
symmetryS S

Article

Nonlinear Dynamics and Motion Bifurcations of the Rotor
Active Magnetic Bearings System with a New Control Scheme
and Rub-Impact Force

Nasser A. Saeed 1,* , Emad Mahrous 2 , Emad Abouel Nasr 3 and Jan Awrejcewicz 4

����������
�������

Citation: Saeed, N.A.; Mahrous, E.;

Abouel Nasr, E.; Awrejcewicz, J.

Nonlinear Dynamics and Motion

Bifurcations of the Rotor Active

Magnetic Bearings System with a

New Control Scheme and

Rub-Impact Force. Symmetry 2021, 13,

1502. https://doi.org/10.3390/

sym13081502

Academic Editor: Christos Volos

Received: 22 July 2021

Accepted: 11 August 2021

Published: 16 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University,
Menouf 32952, Egypt

2 Electrical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421,
Saudi Arabia; emad.mahrous@el-eng.menofia.edu.eg

3 Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia; eabdelghany@ksu.edu.sa

4 Department of Automation, Biomechanics, and Mechatronics, Faculty of Mechanical Engineering,
Lodz University of Technology, 90924 Lodz, Poland; jan.awrejcewicz@p.lodz.pl

* Correspondence: Nasser.A.Saeed@el-eng.menofia.edu.eg; Tel.: +20-100-887-6453

Abstract: This article is dedicated to investigating the nonlinear dynamical behaviors of the 8-pole
rotor active magnetic bearing system. The rub and impact forces between the rotating disc and
the pole-legs are included in the studied model for the first time. A new control scheme based
on modifying the 8-pole positions has been introduced. The proposed control methodology is
designed such that four poles only are located in the horizontal and vertical directions (i.e., in
+X,+Y,−X,−Y directions), while the other four poles are inserted in a way such that each pole
makes 45◦ with two of the axes +X,+Y,−X,−Y. The control currents in the horizontal and vertical
poles are suggested to be proportional to both the velocity and displacement of the rotor in the
horizontal and vertical directions, respectively, while the control currents in the inclined poles are
proposed to be dependent on the combination of both the displacement and velocity of the rotor
in the horizontal and vertical directions. Accordingly, the whole-system mathematical model is
derived. The derived discontinuous dynamical system is analyzed employing perturbation methods,
Poincare maps, bifurcation diagrams, whirling orbits, and frequency spectrum. The obtained results
demonstrated that the controller proportional control gain can play a significant role in changing
the vibratory behaviors of the system, where the proposed control method can behave either as a
cartesian control strategy or as a radial control one depending on the magnitude of the proportional
gain. In addition, it is found that the rotor system can vibrate with periodic, periodic-n, quasiperiodic,
or chaotic motion when the rub and/or impact forces occur. Moreover, it is reported for the first time
that the rotor-AMB can oscillate symmetrically in X and Y directions either in full annular rub mode
or quasiperiodic partial rub mode depending on the impact stiffness coefficient and the dynamic
friction coefficient.

Keywords: rotor-AMBS; stability; rub-impact force; periodic, quasiperiodic and chaotic vibration;
frequency spectrum; Poincare map; bifurcation diagram; full annular rub mode; quasiperiodic partial
rub mode

