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Abstract: In this study, the subject of investigation was the dynamic double pendulum crank mecha-
nism used in a robotic arm. The arm is driven by a DC motor though the crank system and connected
to a fixed side with a mount that includes a single spring and damping. Robotic arms are now
widely used in industry, and the requirements for accuracy are stringent. There are many factors
that can cause the induction of nonlinear or asymmetric behavior and even excite chaotic motion.
In this study, bifurcation diagrams were used to analyze the dynamic response, including stable
symmetric orbits and periodic and chaotic motions of the system under different damping and stiff-
ness parameters. Behavior under different parameters was analyzed and verified by phase portraits,
the maximum Lyapunov exponent, and Poincaré mapping. Firstly, to distinguish instability in the
system, phase portraits and Poincaré maps were used for the identification of individual images,
and the maximum Lyapunov exponents were used for prediction. GoogLeNet and ResNet-50 were
used for image identification, and the results were compared using a convolutional neural network
(CNN). This widens the convolutional layer and expands pooling to reduce network training time
and thickening of the image; this deepens the network and strengthens performance. Secondly, the
maximum Lyapunov exponent was used as the key index for the indication of chaos. Gaussian
process regression (GPR) and the back propagation neural network (BPNN) were used with different
amounts of data to quickly predict the maximum Lyapunov exponent under different parameters.
The main finding of this study was that chaotic behavior occurs in the robotic arm system and can be
more efficiently identified by ResNet-50 than by GoogLeNet; this was especially true for Poincaré
map diagnosis. The results of GPR and BPNN model training on the three types of data show that
GPR had a smaller error value, and the GPR-21 × 21 model was similar to the BPNN-51 × 51 model
in terms of error and determination coefficient, showing that GPR prediction was better than that of
BPNN. The results of this study allow the formation of a highly accurate prediction and identification
model system for nonlinear and chaotic motion in robotic arms.

Keywords: robotic arm; symmetric orbits; chaotic motion; image identification; Gaussian processes
regression; back propagation neural network

1. Introduction

The rise in factory automation has resulted in large numbers of mechanical processes
being carried out by automatic robotic arms instead of manpower. This increases the
production rate and reduces cost, but there are still many shortcomings in robotic arm
function and execution. Under specific operational conditions, a robotic arm system can
suffer from irregular vibration, which can lead to chattering and uneven product quality.
The damping coefficient, rigidity, speed of arm movement and angle, the mass of internal
parts, and even arm length may all be factors that can induce nonlinear vibration. To solve
this problem and improve the stability of the robotic arm system, Sigeru Futami et al. [1]
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installed accelerometers on three axes of a robotic arm and fed the signals to correspond-
ing actuators through a phase compensation circuit. This eliminated the resonance and
stabilized the arm. Jam et al. [2] proposed a shock absorbing system composed of a spring,
a mass, and viscous damping, which effectively suppressed vibration. To gain a clear
understanding of robotic arm instability, it is necessary to take nonlinear dynamic systems
into consideration. Consequently, many recent in-depth studies of the problem have in-
volved chaos theory analyses. Ambarish Goswami et al. [3] carried out nonlinear analysis
of the dynamics of a biped robot, using ground slope, mass, and foot length as parameters.
They showed that a series of cycle doubling behavior was involved in a simple robot
walking model. Shrinivas Lankalapalli et al. [4,5] used PD controllers to regulate a dual
rotary joint mechanism and analyzed the chaotic phenomena. The dynamic behavior after
feedback was observed, and the results were verified by maximum Lyapunov exponents
showing that chaotic behavior arose from extremely low proportional and differential
gain. Sado and Gajos [6] studied a three-degrees-of-freedom suspension double pendulum
mechanism, simulating the excited vibration generated by the flexible element between
the fixed ends. The damping coefficient was used as the bifurcation parameter to analyze
the chaos. In recent years, robot manipulators are often tasked with working in environ-
ments with vibrations and are subject to load uncertainty. Providing an accurate tracking
control design with implementable torque input for these robots has become important.
Tolgay et al. [7] presented a robust and adaptive control scheme based on a sliding mode
control accompanied by proportional derivative control terms for the trajectory tracking
of nonlinear robotic manipulators in the presence of system uncertainties and external
disturbances. The Lyapunov theory was used to prove stability of the proposed method,
and a four link SCARA robot was used to demonstrate efficacy of the proposed method
via simulation. Razzaghi et al. [8] introduced a unique hopping robot based on the inertial
actuation concept, which could navigate in three-dimensional environments. They also
applied sliding mode control based on the Lyapunov approach, and a state-dependent
Riccati equation-based optimal controller was also designed. Mustafa et al. [9] proposed
joint space tracking control design in the presence of uncertain nonlinear torque caused
by external vibration and payload variation. A Lyapunov-based method was utilized
to guarantee the stability and control. Dachang et al. [10] developed an adaptive back-
stepping sliding mode control to solve precise trajectory tracking in the presence of external
disturbances in a complex environment. The dynamic response characteristics of a two-link
robotic manipulator was analyzed using a back-stepping algorithm based on the Lyapunov
theory to stabilize the sliding mode controller. All these studies showed that damping
parameters have a considerable influence on the system, and may even produce nonlinear
vibrations. However, few studies have been made on the stiffness parameters, which
have a very important effect on the stability of the robotic arm. Therefore, the bifurcation
dynamic characteristics of the vibration behavior caused by stiffness have been analyzed
in this study.

