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Abstract: With the rapid development of the Internet of Things (IoT), wearable devices have become
ubiquitous and interconnected in daily lives. Because wearable devices collect, transmit, and monitor
humans’ physiological signals, data privacy should be a concern, as well as fully protected, through-
out the whole process. However, the existing privacy protection methods are insufficient. In this
paper, we propose a practical privacy-preserving mechanism for physiological signals collected by
intelligent wearable devices. In the data acquisition and transmission stage, we employed existing
asymmetry encryption-based methods. In the data publishing stage, we proposed a new model based
on the combination and optimization of k-anonymity and differential privacy. An entropy-based
personalized k-anonymity algorithm is proposed to improve the performance on processing the
static and long-term data. Moreover, we use the symmetry of differential privacy and propose the
temporal differential privacy mechanism for real-time data to suppress the privacy leakage while
updating data. It is proved theoretically that the combination of the two algorithms is reasonable.
Finally, we use smart bracelets as an example to verify the performance of our mechanism. The exper-
iment results show that personalized k-anonymity improves up to 6.25% in terms of security index
compared with traditional k-anonymity, and the grouping results are more centralized. Moreover,
temporal differential privacy effectively reduces the amount of information exposed, which protects
the privacy of IoT-based users.

Keywords: wearable devices; IoT; k-anonymity; differential privacy; data publishing

1. Introduction

Internet of things (IoT) is widely used in various fields of our daily lives, such as
agriculture, industry, transportation, healthcare, education, furniture, and so on. With the
IoT changing people’s lifestyles, user security, in its various applications, has gradually
become a problem that cannot be ignored [1,2]. In October 2016, the Mirai botnet [3]
controlled a large number of IoT devices to launch DDoS attacks with network traffic up to
620 gb/s, which led to disconnections in most states in the United States. It was discovered
that in 2014 there are more than 750,000 devices have been compromised and spied [4]. In
2019, a large amount of privacy problems occurred in smart-home devices, and some users’
private videos were exposed on the internet by attackers. The above examples show that,
due to the entity link mode of the IoT, attackers may easily obtain network data for illegal
use or dissemination; more attention should be paid to this, especially in regards to the
application of IoT-based health monitoring [5], since mobile health has become one of the
most closely related IoT applications to consumers [6]. Data privacy of users has become a
hot topic for researchers in the academic field of IoT.

An IoT infrastructure usually integrates various sensors, memories, computing units,
and gateway modules to complete the tasks of data acquisition, storage, and forwarding
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transmissions to a cloud platform. Compared with traditional networks, IoT device nodes
are based on physical connections with smaller storage space, wider distribution, and
diversified transmission protocols [7,8]. This makes common privacy protection methods
difficult to be directly transplanted to IoT devices, and undoubtedly increases the risk of
disclosure of privacy data, especially a large amount of physiological data, which can be
used to evaluate human health status [9].

Generally, there are three basic privacy protection methods: encryption, disruption,
and anonymity. Encryption is a useful method of data protection; commonly used encryp-
tion algorithms include AES [10] and RSA [11]. However, the complexity of the encryption
method is also the largest of the three methods. Disruption refers to adding noise in
accordance with a specific distribution of the data, which makes it difficult for attackers
to accurately obtain data, such as differential privacy [12]. Anonymity is to hide some
data to ensure the privacy of users, such as k-anonymity [13]. The complexities of these
two methods are small, but there exist different degrees of information loss. According to
the actual needs in different scenarios, the applicable methods are different.

This paper uses the intelligent wearable device (e.g., a smart bracelet) as an example
to study the data privacy protection mechanism of IoT applications. Intelligent wearable
devices are often attached to the skin surface to collect and analyze the physical and
physiological signals of the human body. They can acquire human body status in real time
as well as communicate with other IoT devices. Intelligent wearable devices are widely
used in sports, healthcare, and other fields. This kind of equipment usually contains a
variety of sensors, which can collect heartbeat, blood oxygen, acceleration, etc. These
signals are usually transmitted to a specific gateway device (e.g., a smartphone) via the
Bluetooth protocol, and then further transmitted to the server database deployed in a cloud
platform. Data publishing is an important process of making data open access to provide
necessary information to researchers and the public. For example, publishing infectious
disease data can assist disease control centers in analyzing the diffusion trend and alert the
public to take measures to prevent disease spread. Because the usability of publishing data
and the low cost of data processing are basic requirements of data publishing, anonymity
and disruption are common privacy protection methods in this process. Figure 1 shows the
information transmission process of wearable devices, in which each stage has a certain
degree of privacy leakage risk:

(1) In the signal acquisition stage, the physical structure of the equipment is at risk of
being damaged.

(2) In the wireless transmission stage, the signals are faced with the risk of being inter-
cepted by special equipment. Moreover, most IoT devices have limited computing
and storage space, which makes it difficult to run complex privacy protection algo-
rithms. For example: in a marathon race in 2014, researchers used Bluetooth sniffers
to easily obtain health information from 563 different competition devices since the
data collected by the devices were not protected [14].

(3) In the data publishing stage, attackers could infer the users’ real information in
different ways. The common methods include linkage attack [15,16] and background
knowledge attack [15,17].

