ν)

A
ρ
+ τρ. (10)

where A and B are constant. The boundary conditions (8) and (9) require that

A = Ae =
a2[τ − p(1− ν)]

(1 + ν)a2 + 1− ν
, B = Be = −

τ + pa2(1 + ν)

(1 + ν)a2 + 1− ν
. (11)
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It is worthy of note that the stress components were independent of ρ, if A = 0.
It follows from (10) and (11), that:

σr

σ0
=

σθ

σ0
= −p (12)

if
τ − p(1− ν) = 0. (13)

Plastic yielding could initiate at ρ = a or ρ = 1. Substituting (10) and (11) at ρ = a into
(4), gives the following:{[

ν− 1 + a2(1 + ν)
]
p + 2τ

}2

η2
1 [1− ν + a2(1 + ν)]

2 −
ηp
{[

ν− 1 + a2(1 + ν)
]
p + 2τ

}
η1[1− ν + a2(1 + ν)]

+ p2 − 1 = 0. (14)

This equation determined the interdependence of p and τ, corresponding to the
initiation of plastic yielding at the inner radius of the disk. Substituting (10) and (11) at
ρ = 1 into (4), gives:

a4[τ − p(1− ν)]2
(

1 + 1
η2

1
+ η

η1

)
+
[
τ + pa2(1 + ν)

]2(1 + 1
η2

1
− η

η1

)
−

2a2[τ − p(1− ν)]
[
τ + pa2(1 + ν)

](
1− 1

η2
1

)
−
[
(1 + ν)a2 + 1− ν

]2
= 0.

(15)

This equation determined the dependence between p and τ corresponding to the
initiation of plastic yielding at the outer radius of the disk.

The plastic collapse solution below was based on the assumption that the plastic
yielding was initiated at the inner radius of the disk.

4. Plastic Collapse

It is shown below that there are two plastic collapse mechanisms and two special
solutions. The geometric interpretation of the general structure of the solution is shown in
Figure 2 to simplify its further discussion. Curve CDEF represents Equation (14). It encom-
passes the region where the loading paths are purely elastic. Point C corresponds to the
purely mechanical loading and point F to the purely thermal loading. The p-coordinate of
the former is determined from (14) where one should put τ = 0, and the τ-coordinate of
the latter from the same equation where one should put p = 0.
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The yield criterion (4) is satisfied by the following substitution [1]:

σr

σ0
= − 2 sin ψ√

4− η2
and

σθ

σ0
= −η1

(
η sin ψ√

4− η2
+ cos ψ

)
. (16)
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Here, ψ is a new arbitrary function of ρ. Substituting (16) into the equilibrium
Equation (6), gives:

2ρ
∂ψ

∂ρ
= η1

√
4− η2 − (2− ηη1) tan ψ. (17)

It is worthy of note that this equation has a special solution ψ = ψs, where:

tan ψs =
η1
√

4− η2

2− ηη1
. (18)

In this case, it follows from (16) that the stress components are independent of ρ.
The corresponding value of p is determined from the boundary condition (8) and (16), as

ps =
2 sin ψs√

4− η2
. (19)

It is seen from (5), (18), and (19) that 0 < ψs < π/2. This inequality allows for
determining the unique value of ψs from (18). It follows from (13) and (19) that the
solutions (12) and (16) at ψ = ψs coincide, if:

τ = τs =
2(1− ν) sin ψs√

4− η2
. (20)

Thus, if p = ps and τ = τs, then the plastic region occupies the entire disk at the instant
of plastic yielding initiation. Point E in Figure 2 represents this special solution. The straight
line determined by Equation (13) passes through the origin of the (p, τ) coordinate system
and point E.

One can rewrite Equation (17), as:

2ρ cos ψ
∂ψ

∂ρ
= η1

√
4− η2 cos ψ− (2− ηη1) sin ψ. (21)

The coefficient at the derivative vanishes if ψ = π/2. The general solution of Equa-
tion (21) can be represented as

ln
(

ρ

ρ0

)
=

η1
√

4− η2(ψ− ψ0)

2
(
1 + η2

1 − ηη1
) − (2− ηη1)

2
(
1 + η2

1 − ηη1
) ln

[
η1
√

4− η2 cos ψ− (2− ηη1) sin ψ

η1
√

4− η2 cos ψ0 − (2− ηη1) sin ψ0

]
. (22)

The solution in this form satisfies the condition ψ = ψ0 for ρ = ρ0. Considering
ψ0 = π/2 here, leads to:

ln
(

ρ

ρ0

)
=

η1
√

4− η2(ψ− π/2)
2
(
1 + η2

1 − ηη1
) − (2− ηη1)

2
(
1 + η2

1 − ηη1
) ln

[
sin ψ− η1

√
4− η2

(2− ηη1)
cos ψ

]
. (23)

