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Abstract: Brillouin frequency shift (BFS) of distributed optical fiber sensor is extracted from the
Brillouin gain spectrum (BGS), which is often characterized by Lorenz type. However, in the case
of complex stress and optical fiber self damage, the BGS will deviate from Lorenz type and be
asymmetric, which leads to the extraction error of BFS. In order to enhance the extraction accuracy of
BFS, the Lorenz local single peak fitting algorithm was developed to fit the Brillouin gain spectrum
curve, which can make the BSG symmetrical with respect to the Brillouin center frequency shift.
One temperature test of a fiber-reinforced polymer (FRP) packaged sensor whose BSG curve is
asymmetric was conducted to verify the idea. The results show that the local region curve of
BSG processed by the developed algorithm has good symmetry, and the temperature measurement
accuracy obtained by the developed algorithm is higher than that directly measured by demodulation
equipment. Comparison with the reference temperature, the relative measurement error measured
by the developed algorithm and BOTDA are within 4% and 8%, respectively.

Keywords: optical fiber sensor; Brillouin gain spectrum; Brillouin frequency shift; Lorenz local single
peak fitting algorithm; signal symmetry

1. Introduction

Distributed optical fiber sensing technology based on Brillouin scattering technique
has realized fully distributed strain and temperature measurement along one single-mode
opticalfiber and been widely used for the structural monitoring of railways, pipelines,
and bridges [1–8]. Strain and temperature information loaded on the optical fiber sensor
are linear with the Brillouin frequency shift (BFS). The Brillouin frequency shift of optical
fiber (OF) can be obtained theoretically by calculation on a range of optical fiber physical
parameters, but the physical parameters dispersion and the damage of optical fiber itself
often lead to large calculation errors. Therefore, the experimental measurement method
was conducted to obtain the BFS directly. The Brillouin scattering signal intensity is very
weak, which is smaller by about two orders of magnitude than the Rayleigh scattering
signals intensity, so that it is very difficult to measure it. The research and development of
high-quality Brillouin sensing demodulation equipment is an important research focus,
and the BFS is usually obtained from the coherent detection method or direct detection
method. The traditional direct detection method is to separate the Brillouin scattering light
from the Rayleigh scattering light using the F-P interferometer. The BFS measured by this
method is not accurate enough; the interferometer is unstable and the insertion loss is
large. A coherent self-heterodyne detection system was proposed, which enables one-end
measurement of the Brillouin frequency shift distribution in optical fibers with a single-
way dynamic range (SWDR) of 16 dB and a frequency resolution of 5 MHz for a spatial
resolution of 100 m [9]. Based on this method, a commercial BODTR (Brillouin Optical
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Time Domain Reflectometry) system, named AQ8603, was produced by Japan NTT with
the characteristics of the longest measuring distance of 80 km, a strain accuracy of ±30µε
and the smallest spatial resolution of 1000 mm. Strain and temperature are correlated
with Brillouin frequency shift simultaneously, which limits its engineering applications. In
order to decouple strain and temperature, the methods of the Landau–Placzek ratio and
cascaded Mach–Zehnder interferometric filters were proposed and the accuracy of 4 ◦C and
290µε were realized [10]. In order to obtain higher measuring accuracy, Brillouin optical
time domain analysis (BOTDA) was proposed, which needs to form a sensing loop [11,12].
Now, the commercial BOTDA system, named DiTeSt produced by Omnisens, reached the
measuring distance of 30 km, the measuring accuracy of ±20µε and the spatial resolution of
500 mm. The Neubrex Company in Japan produced PPP-BOTDA (pulse-pre-pump optical
time domain analysis); the measuring accuracy and spatial resolution of the instrument
reached 10µε and 100 mm, respectively, which has been used for [13–15].

With the improvement of the high-sensitivity and high-bandwidth photoelectric
detectors, the system stability and the measuring accuracy of the BOTDA and BOTDR
systemshave also been greatly improved, which satisfy the test requirements for most
engineering structures. In practical applications, the Brillouin gain spectrum of the Brillouin
optical sensors often become complex Lorenzand asymmetry due to the complex stress
state or large optical loss, which lead to the failure or large error for strain or temperature
measurement. In order to solve this problem, some fitting algorithm to calculate BFS should
be chosen, but the BFS fitting algorithm in the commercial BOTDA or BOTDR equipment
is immobilization. One method of area-dividing and the least square nonlinear analysis to
fit the Brillouin spectrum data was proposed, and then enhance the strain measurement
accuracy [16]. A peak location method was proposed to extract the Brillouin frequency
shift of the Brillouin gain spectrum, which can reduce processing complexity by omitting
Lorenz fitting [17]. Furthermore, an artificial neural network (ANN) was used to obtain
temperature information extracted directly from the local Brillouin gain spectra and not
from the Brillouin frequency shift, which shows that ANN has higher accuracy and larger
tolerance to measurement error [18].

