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Abstract: Overlap function (which has symmetry and continuity) is widely used in image processing,
data classification, and multi-attribute decision making problems. In recent years, theoretical research
on overlap function has been extended to interval valued overlap function and lattice valued overlap
function, but intuitionistic fuzzy overlap function (IF-overlap function) has not been studied. In
this paper, the concept of IF-overlap function is proposed for the first time, then the generating
method of IF-overlap function is given. The representable IF-overlap function is defined, and the
concrete examples of representable and unrepresentable IF-overlap functions are given. Moreover,
a new class of intuitionistic fuzzy rough set (IF-roght set) model is proposed by using IF-overlap
function and its residual implication, which extends the IF-rough set model based on intuitionistic
fuzzy triangular norm, and the basic properties of the new intuitionistic fuzzy upper and lower
approximate operators are analyzed and studied. At the same time, the established IF-rough set
based on IF-overlap function is applied to MCDM (multi-criteria decision-making) problems, the
intuitionistic fuzzy TOPSIS method is improved. Through the comparative analysis of some cases,
the new method is proved to be flexible and effective.

Keywords: intuitionistic fuzzy sets; intuitionistic fuzzy overlap function; intuitionistic fuzzy triangu-
lar norm; IF-TOPSIS methods; MCDM

1. Introduction

Fuzzy set theory is a very effective mathematical tool to analyze and deal with inac-
curate and incomplete information [1]. It plays an increasingly important role in many
practical engineering fields, including fuzzy preference relationship [2], fuzzy informa-
tion clustering [3], fuzzy granularity calculation [4], attribute decision problem [5], etc.
According to practical problems, different forms of fuzzy sets are proposed, such as interval-
valued fuzzy sets [6], intuitionistic fuzzy sets [7–9], etc. Rough set theory [10] proposed by
Pawlak is also a mathematical tool to deal with fuzzy and uncertain knowledge, and has
been successfully applied to machine learning, decision analysis, process control, pattern
recognition, data mining and other fields. Dubois and Prade combined the two theories
and proposed the concept of fuzzy rough set for the first time [11]. Since then, studies on
fuzzy rough sets have become more abundant and indepth [12–16]. Because fuzzy rough
sets are a special case of intuitionistic fuzzy rough sets (IF-rough sets), this paper focuses
on intuitionistic fuzzy rough sets.

IF set is an expansion and development that has great influence on fuzzy set
theory [7,9,17]. It has been successfully applied to the fields of decision analysis and
pattern recognition [18,19] and intuitionistic fuzzy decision analysis [20,21]. Compared
with the fuzzy set, which only indicates the degree to which an element belongs to a set,
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the IF set describes the membership degree and non-membership degree of an element
to a set, and more accurately expresses the relationship between them, which adds a new
field of vision for the solution of multi-attribute decision making problems. Subsequently,
many concepts of IF have been proposed, such as IF relation [22], IF triangular norm [23],
IF implication operator [24], etc. When dealing with practical problems, IF set and rough
set theory are combined to solve such problems because of the roughness of information.
In 2003, De Cock et al. presented some basic and important properties and conclusions
of IF-rough set [25]. As an important continuous operator, IF triangular norm plays an
important role in IF-rough sets. De Cock et al. defined a pair of upper and lower IF-rough
approximation operators based on IF implication operators and IF triangular norm, studied
the properties of IF-rough operators, and further extended the IF-rough set model [26]. On
the basis of systematic generalization of existing work, Zhang et al. extended one domain
to two domains [27] to study IF-rough sets.

Since triangular norm is widely used in solving practical problems, the study of their
extensive forms in application is also of great importance. The overlap function is the
extension of continuous triangular norm and is widely used in image processing, data
classification and multi-attribute decision making. Overlap functions as unassociative
connectives in fuzzy logic has been studied by many scholars. Overlap function [28] was
proposed by Bustince et al. in 2009. This concept is taken from some practical problems
related to image processing and classification. In image problem processing, Bustince schol-
ars use binary operators called constrained equivalent functions to calculate the threshold
of an image [29]. In the classification problem, Amo scholars use overlaps to discuss the
evaluation of resulting classification when the research objects is unclear classification
system [30]. In recent years, some generalizations of overlap function have been proposed,
such as n-dimensional overlap function and general function [31], interval valued overlap
function [32–34], etc., which have promoted theoretical research and practical applica-
tion of overlap function. However, the existing definitions have limitations in solving
practical problems with intuitionistic fuzzy information. In view of this limitation, this
paper puts forward the definition of IF-overlap function, and studies some of its properties
and representations.

Because the overlap function has a wide range of applications, IF-overlap function and
IF-rough set can be studied together, and a broader IF-rough set model can be proposed to
expand the application range of IF-rough set in practical problems. IF-overlap function,
as a non-associative binary function, can be widely used in decision making problems
based on fuzzy preference relation, which can overcome the defect of associative property
of continuous IF triangular norm in practical problems, and has a better effect in dealing
with uncertain multi-attribute decision making problems. Therefore, on the basis of IF
triangular norm, a broader IF-rough sets is proposed, that is, IF-rough set based on IF-
overlap function.

There are two main reasons for this study: One is the rough set theory is an important
tool to deal with uncertain information, however, the classical rough set is restricted
because of its strict conditions, in order to expand the application scope of rough set theory,
we found that IF the introduction of the theory makes a lot of problems to solve, through
different logical operator combining the IF theory and rough set theory, such as IF-overlap
function, enriched the theory of rough set. Secondly, for the application of MCDM problem,
after studying and comparing many existing methods, we found that the existing methods
still have some limitations, for example, the continuity of triangular norm operator may
be invalid in the complex IF environment. This paper analyzes the limitations of these
methods in theory and application, and puts forward a new method to solve the MCDM
problem. Experiments show that our method is more suitable for practical needs and more
flexible when dealing with problems. In addition, through changing attribute values of α,
this method can get all the results obtained by existing methods.

The rest of the paper is structure as following: we list some preliminary concepts
and results in Section 2. Next we give the definition of the IF-overlap function, given



Symmetry 2021, 13, 1494 3 of 18

the general generation method of the IF-overlap function and some examples to account
for explain, moreover we give the definition of the representable and unrepresentable IF-
overlap function and concrete example in Section 3. In Section 4, we establish the IF-rough
set model based on IF-overlap function, and discuss the basic properties of this model
and give some examples. In Section 5, we put forward the MCMD problem method of
the IF-rough set model based on IF-overlap function, the steps and calculation formula of
this method are listed. Then we propose the concrete example, and comparison analysis
among our method and other methods. Finally, we conclude our work with a summary of
the paper in Section 6, and also outline future research.

2. Preliminary Concepts and Results

In this section we recall several fundamental conceptions relates to overlap function,
intuitionistic fuzzy sets and rough sets.

2.1. Overlap Function

Definition 1 ([28]). A bivariate function O : [0, 1]2 → [0, 1] is called an overlap function, if for
every a, b, c ∈ [0, 1], the following conditions holds:

(O1) O(a, b) = O(b, a);
(O2) O(a, b) = 0⇔ ab = 0;
(O3) O(a, b) = 1⇔ ab = 1;
(O4) O(a, b) ≤ O(a, c) if b ≤ c;
(O5) O is continuous.