1. Introduction

Nowadays, high-speed rotating machines are widely used in many industries such
as aerospace engines, military industries, machine tools, the automotive industry, and
autonomous power engineering. The design of this type of machine requires a highly
efficient bearings, sealing, and lubrication system. One of the effective bearings systems
that are widely used with high-speed rotors is the rotor Active Magnetic Bearing system
(AMBS). AMBS is an active control system that applies a controlled electromagnetic force
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to support the rotating shafts in their hovering positions without physical contact. The
absence of friction and the controllability of the applied electromagnetic force make the
AMBS one of the important rotor bearings systems to support high-speed rotors. Rotor-
AMBS is inherently a nonlinear dynamical system because the electromagnetic force is
inversely proportional to the air-gap size and proportional to the square of the control
current. Accordingly, many scientific articles have been introduced to explore the rich
dynamical characteristics of the rotor-AMBS. Ji et al. [1] studied the nonlinear oscillations
of a horizontally suspended 4-pole rotor system. They utilized the normal-form method to
explore the system oscillations on the center manifold close to the double-zero degenerate
point. The authors concluded that the system has asymmetric vibratory behaviors in both
the vertical and horizontal directions due to the disc weight. In addition, saddle-node and
Hopf bifurcation are reported in the vertical direction in the case of local analysis. Moreover,
saddle-connection bifurcation is found in the case of global analysis. Saeed et al. [2] and
Ji and Hansen [3] utilized a proportional-derivative current-based control to mitigate the
horizontal and vertical vibrations of the 8-pole rotor system. The control current in each
pole has been proposed to be proportional to both the cartesian velocity and displacement
of the rotation disc in the horizontal and vertical directions. The authors derived the
system equations of motion depending on the proposed control methodology. According
to the introduced analysis, they reported that the rotor system may lose its stability via
Hopf or saddle-node bifurcations. Moreover, it is found that the system can exhibit many
nonlinear phenomena such as the coexistence of multiple solutions and the sensitivity
to the initial position. Ji and Leung [4] explored the nonlinear oscillations of the 8-pole
rotor system that was studied in Refs. [2,3] at super-harmonic resonance. The obtained
analysis showed that the rotor system may have tri-stable solutions simultaneously at
super-harmonic resonance. Yang et al. [5] explored the orbital motion of an 8-pole rotor
AMBS controlled via the proportional-derivative controller. The authors applied the
energy ratio and phase-difference technique with the multiple-scales method to investigate
the nature of the system motion. They concluded that the rotor AMBS has elliptic and
quasiperiodic motion only. Zhang et al. [6–8] studied the oscillatory behaviors of an 8-pole
time-varied stiffness rotor system. The authors reported that the time-varied stiffness rotor
AMBS may exhibit periodic-3, periodic-4, periodic-6, periodic-7, periodic-8, quasiperiodic,
and chaotic motions. Saeed et al. [9,10] introduced new control schemes to improve the
oscillatory characteristics of the 8-pole rotor system. They integrated both the nonlinear
saturation controller (NSC) and the positive position feedback controller (PPFC) along with
the PD-controller to suppress the system vibrations. The authors found that both the NSC
and PPFC can suppress the rotor AMBS nonlinear vibrations.

On the other hand, the nonlinear dynamics of the 16-pole rotor AMBS have been
studied extensively [11–16]. Zhang and his coworker [11–14] introduced detailed studies
for the time-varied stiffness 16-pole rotor AMBS. In addition, Saeed et al. [15,16] introduced
different control algorithms to control the nonlinear vibrations of the 16-pole-rotor AMBS
with constant stiffness coefficients. The authors explored the performance of both the radial
and cartesian control schemes for suppressing the system oscillations. The obtained results
confirmed that the cartesian controller is highly efficient, compared to the radial one, in
suppressing the rotor AMBS vibrations. However, the radial controller is the optimum in
stabilizing the system instability. Recently, Saeed et al. [17,18] explored the vibration control
of the 6-pole rotor AMB system. They introduced a detailed analysis for both the cartesian
control configuration [17] and the radial control technique [18]. The obtained analyses
illustrated that the cartesian controller is the efficient one in reducing the system vibrations.
In addition, they concluded that the radial controller is the optimum in stabilizing the
system instability. Active magnetic bearing systems can apply a controllable magnetic
force on the rotating shafts without any physical contact. Therefore, many papers have
discussed vibration mitigation in the rotating machinery via employing the active magnetic
bearings as active actuators. Ishida and Inoue [19] implemented a linear vibration absorber
using four electromagnetic poles to reduce the lateral vibrations of a nonlinear rotating
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shaft system. Saeed et al. [20–24] introduced different controllers to mitigate the nonlinear
vibrations of the rotors utilizing the active magnetic bearings as an actuator.