The development of machine learning can be shallow or deep. The shallow part
has three categories: supervised, unsupervised, and reinforcement learning [11]. The
approach used in this study was supervised learning, which can be regressive or clas-
sificatory. Regression is related to continuous data training and numerical prediction
results. Classification is used with discrete data to predict results from training and la-
beling. Shallow machine learning is widely used in prediction and diagnosis, and the
algorithms have become very diverse. Therefore, many studies and much effort has been
expended on the derivation of algorithms for different applications and on the reduction
of time cost. Praveenkumar et al. [12] designed an accelerometer based on the concept
of machine learning for the analysis of automobile gearboxes and used it to diagnose
the various vibration signals from faulty gears. Mohandes et al. [13] made actual data
prediction in the application of wind speed; they compared the support vector machine
(SVM) with multi-layer perceptron (MLP) and showed that, in terms of root mean square
error, SVM was superior to MLP. In material technology, wear resistance has become very
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important. Osman Altay et al. [14] predicted the wear of different ferroalloy coatings to
save production cost and man-hours using linear regression (LR), support vector machine,
and Gaussian process regression (GPR). The prediction results show that the success rate
of SVM and GPR were similar, and LR showed the lowest power consumption. Guofeng
Wang et al. [15] used Gaussian mixture regression (GMR) to predict continuous tool wear
and combined it with multiple linear regression (MLR), radial basis function kernel (RBF),
and a back propagation algorithm (BP). The results proved the relative superiority of
GMR [16].

In many deep learning applications, the training model often suffers from an insuf-
ficiency of training data, and this has led to the development of transfer learning. This
method uses the trained model to migrate to new models and accelerate their establish-
ment. For example, in image recognition there is a certain correlation in the image training
process, so a model that has been trained on a large number of images can be used to make
up for a situation where there are too few images of the target. The existing models can be
effectively used to deal with different scenes. In addition, transfer learning can avoid the
need to start the training model from scratch. Some recent studies [17–19] based on transfer
learning have used pre-trained CNN models, ResNet-50, and DenseNet-161 to classify
pathological images. An accuracy of 98.87% was obtained by ResNet-50 using color images,
and an accuracy of 97.89% by DenseNet-161 on gray images. Mohamed Marei et al. [20]
carried out effective prediction and health management on CNC machining processes,
used transfer learning to judge the wear of cutting tools comparing six classic CNN models.
The results were similar to those produced by ResNet-18. The accuracy rate was as high as
84%, showing migration learning to be effective in this application.

Investigation of the efficacy of CNN and the prediction and identification of nonlin-
ear motion in robotic arm systems in the past are relatively rare [21–23]. In this study,
GoogLeNet and ResNet-50 were used for image identification in robotic arm system behav-
ior and also to predict nonlinear motion and chaos. The maximum Lyapunov exponent
was used for verification of chaos and for prediction under different system parameters
using GPR and BPNN. The results may prove useful as a guideline for nonlinear behavior
control and as a reference for enterprises in the prediction and prevention of nonlinear
motion in robotic arms.

