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Abstract: In this paper, the inverse gamma power series (IGPS) class of distributions asymmetric is
introduced. This family is obtained by compounding inverse gamma and power series distributions.
We present the density, survival and hazard functions, moments and the order statistics of the IGPS.
Estimation is first discussed by means of the quantile method. Then, an EM algorithm is implemented to
compute the maximum likelihood estimates of the parameters. Moreover, a simulation study is carried
out to examine the effectiveness of these estimates. Finally, the performance of the new class is analyzed
by means of two asymmetric real data sets.

Keywords: asymmetric distributions; power series distributions; inverse gamma power series;
EM algorithm

1. Introduction

In the last few decades, several papers have discussed the derivation of new probabilis-
tic families by compounding different distributions with the power series (PS) model. For
example, the exponential geometric (EG, Adamidis and Loukas [1]), exponential Poisson
(EP, Kus [2]) and exponential logarithmic (EL, Tahmasbi and Rezaei [3]) distributions. The
exponential PS is introduced in Chahkandi and Ganjali [4], Morais and Barreto-Souza [5]
presented the Weibull PS (WPS) class of distributions, Mahmoudi and Jafari [6] defined the
generalized exponential PS (GEPS) distributions, Silva et al. [7], the extended Weibull PS
(EWPS) and Bagheri et al. [8], the generalized modified Weibull PS distribution (GMWPS).
More recently, Warahena-Liyanage and Pararai [9] introduce the Lindley PS distributions
(LPS), Alizadeh et al. [10] study the exponentiated power Lindley PS class of distributions,
Elbatal et al. [11] propose and study a new family of exponential Pareto PS and finally the
Generalized Burr XII PS distribution was given by Elbatal et al. [12].

In this work, we propose to study the resulting model obtained by compounding the
inverse gamma (IG) and the PS distribution introduced by Noack [13].

We say that a random variable X follows an IG distribution with shape parameter
α > 0 and scale parameter β > 0 (henceforward, the notation X ∼ IG(α, β) will be used) if
its probability density function (pdf) is given by

f (x; α, β) =
βα

Γ(α)
x−(α+1) e−

(
β
x

)
, x > 0. (1)

and its survival function is

S(x; α, β) = 1− G
(

β

x
; α

)
, x > 0,
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where G(x; a) = Γ(a, x)/Γ(a) represents the survival function for the gamma distribution
with shape parameter a and scale 1 and Γ(a, b) =

∫ ∞
b ua−1e−udu is the upper incomplete

gamma function. Please note that Γ(a) = Γ(a, 0). The rth non-central moment for this
distribution is given by E(Xr) = βr(α− r− 1)!/(α− 1)!, in particular for α > 1 we have
E(X) = β/(α− 1), and so for α > 2, Var(X) = β2/(α− 1)2(α− 2).

The remainder of the work is organized as follows. In Section 2, the Inverse Gamma
PS (IGPS) probabilistic family is introduced and some properties including the density,
survival and hazard functions, moments and statistical ordering are examined. Further-
more, some particular cases of this family are analyzed. Parameter estimation is discussed
in Section 3, where quantile-matching estimation method and Expectation-Maximization
(EM) algorithm are considered. In Section 4, a simulation analysis is carried out to test the
performance of the estimates. Then, this family is applied to two real data sets. Section 5
concludes the paper.

2. The Model

Let M ≥ 1 be the number of concurrent causes producing the event of interest in a
subject. For instance, in a cancer context, M represents the number of carcinogenic cells
that a patient has and, as a result of this number, it might trigger the metastasis process. In
electronic circuits connected in series, M represents the number of components that the
circuit has, so if one of those components fails, the entire circuit will fail. In credit scoring,
M represents the number of different factors for which a customer stops paying their bills
(economic, psychological, family, etc.). Let us also assume that M follows a PS distribution
(Noack [13]) with probability mass function (pmf) given by

P(M = m; θ) =
amθm

A(θ)
, m = 1, 2, . . . (2)

where am > 0, θ > 0 is called the power parameter and the series function
A(θ) = ∑∞

m=1 amθm. We highlight that the pmf in Equation (2) also corresponds to the
generalized Power distribution discussed in Patil [14]. However, many works that have dis-
cussed this distribution referred to this model as PS model (see for instance, Adamidis and
Loukas [1]; Morais and Barreto-Souza [5]). Hereafter, (2) will be denoted as PS(θ, A(θ)). In
Table 1, for four members of the PS family, the values of am, A(θ) and parameter space Θ
are illustrated.