In this paper, in order to enhance the measuringaccuracy of distributed optical fiber
sensors, we present the Lorenz local single peak fitting algorithm for Brillouin gain spec-
trum to extract Brillouin frequency shift, and one temperature test for one optical fiber
sensor packaged by fiber-reinforced polymer (FRP) was conducted to verify the idea, the
Brillouin gain spectrum of which is complex and deviates from Lorenz shape.

2. The Introduction of the Lorenz Local Single Peak Fitting Algorithm

The spectrum of Brillouin scattering light is not a single spectrum line, which is spread
over a range of frequency shifts centered about vB. In fact, the decay process of light is
assumed to be exponential in time, and the corresponding spectrum is a Lorenzian shape
in the frequency domain, expressed as follows:

gB(v) =
g0

1 + 4[ v−vB
∆vB

]
(1)

where vB is the central frequency of Brillouin gain spectrum; g0 is the peak gain; v the
central frequency shift; ∆vB is the linewidth [19,20].

Figure 1 shows the shapeof Brillouin gain spectrum of common coning optical fiber
under some uniform stress, and the BFS is about 10.855 GHz fitted by the Lorenz algorithm.
Figure 2 is the Brillouin gain spectrum of FRP packaged Brillouin OF sensor; it can be seen
that the shape of Brillouin gain spectrum does not match Lorenzian shape, the reason being
that the optical fiber is subjected to uneven stress in the process of sensor packaging. It
can also be found that the Lorenz–Brillouin gain spectrum is symmetrical in Figure 1 and
asymmetric in Figure 2. If the Brillouin gain shape of the FRP packaged sensor is directly
fitted by Lorenz algorithm, the BFS is about 10.94 GHz, which greatly deviates from the
actual BFS of 10.86 GHz and then causes large measurement error. Here, the complex
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Brillouin gain spectrum of the FRP packaged sensor is caused by the complex local stress
during the fabrication process. In fact, the center wavelength of FBG is close to the work
wavelength of the BOTDA system (1550 nm), the Brillouin gain spectrum will deviate from
the Lorenz shape seriously [21].
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Figure 2. Brillouin gain spectrum of FRP packaged optical fiber sensor under complex stress.

In order to void the failure of the Lorenz fitting algorithm for the complex Brillouin
gain spectrum with local multi-peak or local mutation depicted in Figure 2, the complex
Brillouin gain spectrum is assumed to be locally Lorenz-type at some linewidth which will
be used to calculate or fit the BFS, and this method is named the Lorenz local single peak
fitting method. The fitting procedure of the Lorenz local single peak fitting algorithm is as
follows: firstly, an appropriate linewidth is chosen, and the shape inside the linewidth is
assumed Lorenz shape, which can ensure the symmetry of the Lorenz curve in the selected
area; secondly, some abnormal data which deviates from the Lorenz curve is deleted
directly; finally, the chosen data is fit by the Lorenz algorithm, and the corresponding BFS
is obtained.

In Figure 2, the Brillouin gain spectrum is a far deviation from the Lorenz shape, so
the result of the Lorenz fitting is wrong, while the data in the region of 50 MHz linewidth
close to the peak is chosen to fit the Brillouin gain spectrum and the corresponding BFS
is corrected.

3. Investigation of Lorenz Local Single Peak Fitting Algorithm to Enhance Bfs Accuracy

3.1. ValidityTest of Lorenz Local Single Peak Fitting Algorithm Based on FRP Packaged Optical
Fiber Sensor

Figure 3 shows the structure of the FRP packaged optical fiber sensor with a FBG
sensor, where the FBG sensor with the initial center wavelength of 1535.580 nm is used
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as a local high-precision strain or temperature sensor and the OF is used as a distributed
optical fiber sensor. In order to validate the Lorenz local single peak fitting algorithm,
one temperature cycling test was conducted, and the Brillouin gain spectrum of the FRP
packaged optical fiber sensor under temperature loading varying was given. The FBG
sensor measured the temperature with a highprecision of 0.1 ◦C.
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Figure 3. The FRP packaged optical fiber sensor with a FBG sensor.