Within this article, a new control scheme for the vibration mitigation of the 8-pole rotor
AMBS is introduced. The introduced control method is designed in such a way that the
electrical currents (i.e., control currents) in the horizontal and vertical poles are proportional
to the cartesian velocity and displacement of the rotating disc in the horizontal and vertical
directions, respectively, while the control currents in the other four inclined poles are
proposed to be proportional to the combinations of the displacements and velocities of
the disc in the horizontal and vertical directions. Accordingly, the system equations of
motion are derived, and the corresponding slow-flow autonomous equations are obtained
applying asymptotic analysis. In addition, the rub and impact forces between the rotating
disc and the poles legs are included in the derived mathematical model. The influence of
the different parameters such as the disc eccentricity, the proportional control gain, the
impact stiffness coefficient, and the dynamic friction on the system’s dynamical behaviors
is explored. The obtained results showed that the introduced control scheme can behave
either as a cartesian controller or as a radial one depending on the proportional gain value.
In addition, the occurrence of rub and/or impact between the rotor and stator may result
in periodic-1, periodic-n, quasiperiodic, or chaotic motion for the rotor system. Moreover,
the plotted bifurcation diagrams confirmed that the rotating disc can oscillate either in full
annular rub mode or in quasiperiodic partial rub mode depending on the magnitude of
both the impact stiffness coefficient and the dynamic friction coefficient. Finally, it is worth
mentioning that this is the first article that explored the effect of the rub-impact force on
the oscillatory behaviors of the rotor-AMBS.

By comparing the current work with previously published work [1–18], in all previ-
ously published work, the rotor-AMBS has been investigated as a continuous dynamical
system, neglecting the occurrence of the rub-impact force between the rotor and stator. In
addition, all introduced control methods are independently based on either the cartesian
control strategy (see Refs. [1–4]) or on the radial control technique (see Refs. [13,17]). Within
the current work, the rub and impact forces between the rotating disc and the pole-legs
are included in the studied system for the first time. In addition, a new design for the
eight poles positions is introduced, which causes the rotor-AMBS to behave either as radial
control or cartesian control depending on the magnitude of the proportional gain. Accord-
ingly, the new design incorporates the advantage of both the radial and cartesian control
methods. Moreover, the introduced analysis demonstrated that the considered system may
exhibit different nonlinear phenomena, such as the oscillations in full annular rub mode or
quasiperiodic partial rub mode depending on the impact stiffness and the dynamic friction
coefficient.

2. Mathematical Formulation

The 8-poles AMBS is depicted in Figure 1a. The system has been modeled as a rigid-
body, two-degree-of-freedom system with mass m, disc eccentricity e, and rotates with the
spinning speed ω. The system is supported through 8 electromagnetic poles to cause the
disc to rotate in its hovering position via generating the controllable magnetic restoring
forces FMX and FMY in X and Y directions. Accordingly, the equations of motion for the
system under consideration are [25]:

m
..
x(t) = meω2 cos(ωt + α) + FMX + FCX , (1)

m
..
y(t) = meω2 sin(ωt + α) + FMY + FCY. (2)

where x(t),
.
x(t),

..
x(t) are the instantaneous position, velocity, and acceleration of disc

in the X−direction, while y(t),
.
y(t),

..
y(t) are the instantaneous position, velocity, and

acceleration of the disc in the Y−direction. meω2 cos(ωt + α) and meω2 sin(ωt + α) are the
centrifugal force components in X and Y directions, respectively. When the magnetic forces
FMX and FMY fail to support the rotating shaft in its hovering position due to centrifugal
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force (meω2), the rotor may touch the stator housing as shown in Figure 1b, which results
in the appearance of rub and impact forces (i.e., FT and FN) on the rotor–stator interface.
The rub-impact force components in X and Y directions are denoted as FCX and FCY as
given in Equations (1) and (2).
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2.1. Electromagnetic Restoring Forces FMX and FMY

The attractive electromagnetic force f j between each pole and the rotating disc can be
expressed according to the electromagnetic theory as follows [26]:

f j =
µAn2 I2

j

4H2
j

cos(θ), j= 1, 2, . . . , 8. (3)

where µ is the magnetic permeability, A is the cross-sectional area of each electromagnetic
pole, n is the windings number of the electric coil of each pole, Ij is the electric current
applied on each pole, Hj is the actual air gap between the rotating disc and each pole, and
θ is the half-angle of the radial electromagnetic circuit as shown in Figure 1a. It is worth
mentioning that the eight poles are considered to be symmetric. Depending on Figure 1a,
for small deviations x and y of the rotating disc, the actual air gap Hj among the jth pole
and the rotating disc can be written as follows:

Hj = s0 ∓ x, j = 1, 5,
Hj = s0 ∓ x cos(β)∓ y cos(β), j = 2, 6,
Hj = s0 ± x cos(β)∓ y cos(β), j = 4, 8,
Hj = s0 ∓ y, j = 3, 7

 (4)

where s0 is the air-gap size between the rotor and stator when the rotating disc is in its
nominal position, and β = 45◦ is the angle between every two consecutive poles as depicted
in Figure 1a. Depending on the geometry of the considered system, the electric current in
the eight poles is suggested as follows:
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I1 = I0 − ix, I2 = I0 − ix − iy, I3 = I0 − iy, I4 = I0 + ix − iy,
I5 = I0 + ix, I6 = I0 + ix + iy, I7 = I0 + iy, I8 = I0 − ix + iy.