Table 1. Special cases of the PS(θ, A(θ)) distribution. For Binomial distribution q is considered
known.

Distribution Notation am A(θ) Θ

Binomial Bin(q, θ) ( q
m) (1 + θ)q − 1 (0, ∞)

Poisson Po(θ) (m!)−1 eθ − 1 (0, ∞)
Geometric Geo(θ) 1 θ(1− θ)−1 (0, 1)

Logarithmic Lo(θ) (m)−1 − log(1− θ) (0, 1)

Let the random variable Wa denote the time when the ath concurrent causes pro-
duce the event of interest. Wa, a = 1, 2, . . . , M, are assumed conditionally indepen-
dent and identically distributed given M with common distribution IG(α, β). The in-
verse gamma PS (henceforth, IGPS) model is defined as the marginal distribution of
T(1) = min(W1, . . . , WM). The survival function for the IGPS model is given by

S(t; θ, α, β) =
A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)
(3)

and its corresponding density function is provided by
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f (t; θ, α, β) =
θβα

Γ(α)
t−(α+1) e−

(
β
t

) A′
(

θ
(

1− G
(

β
t ; α
)))

A(θ)
. (4)

The hazard function is

h(t; θ, α, β) =
θβα

Γ(α)
t−(α+1) e−

(
β
t

) A′
(

θ
(

1− G
(

β
t ; α
)))

A
(

θ
(

1− G
(

β
t ; α
))) . (5)

Figure 1 shows the density and hazard functions for the inverse gamma Poisson (IGP),
inverse gamma logarithmic (IGL), inverse gamma geometric (IGG) and inverse gamma
binomial (IGB) distributions, respectively.

In the following, we will examine some properties of the probability density function (4).

Proposition 1. The IG distribution for T(1) is a limiting special case of the IGPS model when
θ → 0+.

Proof. We have that the cumulative distribution function (cdf) of the IG distribution for

T(1) is given by F(t) = FT(1)(t) = 1−
(

1− G
(

β
t ; α
))c

, where c = min{m ∈ N : am > 0}.
Therefore,

lim
θ→0+

F(t; θ, α, β) = 1− lim
θ→0+

A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)

using the proof given by Morais and Barreto-Souza [5] such limit is given by

lim
θ→0+

F(t; θ, α, β) = 1−
(

1− G
(

β

t
; α

))c
.

The probability density function of IGPS(θ, α, β) have the following interesting repre-
sentation.

Proposition 2. Let A′(θ) = ∑∞
m=1 mamθm−1. By inserting the latter expression in (4), it is

satisfied that

f (t; θ, α, β) =
∞

∑
m=1

P(M = m) · fT(1) |M(t) (6)

where fT(1) |M is conditional pdf of T(1) given the value of M for the IG distribution. Therefore, this
density function can be expressed as an infinite linear combination of the inverse gamma distribution.

Proof. Let P(M = m) given by (2) and fT(1) |M(t; α, β) given by

fT(1) |M(t; α, β) =
mβα

Γ(α)
t−(α+1) e−

β
t

(
1− G

(
β

t
; α

))m−1
, t > 0.

Then

f (t; θ, α, β) =
∞

∑
m=1

mam

[
θ

(
1− G

(
β

t
; α

))]m−1 θβα t−(α+1) e−
β
t

Γ(α)A(θ)

=
θβα

Γ(α)
t−(α+1) e−

β
t

A′
(

θ
(

1− G
(

β
t ; α
)))

A(θ)
.
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Figure 1. Density and hazard functions for the IGP, IGL, IGG and IGB distributions with different
combinations for parameters.

The following proposition illustrates the moments of the IGPS model.
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Proposition 3. The rth moment of an IGPS(θ, α, β) distribution is given by

E(Tr) =
θ βr Γ(α− r) A′

(
θ
(

1− G
(

β
t ; α
)))

Γ(α) A(θ)
. (7)

Proof. By taking expression (6) and using the Monotone Convergence Theorem, the rth
moment of the random variable T is calculated as follows

E(Tr) =
∫ ∞

0
tr

∞

∑
m=1

P(M = m) · fT(1) |M(t) dt

=
θβr

A(θ)Γ(α)

∞

∑
m=1

mam

[
θ

(
1− G

(
β

t
; α

))]m−1 ∫ ∞

0
u(α−r)−1 e−u du

=
θ βr Γ(α− r) A′

(
θ
(

1− G
(

β
t ; α
)))

Γ(α) A(θ)
.