In order to avoid these risks, we need to develop the privacy protection technology in
specific circumstances. First, it is necessary to classify the data and data types acquired by
IoT devices. According to the time duration of data value maintenance, the collected data
attributes can be divided into static data, long-term data, and real-time data. Considering
the differences of data attributes in the application of IoT, it is essential to establish different
privacy protection mechanisms for each datum attribute. Moreover, we must ensure
the consistency of privacy-preserving mechanisms, which means that it cannot only be
applied to a certain type of device, or weaken the effect of privacy protection when the
data are updated.
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Figure 1. Information transmission process of intelligent wearable devices (e.g., a smart bracelet). 
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Based on the above considerations, we propose in this paper a practical privacy-pre-
serving mechanism for wearable IoT applications. The framework is presented in Figure 
2. In regards to signal acquisition during the device stage, smooth prior processing (SPA) 
[18] and median filtering (MF) [19] were applied to preprocess the photoplethysmography 
(PPG) signals collected by wearable IoT devices. Data with physical significance, such as 
heartbeat, blood oxygen, and acceleration were then estimated, respectively, in numerical 
form from the preprocessed PPG signals. In the stage involving wireless transmission 
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[21] in the cloud for homomorphic updates. In the data publishing stage, we divided the 
data into three parts—static data, long-term data, and real-time data, respectively. For the 
first and the second types of data, we designed a personalized k-anonymity algorithm to 
protect privacy. For the third, we proposed the temporal differential privacy mechanism 
to suppress the information leakage in data update. Results of the two methods will be 
combined and eventually released. 
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Based on the above considerations, we propose in this paper a practical privacy-
preserving mechanism for wearable IoT applications. The framework is presented in
Figure 2. In regards to signal acquisition during the device stage, smooth prior processing
(SPA) [18] and median filtering (MF) [19] were applied to preprocess the photoplethysmog-
raphy (PPG) signals collected by wearable IoT devices. Data with physical significance,
such as heartbeat, blood oxygen, and acceleration were then estimated, respectively, in
numerical form from the preprocessed PPG signals. In the stage involving wireless trans-
mission from devices to the cloud, the original data were encrypted by the PRESENT
algorithm [20], which is a lightweight encryption algorithm for IoT devices with limited
space, and then transmitted to the server. Moreover, data were encrypted by the Paillier
algorithm [21] in the cloud for homomorphic updates. In the data publishing stage, we
divided the data into three parts—static data, long-term data, and real-time data, respec-
tively. For the first and the second types of data, we designed a personalized k-anonymity
algorithm to protect privacy. For the third, we proposed the temporal differential privacy
mechanism to suppress the information leakage in data update. Results of the two methods
will be combined and eventually released.
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The contributions of this paper are mainly summarized as follows.

(1) We designed a privacy-preserving framework for IoT devices, which includes the
transmitting and data publishing process.
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(2) We proposed the personalized k-anonymity algorithm based on entropy of attributes
to increase the usability of anonymized data, in which the category and numeric
attributes are discussed as different types.

(3) We proposed the temporal differential privacy mechanism to reduce the temporal
privacy disclosure, and put forward an implement algorithm in the Laplace mecha-
nism scenarios.

(4) We proposed a practical data-publishing model for IoT devices, including the pro-
cessing of static, long-term, and real-time data, and we prove that this model is of
enough safety.

The remainder of our work is organized as follows. Section 2 introduces the related
privacy preserving work. Section 3 presents the complete theory and method of our work,
including the collection and preprocessing of data in IoT devices, the encryption methods in
the transmitting process, and the publishing model containing the proposed personalized
k-anonymity and temporal differential privacy. In Section 4, experiments are presented for
performance evaluation and comparison. Finally, we draw conclusions in Section 5.

2. Related Work
2.1. Anonymous Methods

Definition 1. k-anonymity [13]. The dataset D is grouped with at least k records and the same
quasi-identifier (QI) values in each group [13].

QI refers to the attribute or set of attributes that is different from the explicit identifier
(ID, name, etc.), but can be used as the necessary evidence to fix on one specific user. In
k-anonymity groups, QI remains the same for every record, and the possibility of mapping
a record with a specific user can be eliminated.

Generalization [13] is one of the main methods of anonymity. This method generalizes
different values to a new value at a higher level. For example, the different age values 33
and 37 in a dataset can be generalized into the new value 30–40. For more complicated
problems, the generalization tree [13] is needed. In a generalization tree, every node
presents the possible value at different generalizing levels. The closer a node next to the
root, the higher the generalizing level it contains, and the larger the information loss in its
generalizing process.

Micro-aggregation [22] is also used commonly as an anonymizing method. The
records will first be divided into several groups through some heuristic algorithm, and the
record values are replaced by the central record values in every group. The algorithms
MD [22], MDAV [23], and V-MDAV [24] are based on this method.