2. Theoretical Analysis
The Principles of Robotic Arm Operation

A schematic of the robotic arm system used in this study is shown in Figure 1. It
is driven by a DC motor, and the vertical displacement of the motor is controlled by the
bottom crank mechanism connecting by a spring. The motor is also connected to the upper
fixed side by a spring and a damper for stability control [24]. The governing equations of
this mechanical robotic arm are shown in (1)–(4).
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Figure 1. Schematic diagram of the robotic arm system.
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A coupled air bearing system with five degrees of freedom in five directions, x, y, z, θx,
and θy,, was designed. Comparisons of the performance of single thrust and radial bearings
were also conducted. The purpose was to find the optimal design criteria for a coupled air
bearing system and to get a full picture of their different motion behaviors. Based on the
narrow groove theory, the non-dimensional Reynolds equations of this coupled air bearing
system can be derived, which include lubrication equations of thrust and radial bearings,
as shown in Equations (1) and (2):

(M + M1 + M2)
..
x +c

.
x + kx− l1(M1 + M2)

..
φ1sinφ1 − l1(M1 + M2)

.
φ

2
1cosφ1 − l2M2

..
φ2sinφ2 − l2M2

.
φ

2
2cosφ2

= kRRsinθ
(1)

(M1 + M2)l2
1

..
φ1 + (M1 + M2)gl1sinφ1

+M2l1l2
..
φ2cos(φ1 − φ2)−M2l1l2

.
φ

2
2sin(φ2 − φ1) + c1

.
φ1l2

1

−c2

( .
φ2 −

.
φ1

)
l1l2 = (M1 + M2)l1

..
xsinφ1

(2)

M2l2
2

..
φ2 + M2gl2sinφ2 + M2l1l2

..
φ1cos(φ2 − φ1)

+M2l1l2
.
φ

2
1sin(φ2 − φ1) + c2

( .
φ2 −

.
φ1

)
l1l2 = M2l2

..
xsinφ2

(3)

I
..
θ = Γ

( .
θ
)
+ kRR(x− Rsinθ)cosθ (4)

After dimensionless analysis, as shown in Table 1, Equations (1)–(4) are transformed into
(5)–(8): {

(M + M1 + M2)
d2x
(dt)2 + c dx

dt + kx− l1(M1 + M2)
d2φ1

(dt)2 sinφ1
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(
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(
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(
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(
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{
I

d2θ

(dt)2 = Γ̂
(

dθ
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)
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}
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0

(8)

Table 1. Dimensionless parameter conversion formulas.

T = ω0t x0 = x
l1 Γ̂
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θ
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In this study, eight output data of the motion system were taken: the longitudinal
displacement of the motor (X1 = x0), velocity (X2 =

.
x0), rotation angle of the M1 arm

(X3 = φ1), angular velocity (X4 =
.
φ1), rotation angle of the M2 arm (X5 = φ2), angular

velocity (X6 =
.
φ2), crank rotation angle (X7 = θ), and angular velocity (X8 =

.
θ). The

equations of motion can be transferred to (9)–(16)

X′1 = X2 (9)

X′2 = −U0X2 − X1 + γ1X′4sinX3 + γ1X2
4cosX3 + Lγ2X′6sinX5

+Lγ2X2
6cosX5 + N1sinX7

(10)

X′3 = X4 (11)

X′4 = −W2
1 sinX3 + Lγ3X′6cos(X5 − X3) + Lγ3X2

6sin(X5 − X3)
−U1X4 + U2(X6 − X4) + X′2sinX3

(12)

X′5 = X6 (13)

X′6 = −W2
2 sinX5 − 1

L X′4cos(X5 − X3)− 1
L X2

4sin(X5 − X3)
−U3(X6 − X4) +

1
L X′2sinX5

(14)

X′7 = X8 (15)

X′8 = A− BX8 + (N2X1 − N3sinX7)cosX7 (16)

Taking the damping coefficient, U0, and the stiffness, N2, as inputs, the other parameter
values were set as follows: γ1 = 0.3; γ2 = 0.17; γ3 = 0.5; U1 = 0.01; U2 = 0.01; U3 = 0.01;
N1 = 0.05; N3 = 0.3; W1 = 0.9; W2 = 0.4; A = 1.22; B = 1.2.