Expanding the right-hand side of this equation in a series in the vicinity of ψ = π/2 gives:

ρ

ρ0
= 1 +

(π/2− ψ)2

(2− ηη1)
+ o
[
(π/2− ψ)2

]
(24)

as ψ→ π/2. This expansion and (5) shows that ρ > ρ0 in the vicinity of ψ = π/2. This
result contradicts the assumption that the plastic region propagates from the inner radius
of the disk. Therefore, ψ attains the value π/2, only if ρ0 = a in (23). The solution breaks
down at this instant. The physical interpretation of this collapse mechanism is that the
localized thickening occurs at ρ = a [17]. If ψ = π/2 at ρ = a at the initiation of the plastic
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yielding, no plastic region of finite size develops at the plastic collapse. It is seen from (8)
and (16) that this kind of plastic collapse occurs, if:

p = pc =
2√

4− η2
. (25)

The corresponding value of τ is found from the following quadratic equation that
results from the substitution of (25) into (14):

τ2
c +

[
a2(1 + ν)(2− ηη1) + (2 + ηη1)(ν− 1)

]√
4− η2

τc +

[
(2 + ηη1)(ν− 1) + a2(2− ηη1)(ν + 1)

]2
4(4− η2)

= 0. (26)

Point D in Figure 2 represents this special solution.
The plastic collapse solutions above are special cases of two kinds of plastic collapse

mechanisms. To simplify the further writing, PCM1 denotes the plastic collapse mecha-
nism that occurs when the entire disk becomes plastic, and PCM2 is the plastic collapse
mechanism that occurs when the localized thickening occurs at ρ = a. One of these plastic
collapse mechanisms occurs in the general case. In the case of PCM2, Equation (25) is
universal. Therefore, this plastic collapse mechanism is represented by a straight line
parallel to the τ−axis (line GJ in Figure 2). This line must contain point D. However, PCM1
can occur at a value of p that is smaller than pc.

Let ψ0 be the value of ψ at ρ = a, at the initiation of plastic yielding. The stress
components must be continuous across the elastic/plastic interface. Then, Equations (10),
(11) and (16) combine to give:

p =
2 sin ψ0√

4− η2
,

2τ + p
[
(1 + ν)a2 − 1 + ν

]
(1 + ν)a2 + 1− ν

= η1

(
η sin ψ0√

4− η2
+ cos ψ0

)
. (27)

These two equations represent the same curve as Equation (14) but in parametric form
with ψ0 being the parameter. One can eliminate p in the second Equation in (27) using the
first equation. As a result,

τ =
sin ψ0√
4− η2

[
a2(1 + ν)

(ηη1

2
− 1
)
+ (1− ν)

(ηη1

2
+ 1
)]

+
cosψ0

2

[
a2(1 + ν) + 1− ν

]
η1. (28)

Differentiating the first Equation in (27) and (28), one gets

dp
dτ

= 4 cos ψ0

{[
a2(1 + ν)(ηη1 − 2) + (1− ν)(ηη1 + 2)

]
cos ψ0 − η1

√
4− η2

[
a2(1 + ν) + 1− ν

]
sin ψ0

}−1
. (29)

It is seen from this equation that

dp
dτ

= 0 at ψ0 = π/2. (30)

The second derivative is

d2 p
dτ2 =

d(dp/dτ)/dψ0

dτ/dψ0
. (31)

One can find from (28) that

dτ

dψ0
= −η1

2

[
a2(1 + ν) + 1− ν

]
(32)
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at ψ0 = π/2. Differentiating the right-hand side of (29) results in

d
dψ0

(
dp
dτ

)
=

4
η1
√

4− η2[a2(1 + ν) + 1− ν]
(33)

at ψ0 = π/2. It is evident from (31), (32) and (33) that d2 p/dψ2
0 < 0 at ψ0 = π/2. Therefore,

p as a function of τ, determined by (14), attains a local maximum at ψ0 = π/2. It was
shown above that this point of the (pτ)-space also belongs to the curve that represents
PCM2. Therefore, if the loading path in the pτ-space intersects the curve represented by
(14) at τ ≤ τc (arc CD in Figure 2), then PCM2 always occurs.