Researchers have made different improvements on the k-anonymity mechanism
on data level. L-diversity [15] and t-closeness [25] are proposed to prevent link attack
and background knowledge attack. Razaullah Khan et al. [26] propose the θ-Sensitive
k-anonymity algorithm, in which θ is set as a threshold, distinguishing different diversity
level of data and adding noise. It is proved that this algorithm can prevent the sensitive
variance attack and categorical similarity attack. Rohulla kosari langari et al. [27] propose
a privacy preserving method KFCFA in social networks, which uses k-member fuzzy
clustering for clustering and optimizes the clustering and anonymization process with the
Firefly algorithm. The KFCFA method protects privacy on the data level and graph level,
and effectively reduces information loss. However, the above anonymity methods lack the
consideration of differences in attributes. The attributes in a dataset present heterogeneities
in the data type, the value scope and the degree of dispersion, which are all important issues
affecting the anonymizing results. In this paper, we propose a personalized k-anonymity
algorithm to solve the problem.
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2.2. Differential Privacy

Definition 2. differential privacy [12]. If D and D′ are two datasets only different in one record,
they are a couple of neighbor datasets. Denote d the number of attributes in two datasets, f the
function to query the dataset and returns a d-dimension array, A the function to process the query
result, and ε the setting privacy budget. Differential privacy can be described as [12]:

Pr[A(D) = O] ≤ eε × Pr
[
A
(
D′
)
= O

]
(1)

Definition 3. Laplace mechanism [12]. It can be proved that adding noise n ∼ Laplace
(

∆f
ε

)
to

the query result can meet the requirement of differential privacy [12], in which ∆f is the sensitivity
of the query.

In exception for a static dataset, differential privacy is also used in the publishing of
temporal data. The baseline method is to add noise n ∼ Laplace

(
length(time series)

ε

)
[28]

to every time point. However, adding noise directly will cause a big information loss
when the time series is long. Rastogi et al. [28] raise the DFTk algorithm, in which the
DFT coefficients of time series are perturbed by Laplace noise. Fan et al. [29] propose the
Kalman algorithm, which applies Kalman filtering on the perturbed data based on time
modeling. For the infinite time series, Kellaris et al. [30] raise the ω-event ε-differential
privacy, and propose an implementation BA for the mechanism.

However, the above methods only focus on the publishing of time series of only one
attribute. For practical IoT scenarios, there are data with different attributes to be published
at every time. In order to preserve users’ privacy, the dataset at every time point and the
time series for every attribute should both be well preserved.

2.3. Privacy-Preserving in Health Data

In the aspect of health privacy protection, researchers propose various mechanisms
for different scenarios.

Yinghui Zhang et al. [31] introduce a privacy-aware smart-health access control system
PASH, in which attribute values of access policies are hidden in encrypted smart-health
records. Hao Ren et al. [32] propose a new data aggregation scheme PMHA-DP to protect
the privacy in wireless body area network, in which a privacy-enhanced average aggre-
gation scheme (PAAS) is proposed based on differential privacy. This scheme effectively
protects the user privacy in data aggregation and reduces the communication overhead.
Al-Zubaidie M et al. [33] propose a new PAX authorization system to protect patient pri-
vacy in electronic health record system. The PAX system combines pseudonym, anonymity,
and XACML technologies to protect privacy and reduce cost effectively.

3. Methodology

In this section, we demonstrate the details of the proposed privacy-preserving mecha-
nism. In the application scenario of smart wearable devices, we first describe the specific
ways of information collecting and processing, converting electrical signals into data. Sec-
ondly, we use two existing encryption methods to ensure the security of information in
the transmitting process and background. Finally, we propose the data publishing method
to reduce privacy leakage. The temporal data tables will first be split into two parts. We
apply personalized k-anonymity to static and long-term data, and temporal differential
privacy to real-time data. The data will be published after merging. In the end, we provide
the rationality demonstration for the proposed method.

3.1. Signal Collecting and Preprocessing

In this section, we introduce the collecting and preprocessing steps of signals in smart
bracelets, which are the bases of our privacy preserving mechanism. Firstly, two widely
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used technologies are demonstrated for obtaining signals of heart rate and blood oxygen.
Secondly, we introduce two preprocessing methods of reducing noises in signals.

3.1.1. Signal Collecting

(1) Heart rate. When the light passes through the skin tissue and then reflects to
the photosensitive sensor, the absorption of light by other tissues is, basically, unchanged
except for the blood, for there are blood flow changes in the artery for every beat. When
the light is converted into the electrical signal in the devices, the signal can be taken as the
summation of DC and AC signals, which present the unchanged signal of other tissues
and the changed signal of blood flow. According to the method described in [34], we use
Discrete Fourier Transform (DFT) to transform the time domain waveform of PPG signals
into the frequency domain, and then extract the frequency components of human heart
rate from the spectrum to obtain the heart rate data.

(2) Blood oxygen. There is a certain proportion of oxygenated hemoglobin HbO2 and
hemoglobin Hb in blood. The absorption coefficient of Hb is high in the range of 600–800 nm
in spectrum, while the coefficient of HbO2 is high in the range of 800–1000 nm [28]. In [28],
researchers use red light (600–800 nm) and infrared ray (800–1000 nm) to detect the PPG
signal of HbO2 and Hb to reflect the SpO2 value.

SpO2 =
CHbO2

CHb + CHbO2

(2)

In Equation (2), CHbO2 is the oxygenated hemoglobin concentration, and CHb is the
reduced hemoglobin concentration.

3.1.2. Signal Preprocessing

There are other noises in the physiological signals collected by smart wearable devices,
which are produced during the signal collecting process. In order to obtain the accurate
physiological data of users, the signal-preprocessing module is needed in the devices.

The noises are produced because of the following two major reasons. The first is the
electromyography (EMG) interference [35]. The movements of human body cause the
muscle tremor, which makes the surface potential change and causes the interference of
collected signals. The EMG noise is similar to the white noise, because they both present
narrow in time domain and wide in frequency domain. In our work of smart bracelets, we
first apply the smoothness prior approach (SPA) [18] to remove EMG noise.