The initial conditions were set as follows:

[X1 X2 X3 X4 X5 X6 X7 X8] =

[
0 0 0 0

5π

180
0 0 0

]
(17)

3. Research Method
3.1. Research Process

A flow chart of the research process is shown in Figure 2. First, the equation of motion
was established. In this study, MATLAB-SIMULINK was used to build a model of the
dimensionless Equations (9)–(16) of the robotic arm system. The damping and stiffness
coefficients were used as the bifurcation parameters to obtain the longitudinal motor
displacement data, the aim being to use phase portraits and Poincaré maps to verify the
behavior of the robotic arm system and bifurcation diagrams for the changes of damping
and stiffness coefficients. The occurrence of chaotic motion was also demonstrated by
the maximum Lyapunov exponent. Phase portraits and Poincaré maps were used for
parameter prediction and to carry out machine learning by image recognition as well as
for system identification of stable or unstable behavior. The recognition effect was then
discussed based on the image situation produced by the different motions.
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3.2. Machine Learning and Model Performance Index

The first step in the machine learning exercise was recognition training for the phase
portrait and the Poincaré map. The image pixel size of the original dataset was 900 × 700.
To match the input size of GoogLeNet and ResNet-50, the image pixel size was reduced to
224 × 224 using MATLAB. The motion patterns generated in the analysis of the robotic
arm system were quite diverse, and the number of occurrences of various behaviors varied
to a considerable degree. For example, the behaviors observed were: 1T periodic, 5T sub-
harmonic, quasi-periodic, and chaotic motion. More image recognition possibilities were
added by using image rotation, feature reduction and enlargement, and by adding grids.
The result was that the processed raw data had 150 images for each dynamic behavior.
Fifty images were randomly selected as learning data and the original dataset was used as
the verification object to determine effectiveness of the model.

In this study, the CNN pre-training model was used as a transfer learning tool, and
the output size of the fully connected layer was the number of types of dynamic behavior.
In addition, in the gradient descent method, the loss function was reduced, and the update
of the weight and the bias was very important. Therefore, the weight and the bias learning
rate factor in the model were set to 10. Two hundred images of the phase portrait and the
Poincaré map were imported and studied separately. Of these, 70% were used for training
and 30% for verification; they were randomly rotated −90◦ to 90◦ and also randomly
zoomed in and out by 1 to 2 times.

In the field of machine learning, the confusion matrix is the most intuitive indicator
for judging the quality of a classification model and also the simplest two-classification
method; see Figure 3. The final judgment type of the model was positive or negative. TP
(True Positive) represented the number of samples where the true value and the predicted
value were both positive. FN (False Negative) represents the number of samples where
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the true value was positive and the predicted value was negative. FP (False Positive)
represents a sample where the true value and the predicted value were both negative. TN
(True Negative) represents the number of samples whose true value was negative and
predicted value was positive, where FN and FP are the first and second types of error.
Theoretically, the larger the TP and TN, the more accurate the model, and the smaller the
FP and FN, the better the performance [25,26].
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The extended classification model performance indicators for the confusion matrix
are as follows [25]:

• Accuracy: The proportion of the overall number of correct samples in the classification
model to the total number of observed samples.

Acc =
TP + TN

TP + FP + FN + TN
(18)

• Precision: Among all the results predicted by a certain category, the model predicts
the correct proportion.

Pre =
TP

TP + FP
(19)

• Sensitivity, also known as recall: The model predicts the correct proportion of all
samples that are true for a certain category.

Sen =
TP

TP + FN
(20)

• Specificity: Among all real samples outside a certain category, the model predicts the
proportion of non-this category.

Spe =
TN

TN + FP
(21)

• F1-Score: Integrates the results of accuracy and sensitivity to measure the quality of
the output result in the range of 0~1. The closer to 1, the better the model, and the
closer to 0, the worse the model.

F1− Score =
2× TP

2× TP + FP + FN
=

2× (Pre× Sen)
Pre + Sen

(22)

3.3. Using the Maximum Lyapunov Exponent as a Prediction Index

In this study, the two parameters of damping and stiffness coefficients were within a
range of 0.04~0.1 and 0~4. The data volume was 201. The parameter increment of damping
and stiffness were 0.0003 and 0.0200. After the two parameters were combined, the data
volume of the maximum Lyapunov exponent (MLE) was 201 × 201. The 201 × 201 dataset
was used as the prediction target, and then datasets of 21 × 21, 51 × 51, and 101 × 101
were used as the training data volumes. Gaussian process regression (GPR) and backward
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propagation neural network (BPNN) were used for learning. In addition to comparing the
prediction differences between GPR and BPNN, the effect of training with a small amount
of data was also discussed.