The pdf of the ith order statistic T(i) is given by

fT(i)
(t) =

n! f (t)
(i− 1)!(n− i)!

1−
A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)

i−1 A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)

n−i

(8)

where f (·) is the pdf given in (4), the cdf of T(i) is given by

FT(i) (t) =
n

∑
i=1

n!
i!(n− i)!

1−
A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)

i−1 A
(

θ
(

1− G
(

β
t ; α
)))

A(θ)

n−i

(9)

and using the result

E(Tr
(i)) = r

n

∑
i=n−k+1

(−1)i−n+k−1
(

i− 1
n− k

)(
n
i

) ∫ ∞

0
tr−1 S(t)i dt

for i = 1, . . . , n presented in Barakat and Abdelkader [15], and considering that S(t) for
our model as (3), we obtain rth moment of the order statistic given by

E(Tr
(i)) = r

n

∑
i=n−k+1

(−1)i−n+k−1

A(θ)i

(
i− 1
n− k

)(
n
i

) ∫ ∞

0
tr−1 A

(
θ

(
1− G

(
β

t
; α

)))i
dt (10)

for i = 1, . . . , n.

3. Estimation

In this section, we discuss two different methods to estimate the parameters of the
IGPS distribution. The first one is based on matching theoretical and sample quantiles for
the IGPS and the second is based on the EM algorithm (see Dempster et al. [16]).
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3.1. Quantile-Matching Estimation Method

A first set of estimates for Ψ = (θ, α, β) is obtained by matching the first, second
and third sample quartiles (denoted as q1, q2 and q3 respectively) with their theoretical
counterpart. In this case, the resulting equations are

A
(

θ
(

1− G
(

β
qj

; α
)))

A(θ)
=

4− j
4

, j = 1, 2, 3.

By solving for β, we have

β̂q

(
α̂q, θ̂q

)
= q1 G−1

1−
A−1

(
3A(θ̂q)

4

)
θ̂q

; α̂q

.

Therefore, the system is reduced to the following equations that can be solved numerically,

G


q1 G−1

1−
A−1

(
3A(θq)

4

)
θq

; αq


q2

; αq

 =
A−1

(
A(θq)

2

)
θq

G


q1 G−1

1−
A−1

(
3A(θq)

4

)
θq

; αq


q3

; αq

 =
A−1

(
A(θq)

4

)
θq

.

3.2. EM-Type Algorithm

For a sample t1, . . . , tn from the IGPS model, the (observed) log-likelihood function
for ψ is given by

`(ψ) = n[log θ + α log β− log Γ(α)− log A(θ)]−
n

∑
i=1

[
(α + 1) log(ti) +

β

ti

+ log A′
(

θ

(
1− G

(
β

ti
; α

)))]
. (11)

Direct maximization of (11) can be hard. For this reason, since the distribution given in
(4) is obtained through a mixing process, we propose an EM-type algorithm to perform the
parameter estimation. In this problem, the vector M = (M1, . . . , Mn) is unobservable and
the vector t = (t1, . . . , tn) represents the observable data. Thus, the vector Dcomp = (t, M)
represents the complete data. Up to a constant, the complete log-likelihood function for ψ
is given by

`c(ψ) = n[α log(β)− log Γ(α)] +
n

∑
i=1

[
Mi

{
log
(

1− G
(

β

ti
; α

))
+ log θ

}
−
{

log
(

1− G
(

β

ti
; α

))
+ log A(θ) + (α + 1) log ti +

β

ti

}]
. (12)
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Let ψ(k) be the estimate of ψ at the kth iteration and denote Q(ψ | ψ(k)) as the condi-
tional expectation of `c(ψ) given the observed data and ψ(k). Therefore,

`c(ψ) = n[α log(β)− log Γ(α)] +
n

∑
i=1

[
M̃(k)

i

{
log
(

1− G
(

β

ti
; α

))
+ log θ

}
−
{

log
(

1− G
(

β

ti
; α

))
+ log A(θ) + (α + 1) log ti +

β

ti

}]
. (13)

where M̃(k)
i = E[Mi | ti; ψ(k)]. Please note that M̃(k)

i can be computed using the Proposition
1 in Gallardo et al. [17] considering δi = 1, for i = 1, . . . , n.