The first step of SPA is dividing the signals Z into two components: the stationary
part Zstationary and the low-frequency aperiodic trend part Ztrend.

Z = Zstationary + Ztrend (3)

The information is contained in the stationary component, so the trend component
needs to be removed. The trend component can be described as the linear model:

Ztrend = Hθ+ v, (4)

where H is the observation matrix, and v presents the observation error. The estimation of
parameter θ̂λ is expressed as the following expression:

θ̂λ = argmin
θ
{‖Hθ− Z‖2 + λ2‖Dd(Hθ)‖2}, (5)

where λ is the regularization parameter, and Dd is the discrete approximation to the dth
derivative operator. Suppose the dimension d = 2, then the solution is:

θ̂λ =
(

I + λ2D2
TD2

)−1
Z, (6)
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and D2 is the second order difference matrix:

D2 =


1 −2 1 0 . . . 0

0 1 −2 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 −2 1

 (7)

The second reason of noise interference is baseline drift, which comes from the inter-
mittent contact problem of the devices and human body surface. In this paper, we use
the median filter (MF) to suppress this kind of noise. In this filter, we set a length-fixed
window and make the signals successively stream into the window. The output of the filter
is the median value of all samples in the window at every time point. The points with
noises that appear in isolation can be removed through MF method.

3.2. Privacy-Preserving in Data Transmitting

Encryption is the most used privacy-preserving method in the process of data trans-
mitting, which ensures safety and causes no information loss. During the transmitting of
data from devices to the cloud, we apply two different asymmetry encryption algorithms
in this paper. First, in order to ensure the security of data in the process of information
transmission, and the better adaption to the storage and computing space of devices, we
use the lightweight PRESENT algorithm to encrypt the data inside the device. Secondly,
in order to make the privacy information not exposed in the background and support the
normal data update operation, we use the Paillier homomorphic encryption algorithm to
encrypt the data in the cloud.

3.2.1. Encryption in Devices

In IoT devices, block cipher is widely used as a kind of encryption methods. Block
cipher divides plaintext into several vectors, encrypts the vectors separately, and finally
combine the ciphertexts. Block cipher decreases the size of plaintext to be encrypted at one
time, which fits the limited-space IoT devices.

In the process of transmitting information from smart wearable devices to the gateway
devices, we apply the PRESENT algorithm [20], which is one of the lightweight block
cipher algorithms. In the PRESENT algorithm, the length of every vector is 64 bits, and the
length of a secret key is 80 or 128 bits. The sizes of vectors and secret keys of PRESENT are
much shorter than the traditional block cipher methods, which makes it feasible in smart
wearable devices. The PRESENT algorithm is described in Figure 3.
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Figure 3. The encryption process of PRESENT.

In the PRESENT algorithm, each key update process round is divided into three
steps [29]. Suppose that the last round key is [k79k78 . . . k1k0]. First, the key is rotated to
the left by 61 bits, in which it becomes [k18k17 . . . k0k79k78 . . . k20k19]. Then, the highest four
bits k79k78k77k76 are replaced by S-box. Finally, k19k18k16k17k15 is exclusive-ored with the
number of rounds.

The S-Box of PRESENT is shown in Table 1 [20], which is used in the substitution layer
to replace every bit of text, and the function of the permutation layer [20] is calculated as
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Equation (8), which means the bit i will be moved to the bit position P(i). Every round of
the encryption process contains the substitution layer and the permutation layer.

P(i) =
{

i·16 mod 63 0 ≤ i ≤ 62
63 i = 63

(8)

Table 1. The S-Box of PRESENT.

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

3.2.2. Encryption in Cloud

When the information of users is transmitted to the cloud, in order to avoid informa-
tion disclosure for background and support different computing operations, we employ
the homomorphic encryption. Homomorphic encryption is a kind of encryption method,
which makes the text before and after encryption homomorphic on some operations. In
this paper, we use the Paillier homomorphic encryption [21] to preserve privacy in the
cloud for IoT data.

The Paillier homomorphic encryption algorithm is homomorphic in both addition [21]
and scalar multiplication [21]. Suppose the Paillier homomorphic encryption algorithm is
f , and two plaintexts are A and B, the Paillier homomorphic expressions can be described
in Equations (9) and (10).

f (A) + f (B) = f (A + B) (9)

a f (A) = f (aA). (10)

The above two equations indicate that when data are required to be updated or
computed in the cloud, we can finish the addition and scalar multiplication without
decrypting, and the real data will not be exposed to untrusted platforms.

3.3. Privacy-Preserving in Data Publishing

In this part, we introduce a practical data-publishing model: for static and long-
term data, the personalized k-anonymity is used, and for real-time data, the temporal
differential privacy is used. We first demonstrate the data publishing in IoT in Section 3.3.1,
and introduce the above two innovative algorithms in detail in Sections 3.3.2 and 3.3.3. In
Section 3.3.4, we formally prove that the data-publishing model is reasonable.