}
(5)

where I0 is a constant bias current, ix and iy are the control currents that depend on the
displacements and velocities of the rotating disc in X and Y directions, respectively. The
control currents are proposed such that:

ix(t) = k1x(t) + k2
.
x(t), iy(t) = k1y(t) + k2

.
y(t) (6)

where k1 and k2 are two constants represent the proportional and derivative gains, respec-
tively. Inserting Equations (4)–(6) into Equation (3), we have

f1 =
1
4

µn2 A cos(θ)
I2
1

H2
1
=

1
4

µn2 A cos(θ)
(

I0 − ix

s0 − x

)2
(7)

f2 =
1
4

µn2 A cos(θ)
I2
2

H2
2
=

1
4

µn2 A cos(θ)
(

I0 − ix − iy

s0 − x cos(β)− y cos(β)

)2

(8)

f3 =
1
4

µn2 A cos(θ)
I2
3

H2
3
=

1
4

µn2 A cos(θ)
(

I0 − iy

s0 − y

)2

(9)

f4 =
1
4

µn2 A cos(θ)
I2
4

H2
4
=

1
4

µn2 A cos(θ)
(

I0 + ix − iy

s0 + x cos(β)− y cos(β)

)2

(10)

f5 =
1
4

µn2 A cos(θ)
I2
5

H2
5
=

1
4

µn2 A cos(θ)
(

I0 + ix

s0 + x

)2
(11)

f6 =
1
4

µn2 A cos(θ)
I2
6

H2
6
=

1
4

µn2 A cos(θ)
(

I0 + ix + iy

s0 + x cos(β) + y cos(β)

)2

(12)

f7 =
1
4

µn2 A cos(θ)
I2
7

H2
7
=

1
4

µn2 A cos(θ)
(

I0 + iy

s0 + y

)2

(13)

f8 =
1
4

µn2 A cos(θ)
I2
8

H2
8
=

1
4

µn2 A cos(θ)
(

I0 − ix + iy

s0 − x cos(β) + y cos(β)

)2

(14)

Depending on the geometry of Figure 1a, the resultant restoring forces FMX and FMY
as in Equations (1) and (2) can be represented as follows:

FMX = f1 − f5 + ( f2 + f8 − f4 − f6) cos(β) (15)

FMY = f3 − f7 + ( f2 + f4 − f6 − f8) cos(β) (16)

By expanding the nonlinear forces f j (i = 1, 2, . . . , 8) in Equations (7)–(14) using
a third-order maclurin series in terms of x, y, ix, iy, and then substituting the resulting
equations into Equations (15) and (16), we have

FMX = 1
4s5

0
µn2 A cos(θ)

[(
8 cos2(β)s2

0 I2
0 − 8 cos(β)s3

0 I0k1 − 4s3
0 I0k1

+4s2
0 I2

0
)
x−

(
4s3

0 I0k2 + 8 cos(β)s3
0 I0k2

) .
x +

(
4s2

0k2
1 + 8I2

0
+16 cos4(β)I2

0 + 8 cos2(β)s2
0k2

1 − 24 cos3(β)s0 I0k1−12s0 I0k1)x3

+
(
24 cos2(β)s2

0k2
1 − 72 cos3(β)s0 I0k1 +48 cos4(β)I2

0
)
xy2

+
(
−24 cos3(β)s0 I0k2 + 16 cos2(β)s2

0k1k2 − 12s0 I0k2 +8s2
0k1k2

)
x2 .

x
+
(
4s2

0k2
2 + 8 cos2(β)s2

0k2
2
)
x

.
x2

+
(
32 cos2(β)s2

0k1k2

−48 cos3(β)s0 I0k2
)
xy

.
y + 8 cos2(β)s2

0k2
2x

.
y2

+16 cos2(β)s2
0k2

2
.
xy

.
y +

(
16 cos2(β)s2

0k1k2 −24 cos3(β)s0 I0k2
) .
xy2]