4. Results and Discussion
4.1. Analysis of the Response of a Damping Coefficient to the System

When the damping coefficient was set to U0 = 0.04–0.1 and the stiffness parameter
to N2 = 0.2, and the increment of U0 was 0.0003, there was a total yield of 201 dynamic
orbit data, which could be used to calculate the phase portrait, Poincaré map, MLE, and
bifurcation diagrams. The impact of U0 on the dynamic behavior of the robotic system
was analyzed and explored. The results (see Figures 4–7) showed that system behavior
was unstable and motion was asymmetric when U0 = 0.0400–0.0451. At U0 = 0.0841, there
was a gradual approach to symmetrical stability. When U0 = 0.0997, motion was stable,
symmetric, and periodic. From the bifurcation diagram shown in Figure 8, it can be seen
that U0 gradually caused the system to become stable from 0.04–0.1. It was stable from
U0 = 0.0976–0.0994, but unstable when U0 = 0.040–0.044.
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The vibration behavior of the robotic arm system is complex, but it was clear that
the higher the damping coefficient, the more obvious the periodic behavior. To further
clarify the occurrence of non-periodic behavior and chaos, MLE was used to verify the phe-
nomenon. Chaos occurs when MLE was greater than 0, as can be seen in Figures 4c and 5c,
and MLE can be used to compare and demonstrate the occurrence of chaos in the bifurca-
tion diagram with the MLE distribution, as shown in Figure 9. It can be seen that the range
of periodic behavior increased significantly when U0 ≥ 0.08, although chaos still existed
within some stable ranges. The dynamic behavior of the overall damping parameter is
summarized in detail in Table 2.
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Table 2. Dynamic behavior for U0 = 0.04–0.10.

U0 (0.04, 0.0412) (0.0412, 0.0415) (0.0415, 0.0448) (0.0448, 0.0451)

Dynamic behavior chaos T chaos T

U0 (0.0451, 0.0457) (0.0457, 0.0463) (0.0463, 0.0490) (0.0490, 0.0493)

Dynamic behavior chaos T chaos T

U0 (0.0493, 0.0547) (0.0547, 0.0550) (0.0550, 0.0580) (0.0580, 0.0583)

Dynamic behavior chaos T chaos T

U0 (0.0583, 0.0610) (0.0610, 0.0613) (0.0613, 0.1]

Dynamic behavior chaos T Chaos and T appear interactively

4.2. Analysis of the Response of Stiffness to the System

The stiffness coefficient, N2, was set to within a range of 0 to 4.0 with damping
U0 = 0.0418, and the N2 increment used was 0.05, and the yield was a set of 201 data, the
same as U0. From Figures 10–14, it can be seen that unstable and asymmetric motion
occurred when N2 = 0.24, 0.42 and symmetric stability was gradually approached as
N2 = 1.38, 2.44. When N2 = 2.84, behavior was stable, symmetrical, and periodic. From
the bifurcation diagram shown in Figure 15, it can be seen that the unstable state occurred
over the range of N2 = 0 to 1.5. It can be observed from the bifurcation phenomenon that
the nonlinear aperiodic behavior was obvious in the interval of N2 < 2.08, and the higher
the stiffness, the more obvious the periodic behavior. When N2 > 2.08, periodic motion
replaced unstable nonlinear motion shown in Figure 16.
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The chaotic behavior of the system was also verified by MLE, as can be seen in
Figures 10c, 11c, 12c, 13c and 14c, and it was clear that chaos occurred at N2 = 0.24 with
MLE greater than 0. When N2 ≥ 2.08 and MLE were less than or equal to 0, the system
behavior was non-chaotic. This was consistent with the bifurcation diagram and the
detailed dynamic behavior changes with N2, as shown in Table 3.

Table 3. Dynamic behavior of N2 = 0~4.0.

N2 (0.00, 0.20) (0.20, 0.22) (0.22, 0.36) (0.36, 0.38) (0.38, 0.42)

Dynamic behavior chaos T chaos T chaos

N2 (0.42, 0.44) (0.44, 0.66) (0.66, 0.68) (0.68, 0.78) (0.78, 0.80)

Dynamic behavior quasi-period chaos T chaos T

N2 (0.80, 0.90) (0.90, 0.92) (0.92, 1.38) (1.38, 1.40) (1.40, 2.00)

Dynamic behavior chaos T chaos multi-period chaos

N2 (2.00, 2.06) (2.06, 2.08) (2.08, 2.38) (2.38, 2.42) (2.42, 2.44)

Dynamic behavior quasi-period chaos quasi-period multi-period quasi-period

N2 (2.44, 2.70) (2.70, 2.84) (2.84, 4.00)

Dynamic behavior 5T quasi-period T

4.3. Image Recognition Results

The phase portrait and Poincaré map were used to perform image recognition ex-
periments. The following results demonstrate the recognition effects by GoogLeNet and
ResNet-50; the training accuracy and confusion matrix using the same settings and datasets
were also compared.