3.3.1. Data Publishing of IoT

In IoT applications, analysts of relevant organizations will collect users’ data for
comprehensive analysis. For example, IoT developers will analyze a large amount of user
data for behavior analysis and personalized services, and some useful data will be made
public to support researchers’ analysis in some fields. However, in the publishing process,
the users’ real data are published, which poses a threat to the privacy of users. If the
users’ private data are not properly preserved during data publishing, intentional attackers
may use the information to cheat target users or sell their data, which will damage the
users’ interests and reduce the credibility of the IoT platforms. In addition, if the leaked
information is sensitive to users, the leakage will cause psychological harm. Data that
could be published in the scenarios of the smart wearable devices are listed in Table 2.

3.3.2. Personalized k-Anonymity

As we explain in Section 2, the traditional k-anonymity methods lack the consideration
of attributes’ differences. In this part, we introduce the personalized k-anonymity.
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Table 2. Types of data collected by smart wearable devices.

Information Source Information Data Type Value Duration

users

height Numeric data Long-term

weight Numeric data Long-term

gender Category data Static

age Numeric data long-term

health

heart rate Numeric data Real-time

blood oxygen Numeric data Real-time

health level Category data Long-term

diseases Category data Long-term

behavior acceleration Numeric data Real-time

environment

city Category data Long-term

GPS location Numeric data Real-time

temperature Numeric data Real-time

humidity Numeric data Real-time

atmosphere pressure Numeric data Real-time

K-partition is the process of dividing an original dataset into several clusters [13],
which is the most important step of k-anonymity. The common methods of k-partition are
mostly based on the distance between every two records, and making the near records
into the same cluster, such as MDAV [23], V-MDAV [24]. Suppose the QI attribute set is{

q1, q2, . . . , qq
}

, the distance between two records
{

x1, x2, . . . , xq
}

and
{

y1, y2, . . . , yq
}

can be calculated as:

distance =
√

ω1(x1 − y1)
2 + ω2(x2 − y2)

2 + . . . + ωq
(
xq − yq

)2 (11)

where {ωi} are weights of every attribute. In k-partition, we notice that there are two
important points: one is the distance of values for one attribute |xi − yi|, the other is the
assigned weight ωi of every attribute.

Firstly, we define the distance of two values of an attribute. As for the digital attributes,
we use the absolute value of subtraction. As for the category attributes, we use the step
to the same parent node in the generalization tree to measure the distance between the
two child nodes.

To assign the weights, the entropy weight method [36] is used in this paper. We
describe the reason of using this method in a simple way: the attributes of high entropy
are always complicated in the occurrence of value, which should play more important
roles in dividing data into clusters. As what have discussed in the previous sections, the
discussion of entropy weight method also bases on category and numeric attributes. As for
the category attributes, the method is to find frequency fij for each possible value i, usually
fij is the ratio of the number of occurrences of the value i and the number of records. The
normalized entropy of attribute j is:

Enj = −
1

ln p

p

∑
i=1

fij ln fij (12)

As for the numeric data, the scope of each attribute value is different, which will
affect the extent of dispersion of attribute. Data should be normalized before assigning
weights to attributes, so that we can judge the dispersion degree of each attribute from a
unified perspective. In our study, we use the membership degree [37] method to normalize
the values.
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The data collected by devices in one time can be described as Dp×q, where p presents
the numbers of users, and q presents the numbers of QIs. The membership function can be
expressed as:

µij =


1, Di,j ≤ Dj1

Dj2−Di,j
Dj2−Dj1

, Dj1 < Di,j < Dj2

0, Di,j ≥ Dj2

(13)

Dj1 and Dj2 are the upper limits of satisfying value and permissible value of attribute
qj. The normalized matrix can be expressed as µp×q. Each element in the matrix ranges
from 0 to 1. According to the idea we put forward, the greater the dispersion of data,
the bigger the entropy of the data, and the less security the data possess. Entropy of an
attribute qj is calculated as in Equation (12), in which

fij =
µij

∑
p
i=1 µij

. (14)

The weight assigned to each attribute is:

ωj =
1− Enj

q−∑
q
j=1 Enj

(15)

However, the cost time for computing the weight of every attribute is almost equal
to the cost time of k-partition. For the occasions where there are a large amount of data,
the process to assign weights will cost much time. When we design the personalized k-
anonymity algorithm, this procedure is based on a small amount of data sampled randomly
to reduce the time cost. It can be proved that the result of weight is the unbiased estimation
of the complete data result, for the calculating of entropy is based on frequency.

We use the V-MDAV algorithm [24] for k-anonymity grouping, which is presented in
Algorithm 1. The personalized k-anonymity algorithm is described in Algorithm 2.

Algorithm 1. V-MDAV

Input: distance matrix DM, Parameter k
Output: micro-aggregated set M
1: c = compute centroid record(DM)
2: while (more than k− 1 records wait to be assigned) do
3: e = the most distant record to c
4: gi = build group f rom record(e, DM, k)
5: gi = extend the group(gi, DM, k)
6: end while
7: g1, g2, . . . , gs = assign remaining records(DM, g1, g2, . . . , gs)
8: M = build microaggregated set(g1, g2, . . . , gs)
9: return M
10: end function

3.3.3. Temporal Differential Privacy

Apart from the common insecurity that a statistic dataset will bring, dangers of data
leaking in a temporal process still exist. For example, Table 3 shows the information that
a device collects at different moments from one user. This user’s heart rate increases
suddenly, while the other two attributes do not change a lot. Moreover, the background
attackers can draw a conclusion that it is of a low probability that the sudden increase
in the heart rate is related to sports, but probably results from an illness, such as the
sudden palpitation. If this user really has the illness, the health information is exposed to
the attackers.
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Algorithm 2. Personalized k-anonymity