(17)
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FMY = 1
4s5

0
µn2 A cos(θ)

[(
8 cos2(β)s2

0 I2
0 − 8 cos(β)s3

0 I0k1 − 4s3
0 I0k1

+4s2
0 I2

0
)
y−

(
4s3

0 I0k2 + 8 cos(β)s3
0 I0k2

) .
y +

(
4s2

0k2
1 + 8I2

0
+16 cos4(β)I2

0 + 8 cos2(β)s2
0k2

1 − 24 cos3(β)s0 I0k1−12s0 I0k1)y3

+
(
24 cos2(β)s2

0k2
1 − 72 cos3(β)s0 I0k1 + 48 cos4(β)I2

0
)
yx2

+
(
−24 cos3(β)s0 I0k2 + 16 cos2(β)s2

0k1k2 − 12s0 I0k2 +8s2
0k1k2

)
y2 .

y
+
(
4s2

0k2
2 + 8 cos2(β)s2

0k2
2
)
y

.
y2

+
(
32 cos2(β)s2

0k1k2

−48 cos3(β)s0 I0k2
)
yx

.
x + 8 cos2(β)s2

0k2
2y

.
x2

+ 16 cos2(β)s2
0k2

2
.
yx

.
x

+
(
16 cos2(β)s2

0k1k2 −24 cos3(β)s0 I0k2
) .
yx2]

(18)

2.2. Rub and Impact Forces FCX and FCY

The rotor AMBS disc is constrained within the electromagnetic poles’ housing. There-
fore, if the rotating disc oscillates with instantaneous radial displacement R(t) =√

x(t)2 + y(t)2 that is larger than the nominal air gap s0 (i.e., when R(t) ≥ s0) as illustrated
in Figure 1b, contact between the rotating disc and the pole leg should occur. The occur-
rence of this contact results in both impact force (FN) and rub force (FT) on the rotor–stator
interface. Accordingly, the rub and impact forces can be expressed as follows [27–30]:

FN(t) = k(R− s0) H(R− s0), (19)

FT = µ f FN = µ f k(R− s0)H(R− s0). (20)

where k is the impact stiffness coefficient between the rotor and the pole leg, µ f is the
dynamic friction coefficient between the rotating disc and poles, and H is the Heaviside
function. Based on the geometry of Figure 1b, the resultant components of the rub and
impact forces in X and Y directions can be written as follows:

FCX = −FT sin(ωt)− FN cos(ωt) =
k
R
(R− s0)

(
µ f y− x

)
H(R− s0) (21)

FCY = −FT cos(υt)− FN sin(υt) = − k
R
(R− s0)

(
µ f x + y

)
H(R− s0). (22)

where cos(ωt) = x
R , sin(ωt) = y

R as it is clear from Figure 1b.

2.3. The Rotor System Equations of Motion

Substituting Equations (17), (18), (21) and (22) into Equations (1) and (2), with
the introduction of the dimensionless quantities u = x

s0
, v = y

s0
, r =

√
u2 + v2 =√(

x
s0

)2
+
(

y
s0

)2
= R

s0
, τ = ωnt,

.
u =

.
x

ωns0
,

.
v =

.
y

ωns0
,

..
u =

..
x

ω2
ns0

,
..
v =

..
y

ω2
ns0

, δ1 = s0
I0

k1, δ2 =

s0ωn
I0

k2, λ = k
mω2

n
, E = e

s0
, Ω = ω

ωn
, and ωn =

√
µI2

0 n2 Acos(θ)
4ms3

0
, the following normalized

equations of motion can be obtained:

d2u
dτ2 + µs

du
dτ + ω2

s u + η1u3 + η2uv2 + η3u2 du
dτ + η4u

(
du
dτ

)2
+ η5uv dv

dτ

+η6u
(

dv
dτ

)2
+ η7v

(
du
dτ

)(
dv
dτ

)
+ η8v2 du

dτ = EΩ2 cos(Ωτ + α)

+ λ
r (r− 1)

(
µ f v− u

)
H(r− 1),

(23)

d2v
dτ2 + µs

dv
dτ + ω2

s v + η1v3 + η2vu2 + η3v2 dv
dτ + η4v

(
dv
dτ

)2
+ η5vu du

dτ

+η6v
(

du
dτ

)2
+ η7u

(
du
dτ

)(
dv
dτ

)
+ η8u2 dv

dτ = EΩ2 sin(Ωτ + α)

− λ
r (r− 1)

(
µ f u + v

)
H(r− 1).