Definition 2 ([28]). Let O : [0, 1]2 → [0, 1] be an overlap function, then for every a, b ∈ [0, 1],
the bivariate function RO : [0, 1]2 → [0, 1] defined by,

RO(a, b) = max{c ∈ [0, 1]|O(a, c) ≤ b}

then RO is the residual implication induced from overlap function O.

Definition 3 ([32]). An interval-valued overlap function is a mapping Ô : LI × LI → LI that
respects the following conditions ( where LI = {[x1, x2]|[x1, x2] ⊆ [0, 1], x1 ≤ x2}) :

(Ô1) Ô is commutative;
(Ô2) Ô = [0, 0]⇔ X = [0, 0] ∨Y = [0, 0];
(Ô3) Ô = [1, 1]⇔ X = Y = [1, 1];
(Ô4) Ô(Y, X) ≤ Ô(Z, X) if Y ≤ Z;
(Ô5) Ô is Moore-continuous.

2.2. Fuzzy Sets Theory

Definition 4 ([1]). The fuzzy set(or fuzzy subset) on argument domain X is A mapping from X to
[0, 1] (called membership function) :

µA : X → [0, 1]

for every x ∈ X, µA(x) called the membership of x with respect to A.

Definition 5 ([7]). The IF set on the argument X is A defined as follows:

A = {〈x, µA(x), υA(x)〉|x ∈ X}

where, µA(x) : X → [0, 1] and υA(x) : X → [0, 1] respectively represent the membership and
non-membership of x belong to A, and satisfy 0 ≤ µA(x) + υA(x) ≤ 1.

As the same time, general fuzzy set is denote by : A = {〈x, µA(x), 1− µA(x)〉|x ∈ X},
obviously. At this point, the IF set degenerates into a general fuzzy set.
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Definition 6 ([7]). Let A and B be intuitionistic fuzzy sets, where

A = {〈x, µA(x), υA(x)〉|x ∈ X}, B = {〈x, µB(x), υB(x)〉|x ∈ X},

then the order and operation are defined as follows:
(1) A ⊆ B⇔ µA(x) ≤ µB(x)andυA(x) ≥ υB(x), for each x ∈ X;
(2) A

⋂
B = {〈x, min µA(x), µB(x), max υA(x), υB(x)|x ∈ X};

(3) A
⋃

B = {〈x, max µA(x), µB(x), min υA(x), υB(x)|x ∈ X};
(4) Ac = {〈x, υA(x), µA(x)|x ∈ X〉};
(5) λA = {〈x, 1− (1− µA(x))λ, υA(x)λ〉}.
IF sets assign to each element x of the universe both a degree of membership µA(x) and one of

non-membership υA(x) such that 0 ≤ µA(x) + υA(x) ≤ 1. This hesitation is quantified for each
x in X by the number πA(x) = 1− µA(x)− υA(x).

It is well-known IF sets are equivalent of L-fuzyy sets [8]. Let (L∗,≤L∗) be the complete
bounded lattice defined by:

L∗ = {〈x1, x2〉|x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2)⇔ x1 ≤ y1, x2 ≥ y2.

The units of this lattice are denoted 0L∗ = 〈01〉, 1L∗ = 〈1, 0〉. For each element x ∈ X,
by x1 and x2 we denote its first and second components, respectively. An IF set A in a
universe X is a mapping from X to L∗. For every x ∈ X, the value µA(x) = (A(x))1 is
called the membership degree of x to A; the value υA(x) = (A(x))2 is called the non-
membership degree of x to A; and the value πA(x) = 1− µA(x) − υA(x) is called the
hesitation degree of x to A.

Definition 7 ([22]). An IF relation R on U is an IF set of U ×U, i.e., R is given be

R = {〈x, y〉, µR(x, y), υR(x, y)〉|(x, y) ∈ U ×U},

where µR : U ×U → [0, 1] and υR : U ×U → [0, 1] satisfy 0 ≤ µR(x, y) + υR(x, y) ≤ 1 for all
(x, y) ∈ U ×U.

Let R be an IF relation on U, R is called reflexive if µR(x, y) = 1 and υR(x, y) = 0
for all x ∈ U; R is called symmetric if µR(x, y) = µR(y, x) and υR(x, y) = υR(y, x) for all
(x, y) ∈ U ×U; R is called transive if for all (x, z) ∈ U ×U,

µR(x, z) ≥ ∨y∈U [µR(x, y) ∧ µR(y, z)];

and
υR(x, z) ≤ ∧y∈U [υR(x, y) ∨ υR(y, z)].

Definition 8 ([23]). An IF triangular norm is a mapping T : L∗ × L∗ → L∗ which satisfy the
following conditions:

(1) T(1L∗ , x) = x, for any x ∈ L∗;
(2) T(x, y) = T(y, x), for any x, y ∈ L∗;
(3) If x ≤L∗ u, y ≤L∗ v, then T(x, y) ≤L∗ T(u, v), for any x, y, u, v ∈ L∗;
(4) T(x, T(y, z)) = T(T(x, y), z)), for any x, y, z ∈ L∗.

2.3. Fuzzy Rough Sets Theory

Definition 9 ([10]). Let (U, R) be a Pawlak space, that R is an equivalence relation on the
argument domain U, if A is a fuzzy set, then a pair of lower and upper approximations on (U, R) is
defined as follows:

AR(x) = min{A(y)|y ∈ [x]R, x ∈ U};

AR(x) = max{A(y)|y ∈ [x]R, x ∈ U}.
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where, [x]R represents the equivalence class about x, and called AR and AR are the lower and upper
approximations of the fuzzy set A with respect to (U, R).

If AR = AR, then A is a defined fuzzy set. On the contrary, A is called fuzzy rough set.

Definition 10 ([24]). Let U be a nonempty and finite universe of discourse and R ∈ IF(U ×U),
the pair (U, R) is called an IF approximation space. For any A ∈ IF(U) , the lower and upper
approximation of A w.r.t (U, R), denoted by RA and RA, are two intuitionistic fuzzy sets and
defined as follows:

RA = {〈x, µRA(x), υRA(x)〉|x ∈ U};

RA = {〈x, µRA
(x), υRA

(x)〉|x ∈ U}.

where
µRA(x) = ∧y∈U [υR(x, y) ∨ µA(y)];

υRA(x) = ∨y∈U [µR(x, y) ∧ υA(y)].

µRA
(x) = ∨y∈U [µR(x, y) ∧ µA(y)];

υRA
(x) = ∧y∈U [υR(x, y) ∨ υA(y)].

The pair (RA, RA) is called the IF-rough set of A w.r.t. (U, R), RA and RA are referred
to as a lower and upper IF-rough approximation operators, respectively.