We also note that the maximization in relation to θ can be performed independently
from the values of α and β. However, the maximization in relation to α (β) can be performed
conditioning on the value of β (α), producing a conditioning maximization (CM) step (see
Meng and Rubin [18] for details).

In summary, the kth iteration of the EM algorithm have the following form:

• E-step: For i = 1, . . . , n, define νik = θ(k−1)
(

1− G
(

β(k−1)

ti
; α(k−1)

))
and compute

M̃(k)
i =



1 + qνik
1 + νik

, if Mi ∼ Binomial

1 + νik, if Mi ∼ Poisson
1 + νik
1− νik

, if Mi ∼ Geometric

(1− νik)
2 log2(1− νik)− νik(2νik − 1) log(1− νik)

(1− νik) log(1− νik)[(1− νik) log(1− νik)− νik]
, if Mi ∼ Logarithmic

• M-step I: Update θ(k) as the solution for the non-linear equation

θA′(θ)
A(θ)

=
n

∑
i=1

M(k)
i ,

with ∑n
i=1 M(k) the sum of the vector (M̃(k)

1 , M̃(k)
2 , . . . , M̃(k)

n ).
• CM-step II: Given β(k−1), update α(k) as

α(k) = arg max
α

{
n
[
α log(β(k−1))− log Γ(α)

]
+

n

∑
i=1

[(
M̃(k)

i − 1
)

log

(
1− G

(
β(k−1)

ti
; α

))
− (α + 1) log ti

]}
.

• CM-step III: Given α(k), update β(k) as the solution for the non-linear equation

nα(k)

β(k)
+

n

∑
i=1

[
1
ti
−

β(k)α(k)
t−(α

(k)+1)
i e

−
(

β(k)
t

)(
M̃(k)

i − 1
)

Γ(α(k))
(

1− G
(

β(k)

ti
; α(k)

)) ]
= 0.

• If some convergence condition is satisfied then stop iterating, otherwise move back to
the E-step for another iteration.
The standard errors of the estimates ψ̂ = (θ̂, α̂, β̂) can be estimated using the method
given by Louis [19]. Here, we use the observed information matrix instead of the
Fisher’s information matrix and replace the missing values by the corresponding
pseudo-values calculated in the last iteration of the ECM algorithm.
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3.3. Randomized Quantile Residuals

As a graphical method of model diagnosis, we use QQ-plots of the randomized
quantile residuals (see Dunn and Smyth [20]). The ith randomized quantile residual is
defined as

rq,i = Φ−1
{

F(ti; θ̂, α̂, β̂)
}

where F(·) is the cdf of the model specified by (4) and Φ(·) the cdf of the standard normal
distribution. If the model is correctly specified, rq,i are a random sample from the standard
normal distribution. In particular the expression for the ith randomized quantile residual
of the IGPS distribution is given by

rq,i = Φ−1

1−
A
(

θ̂

(
1− G

(
β̂
ti

; α̂

)))
A(θ̂)

.


The latter expression will be used to sketch the QQ-plots in the applications section.

4. Simulation Study

In the following, we study the behavior of the maximum likelihood estimates (MLE)
in finite samples, to empirically verify that these estimates satisfy desirable properties
(unbiased, asymptotically efficient, normally asymptotic distributed). For this purpose,
the EM algorithm was used to compute the estimates and their corresponding standard
errors by means of the Hessian matrix. This process is replicated 1000 times with a sample
size n = 50, 100, 200 for the parameters θ = 1.5, 3 in the Poisson model and θ = 0.2, 0.85
in Geometric model. The values α = 1.2, 2 and β = 5, 10 are maintained for both models.
Then, for each estimate we calculated its average bias (bias), average standard error (se),
root of the mean squared error (RMSE) as shown in Table 2. We observed that the averages
are close to the true values for the IGP and IGG models. Additionally, as expected, the bias
and RMSEs decrease as the sample size increases.

Table 2. Simulation study for IGP and IGG models.