4.3.1. Image Recognition of Phase Portraits

The training accuracy and loss curves of GoogLeNet and ResNet-50 with 200 phase
portraits as learning samples are shown in Figures 17 and 18. Accuracy increases during
the training process and losses decrease for both GoogLeNet and ResNet-50. However,
it can be clearly seen that GoogLeNet performs better with respect to convergence. In
the final epoch, the verification accuracy of ResNet-50 (100%) was slightly higher than
that of GoogLeNet (98.33%); see Table 4. Figures 19 and 20 show the identification results
and probability of four kinds of dynamic phase portrait from 600 images of the original
dataset. It can be seen that the rate of identification by GoogLeNet was higher than that
of ResNet-50. However, it was necessary to compare the performance of the two models
with a confusion matrix and to evaluate classification model performance. Examination
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of Figure 21 shows that, although the identification accuracy of GoogLeNet was as high
as 99.5% using the original dataset of 600 samples, the identification accuracy of ResNet-
50, where all categories are correctly identified, was 100%. In Table 5, a comparison of
identification of the phase portraits made by the two applications shows that ResNet-50
was better than GoogLeNet for 1T and quasi-period identification, and was also better in
terms of overall performance.
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Table 4. Phase portrait Training Results.

Item Details GoogLeNet ResNet-50

Results Validation accuracy 98.33% 100%

Training Time Elapsed time 40 min 11 s 69 min 41 s

Training Cycle

Epoch 20 of 20

Iteration 400 of 400

Iterations per epoch 20

Maximum iterations 400

Validation Frequency 20 iterations

Other Information
Hardware resource Single CPU

Learning rate 0.0001
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Table 5. Comparison of various performance indicators of phase portrait identification with
GoogLeNet and ResNet-50.

Type Indicator GoogLeNet ResNet-50

1T

Precision 1 1

Sensitivity 0.98 1

Specificity 1.007 1

F1-Score 0.99 1

5T

Precision 1 1

Sensitivity 1 1

Specificity 1 1

F1-Score 1 1

Quasi-periodic

Precision 0.98 1

Sensitivity 1 1

Specificity 0.993 1

F1-Score 0.99 1

Chaotic

Precision 1 1

Sensitivity 1 1

Specificity 1 1

F1-Score 1 1

Accuracy 0.995 1

4.3.2. Image Recognition of Poincaré Map

The training accuracy and loss curves of GoogLeNet and ResNet-50 with 200 Poincaré
map learning samples are shown in Figures 22 and 23. It can be clearly seen that, during
training, convergency was better with GoogLeNet than with esNet-50. Additionally, the
GoogLeNet verification accuracy of 98.33% was higher than that of ResNet-50 at 95%; see
Table 6. The identification results and probability of four kinds of Poincaré map from
600 original dataset images are shown in Figures 24 and 25. It can be seen that the rate
of identification by GoogLeNet was higher than by ResNet-50, and the tendency was the
same as that seen in phase portrait identification. The confusion matrix was also used to
evaluate the performance of the compared models. Figure 26 shows that identification,
also using the original dataset, was 97.2% for GoogLeNet and 98.8% for ResNet-50. Table 7
shows a comparison of GoogLeNet and ResNet-50 performance Poincaré map identification
indicators. It can be seen that only the quasi-period motion identification by GoogLeNet
was better than that of ResNet-50. The conclusion was that, in terms of overall performance,
ResNet-50 was better than GoogLeNet.
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Figure 23. Analysis of the training accuracy and loss status of Poincaré map using ResNet-50.

Table 6. Training Results of Poincaré map.

Item Details GoogLeNet ResNet-50

Results Validation accuracy 98.33% 95.00%

Training Time Elapsed time 18 min 34 s 86 min 19 s

Training Cycle

Epoch 20 of 20

Iteration 400 of 400

Iterations per epoch 20

Maximum iterations 400

Validation Frequency 20 iterations

Other Information
Hardware resource Single CPU

Learning rate 0.0001
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Table 7. Comparison of various performance indicators of Poincaré map identification with
GoogLeNet and ResNet-50.