Definition 11 ([26]). Let T be an IF triangular norm, I be an IF implicator, and R be an IF
equivalence relation on U. Together they constitute the approximation space (U, R, T, I). For any
IF set A in U, the lower and upper approximation of A are the IF sets R ↓I A and R ↑T A in U
defined by:

R ↓I A(y) = inf
x∈U

I(R(x, y), A(x)),

R ↑T A(y) = sup
x∈U

I(R(x, y), A(x)).

for all y ∈ U.

A is called definable if and only if R ↓I A(y) = R ↑T A(y). Conversely, the couple
(R ↓I A, R ↑T A) is an IF-rough set.

3. Intuitionistic Fuzzy Overlap Function

This section first gives the definition of the intuitionistic fuzzy overlap function (IF-
overlap function), then gives the general generation method of the IF-overlap function,
and then gives the definition of the representable IF-overlap function and gives the con-
crete example.

Definition 12. An IF-overlap function is a mapping Õ : L∗× L∗ → L∗ that respects the following
conditions, for any x, y, z ∈ L∗,

(Õ1) Commutativity: Õ(x, y) = Õ(y, x);
(Õ2) Boundary condition: Õ(x, y) = 0L∗ if and only if x = 0L∗ or y = 0L∗ ;
(Õ3) Boundary condition: Õ(x, y) = 1L∗ if and only if x = y = 1L∗ ;
(Õ4) Monotonicity: Õ(x, y) ≤L∗ Õ(x, z) if y ≤L∗ z;
(Õ5) Continuity: Õ is continuous, i.e., ∀i ∈ I, yi ∈ L∗, Õ(x,∨i∈Iyi) = ∨i∈IÕ(x, yi) and

Õ(x,∧i∈Iyi) = ∧i∈IÕ(x, yi).

Proposition 1. Let O be an overlap function. Define the function Õ as follows: for every x =
(x1, x2), y = (y1, y2) ∈ L∗,

Õ(x, y) = 〈O(x1, y1), 1−O(1− x2, 1− y2)〉
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then Õ is an IF-overlap function.

Proof. Prove Õ satisfied the conditions in Definition 12 as follows:
(Õ1) For all x, y ∈ L∗, since O is commutative, so O(x1, y1) = O(y1, x1), O(1− x2, 1−

y2) = O(1− y2, 1− x2), it follows that

Õ(x, y) = 〈O(x1, y1), 1−O(1− x2, 1− y2)〉 = 〈O(y1, x1), 1−O(1− y2, 1− x2)〉 = Õ(y, x).

(Õ2) For all x, y ∈ L∗, according to the Boundary condition of O, we can get to know
O(x1, y1) = 0⇔ x1 = 0 or y1 = 0, O(1− x2, 1− y2) = 0⇔ x2 = 1 or y2 = 1, it follows that

Õ(x, y) = 0L∗ ⇔ 〈O(x1, y1), 1−O(1− x2, 1− y2)〉 = 0L∗ ⇔ O(x1, y1) = 0, 1−O(1−
x2, 1− y2) = 1⇔ x = 0L∗ or y = 0L∗ .

(Õ3) For all x, y ∈ L∗, according to the Boundary condition of O, we can get to know
O(x1, y1) = 1⇔ x1 = y1 = 1, O(1− x2, 1− y2) = 1⇔ x2 = y2 = 0, it follows that

Õ(x, y) = 1L∗ ⇔ 〈O(x1, y1), 1−O(1− x2, 1− y2)〉 = 1L∗ ⇔ O(x1, y1) = 1, 1−O(1−
x2, 1− y2) = 0⇔ x = y = 1L∗ .

(Õ4) For all x, y, z ∈ L∗, if y ≤L∗ z, i.e., y1 ≤ z1, y2 ≥ z2, then O(x1, y1) ≤ O(x1, z1),
O(1 − x2, 1 − y2) ≤ O(1 − x2, 1 − z2), 1 − O(1 − x2, 1 − y2) ≥ 1 − O(1 − x2, 1 − z2), it
follows that

Õ(x, y) = 〈O(x1, y1), 1−O(1− x2, 1− y2)〉 ≤L∗ 〈O(x1, z1), 1−O(1− x2, 1− z2)〉 = Õ(x, z).

(Õ5) Firstly, we prove left continuous, i.e., Õ(x,∨i∈Iyi) = ∨i∈IÕ(x, yi) where x =
(x1, x2), y = (y1, y2). Because the overlap function O is continuous, O(x1,∨i∈Iyi1) =
∨i∈IO(x1, yi1) and O(1− x2, 1− ∧i∈Iyi2) = O(1− x2,∨i∈I(1− yi2)) = ∨i∈IO(1− x2, 1−
yi2) is holding.

Then we have
Õ(x,∨i∈Iyi) = 〈O(x1,∨i∈Iyi1), 1−O(1− x2, 1−∧i∈Iyi2〉= 〈O(x1,∨i∈Iyi1), 1−O(1− x2,∨i∈I(1− yi2))〉= 〈∨i∈IO(x1, yi1),
1−∨i∈IO(1− x2, (1− yi2))〉 = 〈∨i∈IO(x1, yi1),∧i∈I(1−O(1− x2, (1− yi2))〉 = ∨i∈I〈O(x1, yi1), 1−O(1− x2, (1− yi2)〉
= ∨i∈IÕ(x, yi).

Therefore the function Õ is left continuous.

Similarly, we can obtain Õ(x,∧i∈Iyi) = ∧i∈IÕ(x, yi), therofore the function Õ is
right continuous.

Hence the function Õ is continuous.

Example 1. Define functions as follows: for x = (x1, x2), y = (y1, y2),
(1) Õ(x, y) = 〈min(x1, y1)min(x2

1, y2
1), max(x2, y2)max(x2

2, y2
2)〉.

(2) Õ(x, y) = 〈min(
√

x1,
√

y1), max(
√

x2,
√

y2)〉 .
(3) Õ(x, y) = 〈x1y1, 1− (1− x2)(1− y2)〉.
(4) Õ(x, y) = 〈x1y1

x1+y1
2 , 1− (1− x2)(1− y2)

2−x2−y2
2 〉.

(5) Õ(x, y) = 〈0.5x1y1 + 0.5 max(0, x1 + y1 − 1), min(1, x2 + 1− y1, y2 + 1− x1)〉.

It is easy to verify that the above functions are IF-overlap function.

Definition 13. Let Õ : L∗ × L∗ → L∗ be an IF-overlap function, defined the function RÕ :
L∗ × L∗ → L∗ as follows:

RÕ(x, y) = sup{z ∈ L∗|Õ(x, z) ≤L∗ y}

then RÕ is called the residual implication induced by the IF-overlap function Õ.