True Value n = 50 n = 100 n = 200

Model θ α β bias se RMSE bias se RMSE bias se RMSE

IGP 1.5 1.2 5 θ̂ −0.193 1.999 1.562 −0.036 1.537 1.496 −0.004 1.375 1.369
α̂ 0.117 0.538 0.467 0.039 0.398 0.383 0.016 0.341 0.329
β̂ 0.139 1.218 1.182 0.084 0.833 0.806 0.063 0.579 0.562

10 θ̂ −0.182 2.003 1.631 −0.101 1.574 1.511 −0.054 1.417 1.380
α̂ 0.113 0.535 0.474 0.068 0.408 0.381 0.038 0.348 0.324
β̂ 0.255 2.625 2.440 0.070 1.704 1.598 0.059 1.152 1.097

2 5 θ̂ −0.161 2.032 1.532 −0.111 1.609 1.500 −0.004 1.440 1.413
α̂ 0.167 0.840 0.736 0.073 0.635 0.583 0.024 0.545 0.529
β̂ 0.148 1.306 1.162 0.078 0.835 0.772 0.067 0.656 0.624

10 θ̂ −0.123 2.038 1.793 −0.064 1.812 1.692 −0.027 1.522 1.499
α̂ 0.139 0.831 0.749 0.050 0.664 0.632 0.007 0.584 0.553
β̂ 0.204 2.492 2.380 0.142 1.690 1.637 0.126 1.309 1.262

3 1.2 5 θ̂ −0.636 2.930 2.564 −0.346 2.683 2.396 −0.057 2.372 2.201
α̂ 0.349 0.800 0.697 0.219 0.629 0.599 0.117 0.559 0.531
β̂ 0.367 1.496 1.322 0.169 1.058 0.978 0.070 0.833 0.794

10 θ̂ −0.609 2.959 2.728 −0.436 2.494 2.310 −0.104 2.231 2.181
α̂ 0.340 0.885 0.705 0.233 0.631 0.577 0.114 0.511 0.503
β̂ 0.640 2.973 2.578 0.371 2.039 1.869 0.087 1.536 1.496

2 5 θ̂ −0.606 3.045 2.869 −0.192 2.899 2.741 −0.114 2.299 2.224
α̂ 0.504 1.364 1.103 0.300 1.131 0.954 0.178 0.846 0.789
β̂ 0.406 1.640 1.417 0.215 1.194 1.072 0.084 0.874 0.842

10 θ̂ −0.427 3.241 2.957 −0.290 2.732 2.530 −0.051 2.293 2.245
α̂ 0.433 1.345 1.114 0.310 1.025 0.926 0.169 0.873 0.820
β̂ 0.716 2.972 2.796 0.416 2.157 2.067 0.146 1.737 1.709



Symmetry 2021, 13, 1328 9 of 14

Table 2. Cont.

True Value n = 50 n = 100 n = 200

Model θ α β bias se RMSE bias se RMSE bias se RMSE

IGG 0.2 1.2 5 θ̂ 0.076 0.590 0.293 0.037 0.458 0.245 0.029 0.339 0.203
α̂ −0.026 0.404 0.326 −0.021 0.285 0.222 −0.020 0.202 0.164
β̂ 0.491 1.328 1.268 0.233 0.891 0.855 0.132 0.631 0.599

10 θ̂ 0.072 0.594 0.289 0.048 0.453 0.250 0.001 0.351 0.198
α̂ −0.044 0.405 0.309 −0.029 0.285 0.228 0.000 0.202 0.161
β̂ 0.917 2.750 2.540 0.418 1.769 1.654 0.250 1.269 1.192

2 5 θ̂ 0.081 0.621 0.303 0.053 0.483 0.255 0.037 0.362 0.214
α̂ −0.038 0.659 0.535 −0.032 0.459 0.357 −0.021 0.324 0.258
β̂ 0.387 1.374 1.179 0.181 0.818 0.787 0.103 0.577 0.548

10 θ̂ 0.073 0.621 0.301 0.051 0.480 0.262 0.027 0.367 0.209
α̂ −0.022 0.652 0.515 −0.018 0.460 0.380 −0.014 0.325 0.254
β̂ 0.787 2.350 2.279 0.477 1.644 1.615 0.233 1.161 1.146

0.85 1.2 5 θ̂ −0.145 0.351 0.290 −0.065 0.239 0.194 −0.026 0.145 0.126
α̂ 0.345 0.968 0.840 0.163 0.615 0.571 0.066 0.438 0.412
β̂ 0.265 1.374 1.170 0.107 0.789 0.722 0.059 0.499 0.492

10 θ̂ −0.150 0.336 0.299 −0.060 0.204 0.189 −0.032 0.128 0.117
α̂ 0.337 0.971 0.801 0.140 0.651 0.557 0.085 0.420 0.390
β̂ 0.504 2.448 2.234 0.181 1.536 1.412 0.094 1.053 1.041