(24)

where the system parameters µs, ω2
s , ηj , (j = 1, 2, . . . , 8) are given in Appendix A. It is

important to notice that the introduced normalized coordinates u = x
s0

and v = y
s0

are the
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ratio of the instantaneous displacements x(t) and y(t) to the air-gap size s0. Accordingly, if
|u(τ)| < 1 and |v(τ)| < 1, the rotating disc vibrated without rub and/or impact between
the disc and the pole legs. However, if |u(τ)| ≥ 1 and/or |v(τ)| ≥ 1, the rub-impact force
appears on the rotor–stator interface. So, the derived equations of motion (i.e., Equations
(23) and (24)) are analyzed in two stages. Firstly, the rotor AMBS is investigated as a
continuous dynamical system when omitting the rub and impact forces via setting the
impact stiffness coefficient λ = k

mω2
n
= 0 in order to determine the conditions at which the

rub and/or the impact occurs. Secondly, utilizing the Poincare map, bifurcation diagram,
and frequency spectrum, the entire system is numerically explored to investigate system
oscillations when the rub and/or impact forces are assured.

3. Periodic Solution and Amplitude-Phase Modulating Equations of the
Continuous System

Utilizing the multiple time scales method, the periodic solution of the considered
system when the rub-impact force is omitted (i.e., λ = 0) can be proposed as follows [31]:

u(τ) = u1(T0, T1) + εu2(T0, T1) + O
(

ε2
)

(25)

v(τ) = v1(T0, T1) + εv2(T0, T1) + O
(

ε2
)

(26)

In terms of T0 = τ and T1 = ετ, the time derivatives are transformed to:

d
dτ

= D0 + εD1,
d2

dτ2 = D2
0 + 2εD0D1, Dj =

∂

∂Tj
, j = 0, 1 (27)

Accordingly, the system parameters can be scaled as follows:

µs = εµ̂s, E = εÊ, ηj = εη̂j, j = 1, 2, . . . , 8. (28)

Substituting Equations (25)–(28) into Equations (23) and (24) while comparing the
coefficients of ε0 and ε1, we have

O
(
ε0) : (

D2
0 + ω2

s

)
u1 = 0 (29)(

D2
0 + ω2

s

)
v1 = 0 (30)

O
(
ε1) :(

D2
0 + ω2

s
)
u2 = −2D0D1u1 − µ̂sD0u1 − η̂1u3

1 − η2u1v2
1 − η3u2

1(D0u1)

−η4u1(D0u1)
2 − η5u1v1(D0v1)− η̂6u1(D0v1)

2

−η7(D0u1)v1(D0v1)− η̂8(D0u1)v2
1 + ÊΩ2 cos(Ωτ + α)

(31)

(
D2

0 + ω2
s
)
v2 = −2D0D1v1 − µ̂sD0v1 − η̂1v3

1 − η2v1u2
1 − η3v2

1(D0v1)

−η4v1(D0v1)
2 − η5v1u1(D0u1)− η̂6v1(D0u1)

2

−η7(D0v1)u1(D0u1)− η̂8(D0v1)u2
1 + ÊΩ2 sin(Ωτ + α)

(32)

The solutions of Equations (29) and (30) can be written in the following form:

u1(T0, T1) = A1(T1)eiωsT0 + A1(T1)e−iωsT0 (33)

v1(T0, T1) = A2(T1)eiωsT0 + A2(T1)e−iωsT0 (34)

where the coefficients Aj(T1) {j = 1, 2} are two unknown functions of T1 up to this stage
of the analysis, while Aj(T1) are the complex conjugate of Aj(T1). Substituting Equations
(33) and (34) into Equations (31) and (32), we can conclude the primary resonance case
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(Ω ∼= ωs) with 1:1 internal resonance. We introduce the detuning parameter σ to describe
the closeness of the disc spinning-speed Ω to the system natural frequency ωs as follows:

Ω = ωs + σ = ωs + εσ̂, ? (35)