Type Indicator GoogLeNet ResNet-50

1T

Precision 0.993 1

Sensitivity 0.94 1

Specificity 1.018 1

F1-Score 0.966 1

5T

Precision 0.942 1

Sensitivity 0.98 0.967

Specificity 0.987 1.011

F1-Score 0.961 0.983

Quasi-periodic

Precision 1 0.974

Sensitivity 0.967 0.987

Specificity 1.011 0.996

F1-Score 0.983 0.98

Chaotic

Precision 0.955 0.98

Sensitivity 1 1

Specificity 0.984 0.993

F1-Score 0.977 0.99

Accuracy 0.972 0.988

4.4. Forecast Results of the Maximum Lyapunov Exponent

In this section, the prediction effects of Gaussian process regression and the backward
propagation neural network are discussed as well as the observed prediction with different
amounts of data. Four indicators were used to compare the training error in different
situations and the prediction error using the original dataset; see Figure 27.
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4.4.1. Prediction by Gaussian Process Regression (GPR)

Figures 28–30 show the MLE results predicted by the GPR model with training data
volumes of 21 × 21, 51 × 51, and 101 × 101. If MLE was greater than zero, the system
was chaotic, and ranges from yellow to red are shown on the graph. When the MLE was
less than or equal to zero, behavior was non-chaotic (1T, 5T, and quasi-periodic motion)
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and is shown as light green to dark blue on the graph. A comparison of Figures 30–32
with Figure 29 shows that the results predicted by different amounts of data differ slightly,
but most of the distribution ranges of chaotic and periodic intervals could be predicted.
However, some periodic behavior occurred within the chaotic area, and then accurate
prediction was difficult. There was also a gap between the highest point of the predicted
index and the real situation. These two phenomena may have been caused by overfitting
in the training process.

Comparisons of predictions were made with three different amounts of training
dataset, as shown in Figure 31. Three values of damping coefficient, 0.0400, 0.0601, and
0.0802, were used in stiffness prediction; see the figure. It was found that if the highest
point of the MLE had been predicted, the 51 × 51 and 101 × 101 dataset predictions were
closer to the real value than those of the 21 × 21 dataset. The distribution of chaos and
periodic motion for all three datasets could be predicted as approaching zero with an MLE
less than zero. The predicted results did not affect the interpretation of periodic behavior,
and the three predictions for periodic behavior were all excellent. However, it was clear
that the 21 × 21 training dataset predicted more chaotic behavior than the other two. This
was confirmed by observation that the area of chaos predicted was significantly larger than
in the other two; see the contour maps in Figures 28b, 29b and 30b.
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4.4.2. Prediction by Backward Propagation Neural Network Prediction (BPNN)

Figures 32–34 show the results of BPNN predictions with training data volumes of
21 × 21, 51 × 51, and 101 × 101. Areas that appear from yellow to red on the graphs repre-
sent chaotic motion and those from light green to dark blue represent periodic behavior. A
comparison with real values is shown in Figure 31. While it is obvious that the 51 × 51 and
101 × 101 prediction results differ slightly from one another, they do predict most of the
range of chaos and periodic motion distribution. However, none of the datasets predicted
the existence of the few areas of periodic behavior within the chaotic interval. This may be
the result of overfitting, as seen in the GPR model.

Figure 35 shows a comparison of the changes in the stiffness curve with three different
damping values, 0.0400, 0.0601, and 0.0802. The 21 × 21 dataset comes closest to a predic-
tion of the real maximum value of MLE, followed by 51 × 51. However, when it comes to a
prediction of the distribution of chaos and periodic motion, the 21 × 21 data training set
has a problem. In light of this, only the other two will be given consideration.

Both the 51 × 51 and 101 × 101 datasets could correctly predict values for the MLE.
However, with damping values between 0.0400 and 0.0802, the 101 × 101 training result
was much better at the prediction of chaotic behavior than the 51× 51 dataset and predicted
far more chaotic intervals. A comparison of the contour maps confirmed that the area of
chaotic behavior predicted by 101 × 101 was significantly larger than that of the 51 × 51
dataset; see Figures 33b and 34b.
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4.4.3. Comparison of Gaussian Process Regression and the Backward Propagation
Neural Network

GPR has obvious prediction advantages in respect to the 21 × 21 dataset because
BPNN predicts part of the chaos to be periodic motion; see the red lines in Figure 36.
However, the prediction results for 51 × 51 and 101 × 101 for both GPR and BPNN were
similar, as can be seen in Figures 37 and 38. It was clear that there were training errors in
these two prediction models, and they are listed in Tables 8 and 9. After a comprehensive
analysis of the various indicators and a comparison of training errors, it was found that
both models had their best effect with the 51 × 51 dataset training. However, GPR had
fewer errors than BPNN. Both prediction models reached their lowest prediction error rate
with the 101 × 101 dataset, but the GPR error rate was lower than that of BPNN. It is worth
mentioning that the GPR-21 × 21 model was actually quite compatible with the BPNN-51
× 51 model in terms of error and determination coefficients. However, data analysis and
examination of the graphs showed GPR prediction to be superior to that of BPNN.
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Table 8. A comparison of GPR and BPNN training.