Example 2. Define functions as follows: for x = 〈x1, x2), y = (y1, y2〉,



Symmetry 2021, 13, 1494 7 of 18

(1)

RÕ(x, y) =


〈1, 0〉 x3

1 ≤ y1andx3
2 ≤ y2

〈1− y1/3
2 , y1/3

2 〉 x3
1 ≤ y1andx3

2 < y2

〈y1/3
1 , 0〉 x3

1 > y1andx3
2 ≥ y2

〈y1/3
1 , y1/3

2 〉 x3
1 > y1andx3

2 < y2

RÕ is the residual implication induced by the IF-overlap function Õ(x, y) in Example (1(1)).
(2)

RÕ(x, y) =


〈1, 0〉 x1 ≤ y2

1andx2 ≤ y2
2

〈1− y2
2, y2

2〉 x1 ≤ y2
1andx2 < y2

2
〈y2

1, 0〉 x1 > y2
1andx2 ≥ y2

2
〈y2

1, y2
2〉 x1 > y2

1andx2 < y2
2

RÕ is the residual implication induced by the IF-overlap function Õ(x, y) in Example (1(2)).
(3) RÕ(x, y) = 〈 y1

x1
, 1− 1−y2

1−x2
〉, RÕ is the residual implication induced by the IF-overlap

function Õ(x, y) in Example (1(3)).

Definition 14. There exist two overlap functions O1,O2, if O1 ≤ O2, defined function as follows:
for x = (x1, x2), y = (y1, y2),

Õ((x1, x2), (y1, y2)) = 〈O1(x1, y1), 1−O2(1− x2, 1− y2)〉

then Õ is called representable IF-overlap function.

Example 3. (1) The function Õ(x, y) = 〈x1y1, 1− (1− x2)(1− y2)〉 is a representable IF-overlap
function.

(2) Õ(x, y) = 〈0.5x1y1 + 0.5 max(0, x1 + y1 − 1), min(1, x2 + 1− y1, y2 + 1− x1)〉 is a
unrepresentable IF-overlap function.

Let O1(x1, y1) = 0.5x1y1 + 0.5max(0, x1 + y1 + 1), O2(x2, y2) = 1− min(1, 2− x2 −
x0, 2− y2 − y0), where x0, y0 ∈ [0, 1] is contant.

O2(1, 1) =
{

x0 x0 > y0
y0 x0 ≤ y0

Obviously, O2(1, 1) 6= 1, that is not satisfied the conditions for overlap function. So, the
function Õ(x, y) = 〈0.5x1y1 + 0.5 max(0, x1 + y1 − 1), min(1, x2 + 1− y1, y2 + 1− x1)〉 is a
unrepresentable IF-overlap function.

It is proved that Example 3(2) satisfies the condition of IF-overlap function, but it
does not meet the condition of representable IF-overlap function, so the function Õ(x, y) =
〈0.5x1y1 + 0.5 max(0, x1 + y1 − 1), min(1, x2 + 1− y1, y2 + 1− x1)〉 is a unrepresentable
IF-overlap function. For this type of function, we give a more general function expression,
i.e., Õ(x, y) = 〈αx1y1 + (1− α)max(0, x1y1 − 1), min(1, x2 + 1− y1, y2 + 1− x1)〉, where
α ∈ [0, 1].

Proposition 2. The function Õ : L∗ × L∗ → L∗ is an IF-overlap function if and only if there exist
two functions f , g : [0, 1]× [0, 1]→ [0, 1] such that

∀x = (x1, x2), y = (y1, y2) ∈ L∗, Õ(x, y) = 〈 f (x1, y1)

f (x1, y1) + g(x1, y1)
, 1− f (1− x2, 1− y2)

f (1− x2, 1− y2) + g(1− x2, 1− y2)
〉

where
1. f and g are symmetric;
2. f is non-decreasing and g is non-increasing;
3. f (x, y) = 0 if and only if xy = 0;
4. g(x, y) = 0 if and only if xy = 1;
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5. f and g are continuous.

In other words, the IF-overlap function Õ can be generated by both f and g.

Example 4. (1) Let f = xy and g = 1− xy, the IF-overlap function generated by f and g is
Õ(x, y) = 〈x1y1, 1− (1− x2)(1− y2)〉.

(2) Let f = xy(x + y) and g = 2− xy(x + y), the IF-overlap function generated by f and g
is Õ(x, y) = 〈x1y1

x1+y1
2 , 1− (1− x2)(1− y2)

2−x2−y2
2 〉.

4. IF-Rough Sets Model Base on IF-Overlap Functions

In order to popularize the application of IF-rough set model , a new class of IF-rough
set model is proposed by combining IF-overlap function. In this section, we will introduce
the definition and some properties of this new IF-rough sets model.

Definition 15. Let Õ be an IF-overlap function, RÕ be an residual implication, and R be an IF
similarity relation in U, the (U, R) is called IF approximation space. For any IF set A in U, the
lower and upper approximation of A are the IF sets R ↓RÕ

A and R ↑Õ A is defined by:

R ↓RÕ
A(y) = inf

x∈U
RÕ(R(x.y), A(x))

R ↑Õ A(y) = sup
x∈U

Õ(R(x.y), A(x))

for all y in U.
A is called definable if and only if R ↓RÕ

A = R ↑Õ A. Conversely, called the couple
(R ↓RÕ

A, R ↑Õ A) is IF-rough sets, and R ↓RÕ
A and R ↑Õ A respectively are referred to as

approximation operators under IF and approximation operators above IF.
Next, give an example of IF set, and use IF-rough set based on IF-overlap functions to calculate

its lower and upper approximation.

Example 5. Let the A is an IF set, i.e., A = 〈0.8,0.1〉
x1

+ 〈0.7,0.2〉
x2

+ 〈0.6,0.1〉
x3

+ 〈0.9,0.1〉
x4

+ 〈0.8,0.2〉
x5

, R
is an IF relation showed in Table 1.

Table 1. IF relation R.

R x1 x2 x3 x4 x5

R(x1) 〈0.9, 0.0〉 〈0.7, 0.1〉 〈0.6, 0.2〉 〈0.5, 0.1〉 〈0.3, 0.2〉
R(x2) 〈0.8, 0.1〉 〈0.4, 0.4〉 〈0.8, 0.1〉 〈0.7, 0.1〉 〈1.0, 0.0〉
R(x3) 〈0.7, 0.2〉 〈0.3, 0.1〉 〈0.0, 0.6〉 〈0.2, 0.2〉 〈0.6, 0.2〉
R(x4) 〈0.6, 0.1〉 〈0.5, 0.5〉 〈0.4, 0.4〉 〈0.7, 0.2〉 〈0.3, 0.4〉
R(x5) 〈0.9, 0.0〉 〈0.0, 1.0〉 〈0.1, 0.1〉 〈0.5, 0.5〉 〈0.3, 0.3〉

By the Definition 15,let’s take Õ and RÕ for example 1 and 2, then calculate the lower
and upper approximation as follows:

R ↓RÕ
A = 〈0.4152,0.5848〉

x1
+ 〈0.4152,0.5848〉

x2
+ 〈0.4152,0.5848〉

x3
+ 〈0.4152,0.5848〉

x4
+ 〈0.4152,0.5848〉

x5
;

R ↑Õ A = 〈0.512,0.0001〉
x1

+ 〈0.343,0.001〉
x2

+ 〈0.343,0.008〉
x3

+ 〈0.343,0.008〉
x4

+ 〈0.343,0.008〉
x5

.