Input: Original datasets D, Parameter k, sampling ratio s
Output: published datasets PD
1: SD = random sampling(D, s)
2: while j ≤ attribute number(SD)
3: if attribute(j) is numeric
4: µ = membership(SD(j))
5: fij =

µij

∑
p
i=1 µij

6: else if attribute(j) is category
7: fij =

occurrences(i)
record number(SD)

8: end if
9: Enj = − 1

ln p ∑
p
i=1 fij ln fij

10: end while
11: ω = weight assigning(En)
12: DM = compute distance matrix(ω, D)
13: M = V −MDAV(DM, k)
14: PD = anonymity(M)

Table 3. Information that device collects at two different moments from one user.

Time SpO2 (%) Heartbeat (bpm) Steps Increase

10:20:43 99 80 0

10:22:18 99 102 2

In a dataset, some health attributes may have common correlations, which can be
positive, negative, or more complex. Therefore, unbalanced changes of attributes indicate
the occurrence of abnormal conditions and can lead to information leakage.

In this paper, we propose the temporal differential privacy mechanism to solve the
above problem. We firstly define an important variable δ to indicate the sensitivity ratio
between two time points. Suppose the sensitivities at time 0 and time t are ∆ f and ∆ ft,
then the sensitivity ratio δ is ∆ ft

∆ f .

Definition 4. Temporal differential privacy. Suppose the range of Pr[A(D)=O]
Pr[A(Dt)=δO]

is [r1, r2], the
published results are satisfied with temporal differential privacy when r1 ≤ 1 ≤ r2.

In this paper, we put forward an implementation method of temporal differential
privacy in the Laplace mechanism scenarios.

Suppose the original query result is f (D) = (x1, x2, . . . , xd)
T , and the result at time

t is f (Dt) = (xt1, xt2, . . . , xtd)
T = (x1 + ∆xt1, x2 + ∆xt2, . . . , xd + ∆xtd)

T . According to
the Laplace mechanism [11], the result perturbed by Laplace noise n ∼ Laplace

(
∆ f
ε

)
is satisfied with differential privacy. From the definition of Laplace distribution, the
distribution of published result at time 0 of differential privacy is

Pr[A(D) = O] =
d

∏
i=1

ε

2∆ f
e−

ε
∆ f |yi |. (16)

At time t, the published result is also perturbed by Laplace noise n ∼ Laplace
(

∆ft
ε

)
,

and a distribution also exists. We study the possible result Ot = δO = (δy1, δy2, . . . , δyd)
T .

Through the same way as above, the probability is

Pr[A(Dt) = Ot] =
d

∏
i=1

ε

2∆ ft
e−

ε
∆ ft
|∆xti−δyi |. (17)
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In order to meet the requirement of temporal differential privacy, we first compute the
result of Pr[A(D)=O]

Pr[A(Dt)=δO]
in Inequality 18. We use the absolute value inequality at the position

of less-than-equal sign.

Pr[A(D)=O]
Pr[A(Dt)=Ot]

= δd exp
{

ε
d
∑

i=1

|∆xti−δyi |
∆ ft

− |yi |
∆ f

}
= δd exp

{
ε

d
∑

i=1

|∆xti−δyi |−δ|yi |
δ∆ f

}
≤ δd exp

{
ε
δ

d
∑

i=1

|∆xti |
∆ f

}
= δd exp

{
ε

∆ ft

d
∑

i=1
|∆xti|

} (18)

The computing result shows that the upper bound is not of correlations with the
possible result O, which means this inequality is true for any value of O. Moreover, from
the symmetry of Pr[A(D) = O] and Pr[A(Dt) = Ot], the two bounds of Pr[A(D)=O]

Pr[A(Dt)=Ot]
can

also be computed:

δde−
ε

∆ ft
∑d

i=1 |∆xti | ≤ Pr[A(D) = O]

Pr[A(Dt) = Ot]
≤ δde

ε
∆ ft

∑d
i=1 |∆xti | (19)

According to definition 4, temporal differential privacy is satisfied if δde
ε

∆ ft
∑d

i=1 |∆xti | > 1

δde−
ε

∆ ft
∑d

i=1 |∆xti | < 1
. (20)

We take the logarithm of both sides, and then merge the two intermediate results
together to compute the final result:

∑d
i=1|∆xti|

∆ ft|ln δ| >
d
ε

. (21)

We take Inequality 21 as the condition of our algorithm, which represents the bound of
whether the data can be published, ensuring the data will not leak important information
in the variations. The above algorithm is described in Algorithm 3. It is obvious that this
algorithm is satisfied with temporal differential privacy.