Inserting Equations (33), (34), and (35) into Equations (31) and (32), we get the solv-
ability conditions of Equations (31) and (32) as follows:

−2iωs
d

dT1
A1(T1)− iµ̂sωs A1(T1)− 3η̂1 A2

1(T1)A1(T1)

−2η2 A1(T)A2(T1)A2(T1)− η2 A1(T1)A2
2(T1)− iη3ωs A2

1(T1)A1(T1)
−η̂4ω2

s A2
1(T)A1(T1)− iη5ωs A1(T1)A2

2(T)− 2η6ω2
s A1(T1)A2(T1)A2(T1)

+η̂6ω2
s A1(T1)A2

2(T1)− η̂7ω2
s A1(T1)A2

2(T1)− 2iη8ωs A1(T1)A2(T1)A2(T1)

+iη̂8ωs A1(T1)A2
2(T1) +

1
2 FΩ2ei(σ̂T1+α) = 0,

(36)

−2iωs
d

dT1
A2(T1)− iµ̂sωs A2(T1)− 3η̂1 A2

2(T1)A2(T1)− 2η2 A2(T)A1(T1)A1(T1)

−η2 A2(T1)A2
1(T1)− iη3ωs A2

2(T1)A2(T1)− η̂4ω2
s A2

2(T)A2(T1)
−iη5ωs A2(T1)A2

1(T)− 2η6ω2
s A2(T1)A1(T1)A1(T1) + η̂6ω2

s A2(T1)A2
1(T1)

−η̂7ω2
s A2(T1)A2

1(T1)− 2iη8ωs A2(T1)A1(T1)A1(T1) + iη̂8ωs A2(T1)A2
1(T1)

− 1
2 iFΩ2ei(σ̂T1+α) = 0.

(37)

By replacing the functions Aj(T1) =
aj
2 eiθj {j = 1, 2} into Equations (36) and (37)

while restoring the system parameters to their original form (i.e., T1 = ετ , µ̂s =
µ
ε , Ê = E

ε ,

η̂j =
ηj
ε , j = 1, 2, . . . , 8

)
, we can obtain the following amplitude-phase modulating equa-

tions:

d
dτ a1 = F1(a1, a2, γ1, γ2) = − 1

2 µsa1 +
1

8ω η2a1a2
2 sin(2γ1 − 2γ2)− 1

8 η3a3
1

− 1
8 η5a1a2

2 cos(2γ1 − 2γ2)− 1
8 η6ωsa1a2

2 sin(2γ1 − 2γ2)
+ 1

8 η7ωsa1a2
2 sin(2γ1 − 2γ2)− 1

4 η8a1a2
2 +

1
8 η8a1a2

2 cos(2γ1 − 2γ2)
− 1

2ωs
EΩ2 sin(γ1)

(38)

d
dτ a2 = F2(a1, a2, γ1, γ2) = − 1

2 µsa2 − 1
8ωs

η2a2a2
1 sin(2γ1 − 2γ2)− 1

8 η3a3
2

− 1
8 η5a2a2

1 cos(2γ1 − 2γ2) +
1
8 η6ωsa2a2

1 sin(2γ1 − 2γ2)
− 1

8 η7ωsa2a2
1 sin(2γ1 − 2γ2)− 1

4 η8a2a2
1 +

1
8 η8a2a2

1 cos(2γ1 − 2γ2)
− 1

2ωs
EΩ2 cos(γ2)

(39)

d
dτ γ1 = F3(a1, a2, γ1, γ2) = −σ + 3

8ωs
η1a2

1 +
1

8ωs
η2a2

2 cos(2γ1 − 2γ2)

+ 1
4ωs

η2a2
2 +

1
8 η4ωsa2

1 +
1
8 η5a2

2 sin(2γ1 − 2γ2)

− 1
8 η6ωsa2

2 cos(2γ1 − 2γ2) +
1
4 η6ωsa2

2 +
1
8 η7ωsa2

2 cos(2γ1 − 2γ2)
− 1

8 η8a2
2 sin(2γ1 − 2γ2)− 1

2ωsa1
EΩ2 cos(γ1)

(40)

d
dτ γ2 = F4(a1, a2, γ1, γ2) = −σ + 3

8ωs
η1a2

2 +
1

8ωs
η2a2

1 cos(2γ1 − 2γ2)