Consider the loading paths that intersect the curve represented by (14) at τ > τc (arc
DEF in Figure 2). Both PCM1 and PCM2 can occur. Beyond the elastic limit, the elastic and
plastic regions exist. Let ρp be the dimensionless radius of the elastic/plastic boundary.
The elastic region occupies the domain ρp ≤ ρ ≤ 1, and the plastic region is the domain
a ≤ ρ ≤ ρp. The solution (10) is valid in the elastic region. However, A and B are not given
by (11). The radial displacement must satisfy the boundary condition (9). Then, it follows
from (10), that:

(1− ν)B− (1 + ν)A + τ = 0. (34)

The stress components must be continuous across the elastic/plastic boundary. Then,
Equations (10) and (16) combine to give:

−
2 sin ψp√

4− η2
=

A
ρ2

p
+ B and η1

(
η sin ψp√

4− η2
+ cos ψp

)
=

A
ρ2

p
− B. (35)

Here ψp is the value of ψ at ρ = ρp. One can solve the Equations in (35) for A and B
to get:

A =
ρ2

p

2

[
(ηη1 − 2) sin ψp√

4− η2
+ η1 cos ψp

]
and B = −1

2

[
(ηη1 + 2) sin ψp√

4− η2
+ η1 cos ψp

]
. (36)

Substituting (36) into (34) gives:

− (1− ν)

2

[
(ηη1 + 2) sin ψp√

4− η2
+ η1 cos ψp

]
−

(1 + ν)ρ2
p

2

[
(ηη1 − 2) sin ψp√

4− η2
+ η1 cos ψp

]
+ τ = 0. (37)

Putting ρ0 = ρp and ψ0 = ψp in (22) yields:

ln
(

ρ

ρp

)
=

η1
√

4− η2
(
ψ− ψp

)
2
(
1 + η2

1 − ηη1
) − (2− ηη1)

2
(
1 + η2

1 − ηη1
) ln

[
η1
√

4− η2 cos ψ− (2− ηη1) sin ψ

η1
√

4− η2 cos ψp − (2− ηη1) sin ψp

]
. (38)

It follows from this equation that:

ln
(

a
ρp

)
=

η1
√

4− η2
(
ψa − ψp

)
2
(
1 + η2

1 − ηη1
) − (2− ηη1)

2
(
1 + η2

1 − ηη1
) ln

[
η1
√

4− η2 cos ψa − (2− ηη1) sin ψa

η1
√

4− η2 cos ψp − (2− ηη1) sin ψp

]
. (39)

Here ψa is the value of ψ at ρ = a. It is seen from (16) that:

sin ψa =
p
√

4− η2

2
. (40)

Therefore, the solution of Equations (37) and (39) supplies ρp and ψp at given values
of p and τ.

There should be a combination of p and τ at which PCM1 and PCM2 occur simultane-
ously (point J in Figure 2). In this special case, p = pc (or ψa = π/2) and the corresponding
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values of τ and ψp are determined from the following equations that result from (37) and
(39) at ρp = 1:

(2ν−ηη1) sin ψp√
4−η2

− η1 cos ψp + τ = 0,

ln a =
η1
√

4−η2(π/2−ψp)
2(1+η2

1−ηη1)
− (2−ηη1)

2(1+η2
1−ηη1)

ln
[

(2−ηη1)

(2−ηη1) sin ψp−η1
√

4−η2 cos ψp

]
.

(41)

The solution of the second equation supplies ψp. Then, τ is immediate from the first
equation. This value of τ is denoted as τF. PCM2 occurs if τ ≤ τF. This plastic collapse
mechanism is represented by line DJ in Figure 2. To find the relation between p and τ
corresponding to PCM1, one needs to put ρp = 1 in (37) and (39). As a result,

− (1−ν)
2

[
(ηη1+2) sin ψp√

4−η2
+ η1 cos ψp

]
− (1+ν)

2

[
(ηη1−2) sin ψp√

4−η2
+ η1 cos ψp

]
+ τ = 0,

ln a =
η1
√

4−η2(ψa−ψp)
2(1+η2

1−ηη1)
− (2−ηη1)

2(1+η2
1−ηη1)

ln
[

η1
√

4−η2 cos ψa−(2−ηη1) sin ψa

η1
√

4−η2 cos ψp−(2−ηη1) sin ψp

]
.

(42)

These two equations provide the dependence between ψa and τ in parametric form,
with ψp being the parameter. This plastic collapse mechanism is represented by curve JEH
in Figure 2. This step completes constructing the collapse curve (GDJEH in Figure 2).

5. Illustrative Examples

This section illustrates the effect of plastic anisotropy on the plastic collapse mecha-
nisms. In all cases, ν = 0.3 and a = 0.5. If the principal axes of anisotropy coincide with the
principal stress axes, then the orthotropic yield criterion proposed in [17] contains three
coefficients, F0, G0, and H0. The solution for the isotropic material can be found as a partic-
ular case of the general solution, assuming that F0 = G0 = H0. Papers [21,22] provide four
sets of coefficients involved in the yield criterion; namely, (i) F0/(G0 + H0) = 0.243 and
H0/(G0 + H0) = 0.703 for steel DC06, (ii) F0/(G0 + H0) = 0.587 and H0/(G0 + H0) = 0.41
for aluminum alloy AA6016-T4, (iii) F0/(G0 + H0) = 0.498 and H0/(G0 + H0) = 0.419 for
aluminum alloy AA5182-0, and (iv) F0/(G0 + H0) = 0.239 and H0/(G0 + H0) = 0.301 for
aluminum alloy AA3104-H19. Using these data, one can find η and η1 involved in (4) from
the following equations [20]:

η =
2H0√

(G0 + H0)(F0 + H0)
and η1 =

√
G0 + H0

F0 + H0
. (43)

First, it is necessary to show that the assumption that plastic yielding initiates at the
inner radius is satisfied. Figure 3a shows the dependencies of p on τ found from (14)
and (15). The broken line corresponds to Equation (14) and the solid line to Equation
(15). Point C belongs to both curves. The values of p and τ at this point satisfy (13). Any
loading path in the (p, τ)− space that does not contain point C, first intersects the broken
line. Therefore, plastic yielding initiates at the inner radius of the disk. This feature of
the solution is preserved for DC06, AA6016-T4, and AA5182-0 (Figure 3b). However,
the solution behavior for AA3104-H19 is qualitatively different (Figure 4). This figure
shows that the curves corresponding to Equations (14) and (15) intersect at two points.
Point C belongs to the line determined by Equation (13). In this case, plastic yielding
simultaneously initiates in the entire disk. The intersection at point D means that plastic
yielding simultaneously initiates at the inner and outer radii. However, the interior of the
disk is elastic at this instant. Plastic yielding initiates at the outer radius if the loading path
in the (p, τ)− space intersects the solid curve between points C and D. This feature of the
solution contradicts the initial assumption. Therefore, AA3104-H19 is not considered below.
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Figure 5 illustrates the elastic limit and plastic collapse curves for DC06, AA6016-T4,
AA5182-0, and the isotropic material. The quantitative features of each of these curves are
the same as those of the curves shown in Figure 2. The latter was already discussed in the
course of constructing the solution in Section 4. Therefore, Figure 5 shows the effect of
plastic anisotropy on the solution behavior.
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Figures 6 and 7 depict the radial distribution of the radial and circumferential stresses,
respectively, in a DC06 disk. The curves show the effect of the loading conditions of the
stress distributions at collapse. It is worthy of note that the radial stress is a monotonically
decreasing function of ρ at any p. Moreover, the magnitude of this stress decreases as
p decreases at any point of the disk. The qualitative behavior of the radial distribution
of the circumferential stress depends on the value of p. If p is small enough, then the
circumferential stress is a monotonically decreasing function of ρ. At intermediate values
of p, the function σθ(ρ) attains a local minimum at a point of the interval a ≤ ρ ≤ 1. If p is
large enough, then the circumferential stress is a monotonically increasing function of ρ.
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6. Discussion

The analytic solution found revealed the following qualitative features:

1. Two plastic collapse mechanisms exist. According to one of these mechanisms, the
entire disk becomes plastic (curve JEH in Figure 2 and the corresponding curves in
Figure 4). The other mechanism predicts the localization of plastic deformation at the
inner radius of the disk (line JG in Figure 2 and the corresponding lines in Figure 5).
Both mechanisms occur simultaneously at point J (Figure 2) and the corresponding
points in Figure 4.

2. There are two special solutions. According to one of these solutions, the entire
disk becomes plastic at the initiation of plastic yielding. In this case, the curve
corresponding to the elastic limit and the curve corresponding to the plastic collapse



Symmetry 2021, 13, 909 11 of 12

have a common point (point E in Figure 2 and the corresponding points in Figure 5).
According to the other solution, the localization of plastic deformation at the inner
radius of the disk occurs at the initiation of plastic yielding. In this case, the curve
corresponding to the elastic limit and the curve corresponding to the plastic collapse
also have a common point (point D in Figure 2 and the corresponding points in
Figure 5). No plastic region of finite size exists at plastic collapse.

3. Plastic yielding might initiate at the outer radius of the disk (Figure 4).
4. Plastic anisotropy might have a significant effect on the plastic collapse curve (Figure 5).
5. The boundary value problem is classified by three material parameters (η, η1, and ν),

the geometric parameter a, and the loading path in the (p, τ)− space. Therefore, as in
many other problems, for example [9], the present solution is more computationally
efficient than FEM and other numerical solutions for parametric studies and prelimi-
nary design of disks. The possibility to derive this practical solution results from axial
symmetry, in conjunction with the assumption of plane stress.

6. The solution found can be directly used to design disks, in the manner proposed
in [23].

7. At p = 0, the solution found should reduce to one of the solutions given in [1].
The latter coincides with (42), if ψa = 0. This comparison validates the solution found.

Funding: This research was made possible by the grant 20-79-10340 from the Russian Science
Foundation.
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