The following, we list the properties of intuitionistic fuzzy upper and lower approxi-
mation operators, and give concrete examples to show that their idempotent propertie is
not set up.

Proposition 3. Let (U, R, Õ, RÕ) be an IF approximation space, where Õ is an IF-overlap func-
tion and RÕ is a residual implicator of Õ. Then for all A, B ∈ IFS, R1 ⊆ R2, the following
properties hold:
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(1) A ⊆ B⇒ R ↓RÕ
A ⊆ R ↓RÕ

B; R ↑Õ A ⊆ R ↑Õ B;
(2) R1 ↓RÕ

A ⊇ R2 ↓RÕ
A; R1 ↑Õ A ⊆ R2 ↑Õ A;

(3) R ↓RÕ
(A
⋂

B) = R ↓RÕ
A
⋂

R ↓RÕ
B;

(4) R ↑Õ (A
⋃

B) = R ↑Õ A
⋃ ↑Õ B;

(5) R ↓RÕ
(A
⋃

B) ⊇ R ↓RÕ
A
⋃

R ↓RÕ
B;

(6) R ↑Õ (A
⋂

B) ⊆ R ↑Õ A
⋂ ↑Õ B.

Proof. (1) It can be directly followed from Definitions 12 and 15.
(2) By the definition of IF relation, if R1 ⊆ R2 then R1(x, y) ≤ R2(x, y), by the

Definition 3.1, we have Õ(R1(x, y), A(x)) ≤ Õ(R2(x, y), A(x)), then

sup
x∈U

Õ(R1(x.y), A(x)) ≤ sup
x∈U

Õ(R2(x.y), A(x)).

That is R1 ↑Õ A ⊆ R2 ↑Õ A holds. Similarly, we can verity that R1 ⊆ R2, then
R1 ↓RÕ

A ⊇ R2 ↓RÕ
A holds.

(3) By definition to know,
R ↓RÕ

(A
⋂

B)(y) = infx∈U RÕ(R(x, y), A(x) ∧ B(x)) = infx∈U RÕ(R(x, y), A(x)) ∧
infx∈U RÕ(R(x, y), B(x)) = R ↓RÕ

A(y)
⋂

R ↓RÕ
B(y).

(4) By definition to know,
R ↑Õ (A

⋃
B)(y) = supx∈U Õ(R(x, y), A(x) ∨ B(x)) = supx∈U Õ(R(x, y), A(x) ∨

supx∈U Õ(R(x, y), B(x) = R ↑Õ A(y)
⋃

R ↑Õ B(y).
(5) That can be directly followed from Definition 15 and Propositions 1–4, respectively.
(6) It can be directly followed from Definition 15 and Propositions 1–4, respectively.
In particular, we illustrate that the model is not idempotent, i.e.,

R ↑Õ A 6= R ↑Õ (R ↑Õ A)

R ↓RÕ
A 6= R ↓RÕ

(R ↓RÕ
A)

Example 6. Let A be an IF sets, A = 〈0.3,0.5〉
x1

+ 〈0.4,0.6〉
x2

+ 〈0.5,0.5〉
x3

+ 〈0.7,0.2〉
x4

+ 〈0.8,0.1〉
x5

, and
R be an IF relation as Table 1, then by calculating, we have the results as follows: R ↑Õ

A = 〈0.512,0.0001〉
x1

+ 〈0.125,0.125〉
x2

+ 〈0.064,0.064〉
x3

+ 〈0.343,0.008〉
x4

+ 〈0.125,0.125〉
x5

; R ↑Õ (R ↑Õ A) =
〈0.1342,0.0〉

x1
+ 〈0.1342,0.001〉

x2
+ 〈0.1342,0.008〉

x3
+ 〈0.125,0.001〉

x4
+ 〈0.027,0.008〉

x5
.

Obviously, R ↑Õ A 6= R ↑Õ (R ↑Õ A), by calculation know R ↓RÕ
A 6= R ↓RÕ

(R ↓RÕ
A).

5. Application Example

In this section, we will describe the application of the new IF-rough set model to
MCDM (multi-criteria decision making) problems, and compares the decision results with
other models.

5.1. Problem Description

In a public company, shareholders want to elect an executive director who have both
ability and political integrity, in order to create more value for the company. Let X = {xi:
i = 1, 2, ..., n} be the universe of n alternatives, C = {Cj: j = 1, 2, ..., m} be the set of m
criteria. Cj(xi) = (µ(xi), υ(xi)) where 0 ≤ µ(xi) + υ(xi) ≤ 1, µ(xi), υ(xi) are the degrees of
membership and non-membership of Cj(xi), respectively. Cj(xi) denotes the ability value of
the alternative xi to the criterion Cj given a lot of judges. Assuming that for any alternative
xi, there is at least one criterion Cj such that the value of the alternative xi for the criterion
Cj is equal to < 1, 0 >. In the following, we can solve the decision-making problem by
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means of the principle of the IF TOPSIS methods and the IF-rough set models. We apply
the algorithm in recruiting alternative in a public company to choose the best director.

5.2. Decision-Making Method

Firstly, we build one IF set Cj is a description of X given by a lot of experts through
their experience, then give the IF relation R for each xi.

Secondly, by the IF relation R, the positive ideal solution and the negative ideal
solution of the alternative xi are defined as:

A+(xi) = (µA+(xi), υA+(xi))

where µA+(xi = maxm
j=1(µCj(xi)),υA+(xi = minm

j=1(υCj(xi));

A−(xi) = (µA−(xi), υA−(xi))

where µA−(xi = minm
j=1(µCj(xi)),υA−(xi = maxm

j=1(υCj(xi)).
We can receive that the positive ideal solution A+ and the negative ideal solution A−.

Where A+, A− ∈ IF(U). Thirdly, we compute the IF rough approximation of A+ and A−

by the IF-rough sets.Then there are two types calculating, by the score function L(A)(xi) =
µA(xi) + υA(xi) ·πA(xi) where πA(xi) = 1− µA(xi)− υA(xi) and the summation formula
of IF sets x̃

⊕
ỹ = 〈µx̃ + µỹ − µx̃µỹ, υx̃υỹ〉 where x̃ = 〈µx̃, υx̃〉,ỹ = 〈µỹ, υỹ〉,x̃, ỹ ∈ D∗ and

λx̃ = 〈1− (1− µx̃)λ, υλ
x̃ 〉,λ > 0, then for each xi ∈ U, two ranking functions of xi are

defined as:
The first type:

P−(xi) = L(R ↓ A−
⊕

R ↑ A−), P+(xi) = L(R ↓ A+
⊕

R ↑ A+);

The second type:

P−(xi) = L(αR ↓ A−
⊕

(1− α)R ↑ A−), P+(xi) = L(αR ↓ A+
⊕

(1− α)R ↑ A+).

where α ∈ [0, 1] be a level adjustment value.
Lastly, based on the principle of the TOPSIS methods, the relative closeness coefficient

of every alternative xi about P− and P+ is defined as: δ(xi) =
P−(xi)

P−(xi)+P+(xi)
. According to

the values of δ(xi), we can rank these alternatives. Lastly, through the ranking order of all
alternatives, we can choose the best alternative.