In the test, the FRP-packaged optical fiber sensor was placedin one temperature box,
and the loading rule applied to the optical fiber sensor is listed in Table 1. Figure 4 depicts
the Brillouin gain spectrum of the packaged sensor under some temperature. It can be seen
that the three-dimensional Brillouin gain spectrum of the optical fiber jumper wireis Lorenz
shaped, while that of the FRP packaged optical fiber sensor (especially the FBG sensor)
is complex and deviatesfrom the Lorenz shape. The reason for the complex Brillouin
gain spectrum is that the optical fiber suffers from complex stress during the fabrication
procedure. Furthermore, the FBG sensing unit can be taken as some damage model of
optical fiber, which also further causes the complex of Brillouin gain spectrum. In this test,
the Brillouin gain spectrum of the FRP packaged optical fiber sensor was measured by the
BOTDA produced by Ominisens Company with the spatial resolution of 500 mm and the
temperature accuracy of ±0.2 ◦C; the diameter and length of the FRP packaged optical
fiber sensor are 5 mm and 2000 mm, respectively, and each temperature step requiresfive
minutes to reserve enough test time for the optical fiber sensor (see Table 1).

Table 1. Temperature loading rule of the temperature test for the FRP packaged sensor.

Loading Rule Temperature (◦C)

Heatingup 23 34 52 58 64
Coolingdown 64 48 37 27 23
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3.2. Test Results and Analysis

The Brillouin gain spectrum of the FRP packaged Brillouin OF sensor with a FBG
sensorwas chosen to validate the Lorenz local single peak fitting algorithm. Figure 5 shows
the Brillouin gain spectrum curve at the FBG point in the FRP packaged optical fiber sensor
before and after fitting with linewidth of 50 MHz. In Figure 5a, it can be seen thatthe
Brillouin gain spectrum curve deviates from the Lorenz shape at some temperature and
the Lorenz curve is asymmetrical. The Brillouin gain spectrum curve has two peaks at
52 ◦C. the BFS fitted by the Lorenz local single peak fitting algorithm is about 10.893 GHz
and the corresponding temperature calculated by the fitted BFS is 52.8 ◦C, while the BFS
measured by BOTDA directly is 10.894 GHz, and the corresponding temperaturecalculated
by the BFS is 53.04 ◦C. The Brillouin gain spectrum curve of the packaged sensor has one
mutation data at 27 ◦C, as shown in Figure 5b. The BFS fitted by the developed algorithm
is 10.863 GHz after deleting the mutation data, and the corresponding temperature is
28 ◦C, while the BFS measured by BOTDA is 10.864 GHz, and the corresponding tempera-
ture is 28.8 ◦C.
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Figure 6a shows the comparison of the reference temperature (T0), the temperature
(T1) fitted by the developed algorithm and the temperature (T2) measured by BOTDA at
each level of temperature. Here, the reference temperature (T0) is measured by FBG sensor,
Abs (T0 − T1) denotes the relative error between the reference temperature (T0) and the
fitting temperature (T1), and Abs (T0 − T2) denotes the relative error between the reference
temperature (T0) and the temperature measured by BOTDA (T2). Figure 6b illustrates
the measuring errors at different temperature. It can be found that the maximum error
of the temperature calculated by the BFS fitted by the developed algorithm is about 4%
and that of the temperature measured by BOTDA is about 8% in comparison with the
reference temperature. The reason for the two biggest errors occurring in step 1 and 8 is
that the Brillouin gain spectrum at 23 ◦C and 37 ◦C are larger deviations from Lorenz shape
compared with those at other temperatures. On the whole, the measuring accuracy by the
Lorenz local single peak fitting algorithm is better than that by the BOTDA equipment.
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4. Conclusions

In this paper, to enhance the Brillouin frequency shift extracting accuracy, a Lorenz
local single peak fitting algorithm was developed for complex Brillouin gain spectrum
which deviates from the Lorenz shape. One temperature measurement test based on a FRP
packaged optical fiber sensor was conducted, and the Brillouin frequency shifts at different
temperature levels were calculated by the developed algorithm and BOTDA system. The
test results show that the Brillouin gain spectrum of the FRP packaged sensor deviates
from Lorenz shape and is asymmetrical, and the Brillouin gain spectrum curve in the
selected region can be modified to be symmetric or Lorenz shape by using the developed
algorithm. Comparing with the reference temperature, the maximum measuring errors of
temperature measured by the developed algorithm and BOTDA system are 4% and 8%,
respectively. In field application, the service environment of the distributed optical fiber
sensor is harsh and changeable, and the sensor itself is damaged or the force is complex.
Its sensing performance will inevitably decline, which is reflected in the deviation of
Brillouin gain spectrum from Lorenz form; the method proposed in this paper is an ideal
fitting algorithm.
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