Method Data RMSE R2 MSE MAE

GPR

21 × 21 0.1669 0.34 0.0279 0.0852

51 × 51 0.1454 0.45 0.0211 0.0610

101 × 101 0.1584 0.37 0.0251 0.0655

BPNN

21 × 21 0.1769 0.28 0.0313 0.0846

51 × 51 0.1532 0.41 0.0235 0.0729

101 × 101 0.1587 0.38 0.0252 0.0655

Table 9. Comparison of prediction errors between GPR and BPNN with the original dataset 201 × 201.

Method Data RMSE R2 MSE MAE

GPR

21 × 21 0.1644 0.32 0.0270 0.0714

51 × 51 0.1619 0.34 0.0262 0.0642

101 × 101 0.1603 0.35 0.0257 0.0649

BPNN

21 × 21 0.1978 0.01 0.0391 0.0859

51 × 51 0.1644 0.32 0.0270 0.0684

101 × 101 0.1605 0.35 0.0257 0.0657
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5. Conclusions

In this study, the nonlinear dynamics of a robotic arm system were simulated, and a
variety of dynamic behaviors including periodic symmetry, subharmonic, quasi-periodic,
and chaotic motion were analyzed. After verification, chaotic and non-chaotic behavior
could be distinguished using bifurcation diagrams and MLE. The results showed that the
higher the value of the damping and stiffness coefficients, the better the stability. The best
chance of robot system stability was achieved when the damping coefficient was controlled
between 0.0796 and 0.100 (avoiding the range of 0.0400 to 0.0796) and the stiffness coefficient
was set between 2.08 to 4.00 (avoiding a range of <2.08). Both GoogLeNet and ResNet-50
gave good recognition results, but ResNet-50 gave better graphics recognition performance
than GoogLeNet. This was especially so for the accuracy of recognition of the phase portrait
and Poincaré map. ResNet-50 results for these were 0.5% and 1.6% higher than those of
GoogLeNet. It was also shown that a small amount of training data can be used to obtain
excellent prediction results. The time taken to obtain a 101 × 101 dataset was 3.92 times
that for 21 × 21, so both cost and training time can be greatly reduced. The only really
serious error found in a comparison of GPR and BPNN prediction results was a clear trend
in BPNN-21 × 21 towards the prediction of chaos as periodic motion. It is recommended
that GPR be used for higher reliability when only a small sample of data is available for
training. The results also showed that the smallest training error values were achieved
using the 101 × 101 dataset. GPR had smaller model training errors than BPNN on the
three types of data, and GPR prediction was better than BPNN for the robotic arm system
chosen for this study.

These results can be applied and implemented for the multi-axis robotic arms widely
used in automobile and component manufacture, as well as in many electronics related
industries. Increased precision allows better movement in three-dimensional space as well
as in linear displacement. The identification and prediction of results can be used to inhibit
nonlinear vibration in robotic arms, improve accuracy, and reduce positioning errors as the
arm moves. The results can also be used as guidelines for future research for the saving
of costs and the reduction of production time and manpower spent on quality control in
modern manufacturing.
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Nomenclature

M mass of DC motor
M1 mass of No. 1 robotic arm
M2 mass of No. 2 robotic arm
l1 length of No. 1 robotic arm
l2 length of No. 2 robotic arm
φ1 rotational angle of No. 1 robotic arm
φ2 rotational angle of No. 2 robotic arm
R radius of crank
k stiffness of the connection between the motor and the fixed end
kR stiffness of the connection between the motor and crank mechanism
c damping of the connection between the motor and the fixed end
x vertical displacement of the motor
.
θ rotational Angular Speed of the Crank Mechanism



Symmetry 2021, 13, 1445 26 of 27

T non-dimensional time, T = ω0t
x0 non-dimensional displacement, x0 = x

l1

L non-dimensional length, L = l2
l1

γi non-dimensional mass, i = 1~3
Wi frequency ratio, i = 1~2
Ui non-dimensional damping, i = 1~3
Ni non-dimensional stiffness, i = 1~3
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