Algorithm 3. Temporal differential privacy

Input: Original datasets {T0, T1, . . . , Tm}, ε

Output: Processed results {R1, R2, . . . , Rn}, n ≤ m
1: ∆ f = sensitivity(T0), k = 0, j = 0
2: while k ≤ m do
3: ∆ fk = sensitivity(Tk)

4: δ =
∆ fk
∆ f

5: if ∑d
i=1|∆xki |

∆ fk |ln δ| > d
ε

6: return Rj = di f f erential privacy(ε, Tk)

7: ∆ f = ∆ fk, k← k + 1, j← j + 1
8: end if
9: end while

3.3.4. Rationality Demonstration

We proposed a method that combines the promotions of the two traditional algorithms:
k-anonymity and differential privacy in data publishing for different kinds of attributes in
Sections 3.3.2 and 3.3.3. In this section, we prove that this combination is rational and the
final result satisfies with both k-anonymity and the differential privacy mechanism.
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The real-time attributes can be seen as the sensitive attributes (SA), while the static and
long-term attributes set includes QIs and SAs. Suppose the static and long-term attributes
set is (QI, SA1), and the real-time attributes set is SA2.

(1) K-anonymity. The values of QI are the same in an equivalence class as the attributes
(QI, SA1) according to the k-anonymity mechanism. It is obvious that, as for the combined
attributes set, (QI, SA1, SA2), the QI values remain the same in the equivalence class as
the record number at least k. Therefore, our combined mechanism is satisfied with k-
anonymity.

(2) Differential privacy. According to the differential privacy mechanism, the relation-
ship between neighbor datasets SA2 and SA2

′ satisfies with the expression:

Pr[A(SA2) = O1] ≤ eε × Pr
[
A
(
SA2

′) = O1
]
, (22)

Other parameters are the same as Section 2.
SA2 and SA2

′ are a couple of neighbor datasets, which means that they are different in
only one record. We add the same data (QI, SA1) that have been anonymized to the two
datasets. It is obvious that the new datasets D(QI, SA1, SA2) and D′(QI, SA1, SA2

′) are
neighbor datasets to each other.

Denote PM the publishing mechanism in this paper and O = (O1, O2), and we can
conclude from the above that

Pr[PM(D) = O] ≤ eε × Pr
[
PM

(
D′
)
= O

]
. (23)

It is proved that the proposed data publishing mechanism is satisfied with the differ-
ential privacy.

4. Results and Discussion

In this section, we evaluate the effectiveness of the data publishing algorithms pro-
posed in Section 3, including personalized k-anonymity and temporal differential privacy.
We compare the performances of the proposed algorithm with the existing algorithms by
information loss, distance linked closure risk, and other quantitative results.

4.1. Dataset

The data in the following experiments were collected from 513 teenagers in a middle
school using our smart bracelets. The dataset contains the heart rate (HR), blood oxygen
(SpO2), and other physiological data before and after a long run.

The attributes can be divided into three kinds: removed data, static and long-term
data, and real-time data, which are listed in detail as follows:

(1) Removed data. The removed attribute set contains names and IDs of devices, which
will be removed before applying our privacy preserving method.

(2) Static and long-term data. The static and long-term attribute set contains gender,
age, height, and the health level of students, in which QI set consists of {gender, age,
height}, and SA set consists of {health level}.

(3) Real-time data. The real-time attribute set contains the resting HR, descent rate of HR,
increase rate of HR, HR reserve, SpO2 saturation mean, SpO2 saturation standard
deviation, HR after exercise and exercise time duration.

Note that the following experiments are implemented in the Python 3.7.4 development
environment. At the beginning of our experiment, we removed the names and IDs in the
dataset first. Then, we apply personalized k-anonymity mentioned in Section 3.3.2 to the
static and long-term data, and temporal differential privacy mentioned in Section 3.3.3 to
the real-time data.

4.2. Privacy Preserving on Static Data

We process the static and long-term data with a personalized k-anonymity publishing
scheme propose in Section 3.3.2, which is compared with the conventional V-MDAV. In
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this part, we use two indexes to evaluate the usability and safety of the two algorithms.
We use information loss (IL) [24] to measure the usability of data. Suppose D is a

dataset, and D′(g1, g2, . . . , gm) is the dataset to be published, {g1, g2, . . . , gm} are groups
that are divided by k-anonymity. The group square errors (GSE) of gi can be calculated as:

GSE(gi) =
ni

∑
i=1

distance
(

gij, gi
)
, (24)

where Di is the centroid of gi, and ni is the number of records in group gi. Moreover, the
sum of square errors (SSE) of D′ is defined as:

SSE =
m

∑
i=1

GSE (25)

The total sum of squares (SST) is defined as:

SST =
p

∑
i=1

distance
(
Di, D

)
, (26)

where D is the average of total data in D.
IL is the ratio of SSE and SST, which is expressed in Equation (27).

IL =
SSE
SST

(27)

We use the distance linked disclosure risk (DLD) [38] of the anonymized dataset to
measure the disclosure risk of k-anonymity. DLD is calculated as:

DLD =
linked− record− num
total − record− num

, (28)

where linked− record− num is the number of linked records, and total − record− num is
the number of total records of the anonymized data. A smaller DLD means the anonymized
table takes less risk of information leakage.

Table 4 presents the results of calculated weights of QIs based on the personalized k-
anonymity. For different values of k, assessments of V-MDAV and personalized k-anonymity
are shown in Figure 4, and Table 5 is the group information of the two algorithms.

Table 4. Weight of QIs.