5.3. Algorithm for IF-Rough Sets Models with IF Information

We come up with an algorithm for IF rough sets models based on MCDM problem
with IF information. Now a company want to choose the best one from six candidates.
Let U = {x1, x2, x3, x4, x5, x6} be the set of six candidates. Let C = {C1, C2, C3, C4, C5}
be five criteria, C1, C2, C3, C4, C5 represent emotional quotient, work ability, language
expression skills, management ability and resilience ability, respectively. Let Cj(xi) =
〈µ(xi), υ(xi)〉, (j = 1, 2, ..., 5; i = 1, 2, ..., 6) where µ(xi) and υ(xi) are the degrees of the
membership and the non-membership of the alternative xi to the criterion Cj, respectively.
Suppose that for each alternative xi, there exists the criterion Cj such that Cj(xi) = 〈1, 0〉.
The IF relation R based IF rough sets of six alternatives are as Table 2.
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Table 2. IF relation R.

R x1 x2 x3 x4 x5 x6

R/U x1 x2 x3 x4 x5 x6

R(x1) 〈1, 0〉 〈0.6, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.2〉 〈0.5, 0.3〉 〈0.5, 0.4〉
R(x2) 〈0.8, 0.2〉 〈1, 0〉 〈0.8, 0.2〉 〈0.8, 0.2〉 〈0.6, 0.4〉 〈0.6, 0.4〉
R(x3) 〈0.7, 0.25〉 〈0.7, 0.1〉 〈1, 0〉 〈0.7, 0.3〉 〈0.5, 0.5〉 〈0.8, 0.2〉
R(x4) 〈0.3, 0.7〉 〈0.3, 0.5〉 〈0.3, 0.45〉 〈1, 0〉 〈0.6, 0.2〉 〈0.6, 0.4〉
R(x5) 〈0.5, 0.5〉 〈0.7, 0.3〉 〈0.7, 0.25〉 〈0.9, 0.1〉 〈1, 0〉 〈0.7, 0.3〉
R(x6) 〈0.7, 0.3〉 〈0.7, 0.1〉 〈0.7, 0.15〉 〈0.7, 0.3〉 〈0.5, 0.5〉 〈1, 0〉

Then calculate the positive ideal solution A+ and the negative ideal solution A−

as follows:

A+ = 〈1,0〉
x1

+ 〈1,0〉
x2

+ 〈1,0〉
x3

+ 〈1,0〉
x4

+ 〈1,0〉
x5

+ 〈1,0〉
x6

;

A− = 〈0.3,0.7〉
x1

+ 〈0.3,0.5〉
x2

+ 〈0.3,0.45〉
x3

+ 〈0.6,0.3〉
x4

+ 〈0.5,0.5〉
x5

+ 〈0.5,0.4〉
x6

.

We calculate the approximation operator of A+ and A− through three IF-rough sets
models, then calculate the P+(xi) and P−(xi) for each xi ∈ U,respectively. Last, calculate
the δ(xi) for each xi ∈ U and rank for all alternatives.

case 1 IF-rough sets model.
By the definition ,we have following results:

R ↓ A+ = R ↑ A+ = U;
R ↓ A− = 〈0.3,0.7〉

x1
+ 〈0.3,0.7〉

x2
+ 〈0.3,0.7〉

x3
+ 〈0.45,0.5〉

x4
+ 〈0.3,0.5〉

x5
+ 〈0.3,0.7〉

x6
;

R ↑ A− = 〈0.6,0.3〉
x1

+ 〈0.6,0.3〉
x2

+ 〈0.6,0.3〉
x3

+ 〈0.6,0.3〉
x4

+ 〈0.6,0.3〉
x5

+ 〈0.6,0.3〉
x6

.

The first ranking function type, we have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.7347
x1

+ 0.7347
x2

+ 0.7347
x3

+ 0.7905
x4

+ 0.7395
x5

+ 0.7347
x6

.

By the formula, we have
δ = 0.4235

x1
+ 0.4235

x2
+ 0.4235

x3
+ 0.4415

x4
+ 0.4251

x5
+ 0.4235

x6
.

According to the value of δ(xi). We rank six alternatives as follows:

x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6

Thus, we can choose the best alternative x4.
The second ranking function type,let α = 0.5, where α is a level adjustment. Then we

have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.5033
x1

+ 0.5033
x2

+ 0.5033
x3

+ 0.5626
x4

+ 0.5258
x5

+ 0.5033
x6

.

By the formula, we have δ = 0.3348
x1

+ 0.3348
x2

+ 0.3348
x3

+ 0.36
x4

+ 0.3445
x5

+ 0.3348
x6

.
According to the value of δ(xi). We rank six alternatives as follows:

x4 � x5 ≈ x1 ≈ x2 ≈ x3 ≈ x6

Thus, we can choose the best alternative x4.
case 2 (I,T )-IF rough sets model.
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Let T(x, y) = (min(x1, y1), max(x2, y2)),

I(x, y) =


〈1, 0〉 x1 ≤ y1andx2 ≥ y2

(1− y2, y2) x1 ≤ y1andx2 < y2
(y1, 0) x1 > y1andx2 ≥ y2
(y1, y2) x1 > y1andx2 < y2

Definition 16 ([35]). Let α = 〈µα, υα〉 be an IF value, and the score function of the IF value α is
defined as follows:

S(α) = (µα − υα)(1 + πα)

where πα = 1− µα − υα.

Definition 17 ([35]). Let α = 〈µα, υα〉 and β = 〈µβ, υβ〉 be two IF values, and S(α), S(β) are
score function of α and β respectively, then

(1) If S(α) > S(β), called α is greater than β, i.e., α > β;
(2) If S(α) = S(β), then,
if µα > µβ, called α is greater than β, i.e., α > β;
if µα < µβ, called α is less than β, i.e., α < β.

By the definition, we have following results:

R ↓I A+ = R ↑T A+ = U;
R ↓I A− = 〈0.3,0.7〉

x1
+ 〈0.3,0.7〉

x2
+ 〈0.3,0.7〉

x3
+ 〈0.3,0.7〉

x4
+ 〈0.3,0.7〉

x5
+ 〈0.3,0.7〉

x6
;

R ↑T A− = 〈0.5,0.4〉
x1

+ 〈0.5,0.4〉
x2

+ 〈0.5,0.4〉
x3

+ 〈0.6,0.3〉
x4

+ 〈0.6,0.4〉
x5

+ 〈0.6,0.4〉
x6

.

The first ranking function type, we have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.6696
x1

+ 0.6696
x2

+ 0.6696
x3

+ 0.7347
x4

+ 0.72
x5

+ 0.72
x6

;
δ = 0.4011

x1
+ 0.4011

x2
+ 0.4011

x3
+ 0.4235

x4
+ 0.4186

x5
+ 0.4186

x6
.

x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3

Thus, we can choose the best alternative x4.