2 5 θ̂ −0.126 0.303 0.283 −0.079 0.234 0.217 −0.033 0.147 0.132
α̂ 0.418 1.396 1.224 0.266 0.912 0.889 0.118 0.636 0.632
β̂ 0.267 1.324 1.159 0.119 0.866 0.774 0.058 0.533 0.520

10 θ̂ −0.131 0.304 0.278 −0.073 0.238 0.213 −0.031 0.135 0.129
α̂ 0.461 1.301 1.198 0.249 0.950 0.926 0.112 0.637 0.616
β̂ 0.583 2.450 2.286 0.267 1.618 1.564 0.097 1.065 1.042

5. Real Data Illustration

In this section, we apply the IGPS distribution to two real data sets.

5.1. Repair Times Data Set

The first data set appears in Von Alven [21]. It illustrates the active repair times in
hours of an airborne communication transceiver. The observed times are 0.2, 0.3, 0.5, 0.5,
0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5,
2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

We first use the quantile-matching estimation method to find the estimates of the IGP,
IGL and IGG distributions, obtaining θ = 0.01, α = 0.8656 and β = 0.9592 for the IGP
model, θ = 0.01, α = 0.8657 and β = 0.9592 for the IGL model and θ = 0.01, α = 0.8661
and β = 0.9597 for the IGG model respectively. Then, by taking those figures as starting
values, we estimate the parameters via the aforementioned EM algorithm. For model
comparison, we have also fitted the WPS model discussed in Morais and Barreto-Souza [5]
and EG, EP and EL by Adamidis and Loukas [1], Kus [2] and Tahmasbi and Rezaei [3],
respectively. Table 3 exhibits three measures of model selection, the maximum of the
log-likelihood function (`max), Akaike’s information criterion (AIC) (see Akaike [22]) and
Bayesian information criterion (BIC) (see Schwarz [23]), for the repair times data set. For
the first measure of model validation a larger value is preferable whereas for last two
measure of model selection a lower figure is desirable. Table 4 shows the estimates and
standard errors (in brackets) for the three models of the EPS, WPS and IGPS families with
a lower AIC and BIC statistics. In addition, it is useful to express the fit of the model
to the data in terms of distribution functions. In particular, it is suggested to use the
following three empirical distribution function (EDF) goodness-of-fit measures to quantify
the “distance” between the empirical distribution function constructed from the data and
the cumulative distribution function of the fitted models. In this paper, we propose the use
of the Anderson-Darling (AD) test statistics. We also are interested in testing for normality
by means of the Shapiro–Francia (SF) and Shapiro–Wilk tests. For the AD test, smaller
values of the test statistics indicate a better fit of the model to the data. With respect to the
SF and SW tests under the null hypothesis the data are drawn from a normal distribution.
As judged by the figures of p-value of the corresponding test statistics presented in Table 4,
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it can be seen that none of the models are rejected at the 5% significance level, validating
that the models are statistically legitimate candidates to explain this data set. Furthermore,
we have plotted in Figure 2 the histogram and the estimated density functions for this data
set. Finally, the QQ-plot of the randomized quantile residuals is illustrated in Figure 3. A
perfect alignment with the 45◦ line implies the residuals are normally distributed. It is
observable that the residuals for the IGG distribution underestimate the lower part and
overestimate the upper part of the distribution of residuals.

Table 3. Maximum of the log-likelihood function `max, AIC and BIC for EPS, WPS and IGPS models
in the repair times data set.

Model `max AIC BIC

EP −102.8323 209.6645 213.3218
EL −103.6670 211.3341 214.9914
EG −103.2994 210.5988 214.2561

WP −102.4637 210.9274 216.4133
WL −103.7914 213.5828 219.0687
WG −100.8561 207.7121 213.1981

IGP −100.0756 206.1512 211.6371
IGL −100.1348 206.2695 211.7555
IGG −99.8685 205.7370 211.2229

Table 4. Estimates, standard errors (in brackets) and p-values associated with the AD, SF and SW
statistics for IGG, WG and EP models in the repair times data set.