Attribute Weight

gender 0.34497

age 0.02572

height 0.62931

From Figure 4, we can conclude that when the value of k is small, the information
loss of personalized k-anonymity is smaller. When k value is large, the information loss of
V-MDAV is smaller. Therefore, personalized k-anonymity has better usability in the case
of less k value and more groups. Overall, the IL values of the two algorithms are almost
equal for different values of k. However, our algorithm improves up to 6.25% in terms of
security index compared with traditional k-anonymity. Moreover, Table 5 shows that the
group size variance of personalized k-anonymity is smaller than V-MDAV, and there are
more anonymous groups in the results of our algorithm, which means the personalized
k-anonymity divides groups more evenly, preventing too large or too small groups, which
can improve the usability for published data.
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Table 5. Group information of V-MDAV and personalized k-anonymity.

k Algorithm Group Number Maximum Group Size Group Size Variance

k = 10
V-MDAV 36 22 9.099

personalized k-anonymity 37 18 4.938

k = 20
V-MDAV 19 32 10.825

personalized k-anonymity 19 31 9.407

4.3. Privacy Preserving on Real-Time Data

In the experiment for privacy preserving on real-time data, we implement the tempo-
rary differential privacy and the traditional differential privacy mechanisms, and compare
their performances through the complexity of time series.

We suppose the query f is the function to calculate the maximum value of every
attribute in the dataset, and returns the data in the form of {x1, x2, . . . , xd}. In the following
experiments, we set ε = 0.5 and test 100 time points.

The approximate entropy (ApEn) [39] indicates the complexity of a time series. A
bigger ApEn means that the time series contains more information. ApEn of a time series
u = [u(1), u(2), . . . , u(N)] is computed in the light of the following steps [39]:

Step 1. Decide the parameters m and r. m is an integer of the length of array in Step 2,
which is at least 2. r is a real number representing the measure of similarity of time series.
In common cases, we set

r = 0.2 ∗ std, (29)

where std is the standard deviation of u.
Step 2. Reconstruct m-dimension vectors of continuous time: X(1), X(2), . . . , X(N−m+ 1),

where
X(i) = [u(i), u(i + 1), . . . , u(i + m− 1)]. (30)

Step 3. For 1 ≤ i ≤ N − m + 1, compute the proportion Cm
i (r) of similar vectors

to X(i).

Cm
i (r) =

numbers o f X(j) that d[X(i), X(j)] ≤ r
N −m + 1

, (31)

where d[X, X∗] = max
a
|u(a)− u∗(a)|, and 1 ≤ j ≤ N −m + 1.
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Step 4. Compute the entropy Φm(r) = 1
N−m+1 ∑N−m+1

i=1 log
(
Cm

i (r)
)
. Repeat the above

steps to compute Φm+1(r), and the ApEn of time series u is

ApEn = Φm(r)−Φm+1(r) (32)

Figure 5 shows the ApEns of the publishing results of differential privacy and temporal
differential privacy over time. In Figure 5, we find that the temporal differential privacy
reduces about 12% amount of information based on the traditional differential privacy.
Moreover, the complexity of the temporal differential privacy result is both lower than the
original data and the differential privacy result at some time, which means the reduced
information must contain the information from the original data. The detailed results of
temporal differential privacy for different ε and queries are presented in Table 6.
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privacy reduces about 12% amount of information based on the traditional differential 
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Table 6. Results of temporal differential privacy for different ε and queries.

ε Query Number of Published
Records

Average ApEn of Temporal
Differential Privacy

Average ApEn of
Differential Privacy

ε = 0.2
maximum 13 0.3514 1.6063

average 22 0.5035 1.6980

ε = 0.5
maximum 18 0.4893 1.5504

average 52 1.1296 1.6780

5. Conclusions and Future Work

In this paper, we propose a practical privacy-preserving mechanism to ensure data
security in different stages of a wearable IoT framework, in which the application of smart
wearable devices is taken as an example. First, we employ the light-weighted PRESENT
algorithm to encrypt information in IoT devices, and utilize Paillier homomorphic encryp-
tion to manage data on the cloud platform. In the publishing data stage, we optimize the
traditional k-anonymity algorithm for static data and the differential privacy algorithm for
the real-time data, and then make the rational demonstration for the combination of the
two optimized algorithms. Specifically, we propose the personalized k-anonymity algo-
rithm, in which we assign weights to different attributes, based on the entropy, and discuss
the different occasions for the numeric data and category data. The experiment results
show that personalized k-anonymity is equivalent to traditional k-anonymity in usability,
but its safety index is about 0–6.25% higher than traditional algorithms. Moreover, its
grouping results are more concentrated. Furthermore, we propose the temporal differential
privacy mechanism to ensure the privacy security in temporal dataset, and put forward
an implementing method based on the Laplace mechanism. The experiment results show
that the temporal differential privacy decreases the disclosure in time variation duration.
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Taken together, our results provide evidences toward the feasibility and effectiveness of
our mechanism in protecting privacy for IoT-based users.

In the future work, we will improve the proposed mechanism from the following aspects:

(1) There are some researches of attacks on the PRESENT algorithm, such as [40]. We will
improve the algorithm in future work to enhance security.

(2) Some existing smart bracelet systems have used learning algorithms for classifying
and predicting tasks, for example, the health status of users could be evaluated
according to the data collected by the smart bracelets. In the training process, users’
privacy will also be exposed. We intend to adopt the federal learning method in the
future work.

(3) We will improve our mechanism to adapt to other kinds of IoT devices, and evaluate
its effectiveness in the current network and device environment.
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