The second ranking function type, let α = 0.5, where α is a level adjustment. Then we
have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.4414
x1

+ 0.4414
x2

+ 0.4414
x3

+ 0.5033
x4

+ 0.4708
x5

+ 0.4708
x6

;
δ = 0.3062

x1
+ 0.3062

x2
+ 0.3062

x3
+ 0.3348

x4
+ 0.3201

x5
+ 0.3201

x6
.

x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3

Thus, we can choose the best alternative x4.
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case 3 (RÕ, Õ)-IF rough sets model.
Let Õ(x, y) = 〈min(x1, y1)min(x2

1, y2
1), max(x2, y2)max(x2

2, y2
2)

RÕ(x, y) =


〈1, 0〉 x3

1 ≤ y1andx3
2 ≤ y2

(1− y1/3
2 , y1/3

2 ) x3
1 ≤ y1andx3

2 < y2

(y1/3
1 , 0) x3

1 > y1andx3
2 ≥ y2

(y1/3
1 , y1/3

2 ) x3
1 > y1andx3

2 < y2

By the definition ,we have following results:

R ↓RÕ
A+ = R ↑Õ A+ = U;

R ↓RÕ
A− = 〈0.2063,0.7937〉

x1
+ 〈0.1121,0.8879〉

x2
+ 〈0.1121,0.8879〉

x3
+ 〈0.1121,0.8879〉

x4
+ 〈0.1121,0.8879〉

x5
+

〈0.1121,0.8879〉
x6

;

R ↑Õ A− = 〈0.125,0.064〉
x1

+ 〈0.125,0.064〉
x2

+ 〈0.125,0.064〉
x3

+ 〈0.216,0.064〉
x4

+ 〈0.216,0.027〉
x5

+ 〈0.216,0.027〉
x6

.

The first ranking function type, we have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.3382
x1

+ 0.2597
x2

+ 0.264
x3

+ 0.3402
x4

+ 0.32
x5

+ 0.32
x6

;
δ = 0.2527

x1
+ 0.2062

x2
+ 0.2089

x3
+ 0.2538

x4
+ 0.2424

x5
+ 0.2424

x6
.

x4 � x1 � x5 ≈ x6 � x3 � x2

Thus, we can choose the best alternative x4.
The second ranking function type, let α = 0.5, where α is a level adjustment. Then we

have the following results:

P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.3037
x1

+ 0.2719
x2

+ 0.2719
x3

+ 0.3027
x4

+ 0.2709
x5

+ 0.2709
x6

;
δ = 0.233

x1
+ 0.2318

x2
+ 0.2318

x3
+ 0.2353

x4
+ 0.2132

x5
+ 0.2132

x6
.

x4 � x1 � x2 ≈ x3 � x5 ≈ x6

Thus, we can choose the best alternative x4.

case 4 (RÕ, Õ)-IF rough sets model.
Now let Õ(x, y) = 〈min(

√
x1,
√

y1), max(
√

x2,
√

y2)〉

RÕ(x, y) =


〈1, 0〉 x1 ≤ y2

1andx2 ≤ y2
2

〈1− y2
2, y2

2〉 x1 ≤ y2
1andx2 < y2

2
〈y2

1, 0〉 x1 > y2
1andx2 ≥ y2

2
〈y2

1, y2
2〉 x1 > y2

1andx2 < y2
2

By the definition, we have following results:

R ↓RÕ
A+ = R ↑Õ A+ = U;

R ↓RÕ
A− = 〈0.09,0.49〉

x1
+ 〈0.09,0.49〉

x2
+ 〈0.09,0.49〉

x3
+ 〈0.09,0.49〉

x4
+ 〈0.09,0.49〉

x5
+ 〈0.09,0.49〉

x6
;

R ↑Õ A− = 〈0.7071,0.6325〉
x1

+ 〈0.7071,0.6325〉
x2

+ 〈0.7071,0.6325〉
x3

+ 〈0.7746,0.5477〉
x4

+ 〈0.7746,0.5476〉
x5

+
〈0.7746,0.6325〉

x6
.

The first ranking function type, we have the following results:
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P+(xi) =
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.72
x1

+ 0.72
x2

+ 0.72
x3

+ 0.7779
x4

+ 0.7776
x5

+ 0.7624
x6

;
δ = 0.4186

x1
+ 0.4186

x2
+ 0.4186

x3
+ 0.4375

x4
+ 0.4374

x5
+ 0.4326

x6
.

x4 � x5 � x6 � x1 ≈ x2 ≈ x3

Thus, we can choose the best alternative x4.
The second ranking function type, let α = 0.5, where α is a level adjustment. Then we

have the following results:
P+(xi) =

1
x1

+ 1
x2

+ 1
x3

+ 1
x4

+ 1
x5

+ 1
x6

;
P−(xi) =

0.4612
x1

+ 0.4612
x2

+ 0.4612
x3

+ 0.5314
x4

+ 0.5312
x5

+ 0.4893
x6

;
δ = 0.3156

x1
+ 0.3156

x2
+ 0.3156

x3
+ 0.3392

x4
+ 0.3391

x5
+ 0.3285

x6
.

x4 � x5 � x6 � x1 ≈ x2 ≈ x3

Thus, we can choose the best alternative x4.

5.4. Comparative Analysis

In this subsection, first of all, we make a comparison between three models with no
level adjustment α with IF information as shown in Table 3. Then a comparison among
three models with level adjustment α = 0.5, results as shown in Table 4 and analyze it.

Table 3. Ranking orders of alternative with no α.

Models Ranking Orders of Six Alternatives

case1 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
caes2 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
case3 x4 � x1 � x5 ≈ x6 � x3 � x2
case4 x4 � x5 � x6 � x1 ≈ x2 ≈ x3

Table 4. Ranking orders of alternative with α = 0.5.

Models Ranking Orders of Six Alternatives

case1 x4 � x5 ≈ x1 ≈ x2 ≈ x3 ≈ x6
caes2 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
case3 x4 � x1 � x2 ≈ x3 � x5 ≈ x6
case4 x4 � x5 � x6 � x1 ≈ x2 ≈ x3

It can be seen from the table that the multi-criteria decision-making method proposed
in this consistent with the decision result obtained by existing models, i.e., x4 is the best
alternative. This phenomenon shows that the model proposed in this paper is effective.
Secondly, by the Tables 3 and 4, we can see the model with level adjustment will be better
results. Lastly, by the model of case 1, we have almost the same ranking, by the model of
case 2, we can also find x1,x2,x3 almost same. Therefore, the two kinds of models cannot
make a good ranking in this kind of problems. The model of case 2 is IF rough set based on
IF triangular norm, since IF triangular norm satisfies associativity. The IF-overlap function
is an extension of IF triangular norm, which does not meet associativity, therefore the
model that proposed by this paper has a wider ranger of practical applications and is of
effectiveness and application value.