Parameter IGG WG EP

θ̂ 0.6717 (0.3289) 0.9667 (0.0540) —
α̂ 1.3924 (0.3041) 1.4858 (0.2085) 3.4288 (3.0519)
β̂ 0.9425 (0.4034) 18.8997 (16.485) 0.1080 (0.0910)

p-value

AD 0.6088 0.2946 0.1126
SF 0.7329 0.3989 0.0972
SW 0.7336 0.3339 0.0823
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Figure 2. (a) Density function for IGG, WG and EP models and (b) for the right tail in repair times
data set.
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Figure 3. QQ-plot of the randomized quantile residuals of IGG distribution for repair times data set.

5.2. Gauge Lengths Data Set

The second data set was originally reported by Badar and Priest [24] and it also
discussed in Kundu and Raqab [25]. It deals with the strength measured in GPA for
single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were tested
under tension at gauge lengths of 10 mm (n = 63). The data set consists of the following
observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,
2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856,
2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243,
3.264, 3.272, 3.294, 3.332. 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628,
3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

We use again the quantile-matching estimation method to find the estimates of the
IGP, IGL and IGG distributions, obtaining θ = 0.01, α = 20.1179 and β = 58.5640 for
the IGP model, θ = 0.01, α = 20.0862 and β = 58.3896 for the IGL model and θ = 0.01,
α = 20.0958 and β = 58.5036 for the IGG model respectively. Next, we estimate the
parameters by means of the EM algorithm using those numbers as initial values. For the
sake of model comparison, we have also fitted the WPS model, EG, EP and EL, respectively.
Table 5 exhibits three measures of model selection, the maximum of the log-likelihood
function (`max), AIC and BIC criteria, for the gauge lengths data set. Table 6 shows the
estimates and standard errors (in brackets) for the three models of the EPS, WPS and IGPS
families with a lower AIC and BIC statistics. Moreover, we propose again the use of the
Anderson-Darling (AD) test statistics. We also are interested in testing for normality by
means of the Shapiro–Francia (SF) and Shapiro–Wilk tests. For the AD test, smaller values
of the test statistics indicate a better fit of the model to the data. With respect to the SF
and SW tests under the null hypothesis the data are drawn from a normal distribution. As
judged by the figures of p-value of the corresponding test statistics presented in Table 6, it
can be seen that none of the models are rejected at the 5% significance level, validating that
the models are statistically legitimate candidates to explain this data set. Once again, we
have plotted in Figure 4 the histogram and the estimated density functions for this data set.
Finally, the QQ-plot of the randomized quantile residuals is now displayed in Figure 5. It
is again noticeable that the residuals for the IGG distribution underestimate the lower part
and overestimate the upper part of the distribution of residuals.
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Table 5. Maximum of the log-likelihood function `max, AIC and BIC for EPS, WPS and IGPS models
in the gauge lengths data set.

Model `max AIC BIC

LL −96.4058 196.8116 201.0979
LG −59.4627 122.9254 127.2117

WP −59.1711 124.3423 130.7717
WL −61.2969 128.5939 135.0233
WG −57.5006 121.0012 127.4306

IGP −56.2875 118.5752 125.0046
IGL −56.5613 119.1226 125.5520
IGG −56.2871 118.5743 125.0037

Table 6. Estimates, standard errors (in brackets) and p-values associated with the AD, SF and SW
statistics for IGG, WG and EP models in the gauge lengths data set.

Parameter IGG WG LG

θ̂ 0.0102 (0.9237) 0.9717 (0.0429) 0.9997 (0.0003)
α̂ 26.0899 (4.9419) 8.3301 (1.0098) 3.0636 (0.2973)
β̂ 76.6826 (13.8529) 4.6071 (0.6742) —

p-value

AD 0.5279 0.2758 0.0954
SF 0.8328 0.4633 0.1339
SW 0.8874 0.4681 0.1096
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Figure 4. Density function for IGG, WG and LG models in gauge lengths data set.
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Figure 5. QQ-plot of the randomized quantile residuals of IGG distribution for gauge lengths data set.

6. Conclusions

In this paper, the inverse gamma power series (IGPS) family of probabilistic distribu-
tion has been introduced. This family has been obtained by mixing the inverse gamma
and power series distributions. Moreover, four particular members of this family has been
derived and examined. Some of its most relevant properties has been studied including
the probability density function, survival and hazard functions, and the order statistics.
The issue of parameter estimation was first discussed by means of the quantile-matching
estimation method. Then, the estimates obtained by the latter method were used as initial
values in a novel EM algorithm to carry out maximum likelihood estimation. Furthermore,
a simulation study was performed to examine the efficiency of these estimates.
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