5.5. Sensitivity Analysis

Using the similar method in case 1, let α = {0, 0.1, ..., 0.9, 1}, we can obtain the results
as shown in Table 5. Through this table, we can find that the results are different with
different values of α. If α = 0, then the six alternatives have equivalent interest. So, the
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α = 0 is not perfect when making a decision in real life. When α 6= 0, the results of others
are same. The best selection is x4, respectively.

Table 5. Ranking orders of alternative with different α in case 1.

Different Value of α Ranking Orders of Six Alternatives

α = 0 x1 ≈ x2 ≈ x3 ≈ x4 ≈ x5 ≈ x6
α = 0.1 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.2 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.3 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.4 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.5 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.6 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.7 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.8 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 0.9 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6
α = 1 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6

Using the similar method in case 2, let α = {0, 0.1, ..., 0.9, 1}, we can obtain the results
as shown in Table 6. Through this table, we can find that the results are different with
different values of α. If α = 1, then the six alternatives have equivalent interest. So, the
α = 1 is not perfect when making a decision in real life. When α 6= 1, the results of others
are same. The best selection is x4, respectively.

Table 6. Ranking orders of alternative with different α in case 2.

Different Value of α Ranking Orders of Six Alternatives

α = 0 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.1 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.2 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.3 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.4 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.5 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.7 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.8 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.9 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 1 x1 ≈ x2 ≈ x3 ≈ x4 ≈ x5 ≈ x6

Using the similar method in case 3, let α = {0, 0.1, ..., 0.9, 1}, we can obtain the results
as shown in Table 7. Through this table, we can find that the results are different with
different values of α. But the results are highly consistent. When α = {0.7, 0.8, 0.9, 1},
the best selection is x1 while the worst selections are x2 and x3. However, when α =
{0, 0.1, ..., 0.6}, the best selection is still x4. In other words, if 0 ≤ α ≤ 0.6, the change of
the value of α has no influence on our results. So using the similar way in case 3 to make
decisions, we should take 0 ≤ α ≤ 0.6.
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Table 7. Ranking orders of alternative with different α in case 3.

Different Value of α Ranking Orders of Six Alternatives

α = 0 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.1 x4 � x5 ≈ x6 � x1 � x2 ≈ x3
α = 0.2 x4 � x5 ≈ x6 � x1 � x2 ≈ x3
α = 0.3 x4 � x1 � x5 ≈ x6 � x2 ≈ x3
α = 0.4 x4 � x1 � x5 ≈ x6 � x2 ≈ x3
α = 0.5 x4 � x1 � x2 ≈ x3 � x5 ≈ x6
α = 0.6 x4 � x1 � x2 ≈ x3 � x5 ≈ x6
α = 0.7 x1 � x4 � x5 ≈ x6 � x2 ≈ x3
α = 0.8 x1 � x5 ≈ x6 � x4 � x2 ≈ x3
α = 0.9 x1 � x5 ≈ x6 � x4 � x2 ≈ x3
α = 1 x1 � x5 ≈ x6 ≈ x4 ≈ x2 ≈ x3

In the Table 8, the sensitivity analysis of the IF rough sets model (case 1), (I, T)-IF
rough sets model (case 2) and (RÕ, Õ)-IF rough sets model (case 3) are given.

Form the Table 8, we make some comparisons of the three models based on MCDM
with IF information with different value of α. Then we have the following results:

(1) The results of IF rough sets model, (I, T)-IF rough sets model and (RÕ, Õ)-IF rough
sets model have the same choose that x4 is the best alternative.

(2) We can find in case 1 and case 2, changing the value of α has no influence on our
results (except α = 0 in case1, α = 1 in case 2). When α = 0, through comparison, IF
rough sets model gives us is that six alternatives have the same weight, therefore, it is
invalid in real life to making a decision. When α = 1, (I, T)-IF rough sets model gives us
are that six alternatives have the same weight, therefore, it is invalid in real life to making
a decision. Obviosly, (RÕ, Õ)-IF rough sets model is better than IF rough sets model and
(I, T)-IF rough sets model in this situation.

(3) When α = 0.1, the result of (RÕ, Õ)-IF rough sets model and the result of (I, T)-IF
rough sets model are highly consistent, When α = {0.2, 0.3}, the result of (RÕ, Õ)-IF rough
sets model and the result of IF rough sets model are highly consistent. In other words, the
result of (I, T)-IF rough sets model is one of many results of (RÕ, Õ)-IF rough sets model.

Table 8. The comparison among ranking orders of alternative with different α .

Different Value of α
IF Rough Sets Model

(Case 1)
(I, T)-IF Rough Sets Model

(Case 2)
(RÕ, Õ)-IF Rough Sets

Model (Case 3)

α = 0 x1 ≈ x2 ≈ x3 ≈ x4 ≈ x5 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3
α = 0.1 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x5 ≈ x6 � x1 � x2 ≈ x3
α = 0.2 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x5 ≈ x6 � x1 � x2 ≈ x3
α = 0.3 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x1 � x5 ≈ x6 � x2 ≈ x3
α = 0.4 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x1 � x5 ≈ x6 � x2 ≈ x3
α = 0.5 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x1 � x2 ≈ x3 � x5 ≈ x6
α = 0.6 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x4 � x1 � x2 ≈ x3 � x5 ≈ x6
α = 0.7 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x1 � x4 � x5 ≈ x6 � x2 ≈ x3
α = 0.8 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x1 � x5 ≈ x6 � x4 � x2 ≈ x3
α = 0.9 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x4 � x5 ≈ x6 � x1 ≈ x2 ≈ x3 x1 � x5 ≈ x6 � x4 � x2 ≈ x3
α = 1 x4 � x5 � x1 ≈ x2 ≈ x3 ≈ x6 x1 ≈ x2 ≈ x3 ≈ x4 ≈ x5 ≈ x6 x1 � x5 ≈ x6 ≈ x4 ≈ x2 ≈ x3

The IF-rough model based on IF-overlap function presented in this paper is more
flexible when dealing with specific application problems, and can reproduce the results
obtained by other IF rough set models. According to the choice of different α, different
decision ordering can be obtained, so that the decision maker can have a better decision
reference in practical problems.
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6. Conclusions

Inspired by the literature [6,7,17,27], this paper puts forward the concept of IF-overlap
function for the first time, and constructs an IF-rough set model based on IF-overlap
function, which can be regarded as an extended form of IF-rough set based on IF triangular
norm. On the one hand, the model retains the important properties of the original IF rough
set model. On the other hand, the application range of IF rough sets is expanded and
the flexibility is stronger. In order to solve MCDM problems in real life, the IF rough set
model based on IF-overlap function is combined with IF TOPSIS method. The decision
results show that the model has significant application value. Compared with other
decision results, the model is more flexible, by changing the value of α (α ∈ [0, 1] is a
level adjustment value), the new model can obtain the results of other models, which can
reproduce most of the existing results and provide more reference for decision makers.
As a further research topic, the variable precision intuitionistic fuzzy rough sets based
on IF-overlap functions and the covering intuitionistic fuzzy rough sets [36–40] based on
IF-overlap functions will be discussed in the following work, and applied to data mining
and knowledge discovery, etc.
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