+ 1
4ωs

η2a2
1 +

1
8 η4ωsa2

2 −
1
8 η5a2

1 sin(2γ1 − 2γ2)

− 1
8 η6ωsa2

1 cos(2γ1 − 2γ2) +
1
4 η6ωsa2

1 +
1
8 η7ωsa2

1 cos(2γ1 − 2γ2)
+ 1

8 η8a2
1 sin(2γ1 − 2γ2) +

1
2ωsa2

EΩ2 sin(γ2)

(41)

where γ1 = θ1 − στ − α, γ2 = θ2 − στ − α. Substituting Equations (33) and (34) into
Equations (25) and (26) with replacing Aj(T1) =

aj
2 eiθj {j = 1, 2}, we can obtain the

following periodic solution of the system’s original equations (i.e., Equations (23) and (24))
when λ = 0 as follows:

u(τ) = a1(τ) cos(Ωτ + γ1) (42)

v(τ) = a2(τ) cos(Ωτ + γ2) (43)

According to Equations (42) and (43), the functions a1(τ), a2(τ) represent the vibration
amplitudes of the rotor AMBS system when λ = 0 in X and Y directions, respectively,
and γ1(τ), γ2(τ) denote the phase-angles of the system motion. These functions a1(τ),
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a2(τ), γ1(τ), and γ2(τ) are governed by the nonlinear autonomous dynamical system
given by Equations (38)–(41). Accordingly, setting da1

dτ = da2
dτ = dγ1

dτ = dγ2
dτ = 0 into

Equations (38)–(41), we get the following nonlinear system of algebraic equations:

− 1
2 µsa1 +

1
8ω η2a1a2

2 sin(2γ1 − 2γ2)− 1
8 η3a3

1 −
1
8 η5a1a2

2 cos(2γ1 − 2γ2)
− 1

8 η6ωsa1a2
2 sin(2γ1 − 2γ2) +

1
8 η7ωsa1a2

2 sin(2γ1 − 2γ2)− 1
4 η8a1a2

2
+ 1

8 η8a1a2
2 cos(2γ1 − 2γ2)− 1

2ωs
EΩ2 sin(γ1) = 0

(44)

− 1
2 µsa2 − 1

8ω η2a2a2
1 sin(2γ1 − 2γ2)− 1

8 η3a3
2 −

1
8 η5a2a2

1 cos(2γ1 − 2γ2)
+ 1

8 η6ωsa2a2
1 sin(2γ1 − 2γ2)− 1

8 η7ωsa2a2
1 sin(2γ1 − 2γ2)− 1

4 η8a2a2
1

+ 1
8 η8a2a2

1 cos(2γ1 − 2γ2)− 1
2ωs

EΩ2 cos(γ2) = 0
(45)

−σ + 3
8ωs

η1a2
1 +

1
8ωs

η2a2
2 cos(2γ1 − 2γ2) +

1
4ωs

η2a2
2 +

1
8 η4ωsa2

1
+ 1

8 η5a2
2 sin(2γ1 − 2γ2)− 1

8 η6ωsa2
2 cos(2γ1 − 2γ2) +

1
4 η6ωsa2

2
+ 1

8 η7ωsa2
2 cos(2γ1 − 2γ2)− 1

8 η8a2
2 sin(2γ1 − 2γ2)

− 1
2ωsa1

EΩ2 cos(γ1) = 0

(46)

−σ + 3
8ωs

η1a2
2 +

1
8ωs

η2a2
1 cos(2γ1 − 2γ2) +

1
4ωs

η2a2
1 +

1
8 η4ωsa2

2
− 1

8 η5a2
1 sin(2γ1 − 2γ2)− 1

8 η6ωsa2
1 cos(2γ1 − 2γ2) +

1
4 η6ωsa2

1
+ 1

8 η7ωsa2
1 cos(2γ1 − 2γ2) +

1
8 η8a2

1 sin(2γ1 − 2γ2)
+ 1

2ωsa2
EΩ2 sin(γ2) = 0

(47)

By solving Equations (44)–(47) in terms of the system and control parameters (i.e.,
σ, E, δ1, δ2), we can obtain the different response curves as illustrated in Section 4. Further-
more, the stability of the solution of Equations (44)–(47) can be explored via investigating
the Jacobian matrix eigenvalues of the right-hand side of Equations (38)–(41). Let the
steady-state solution of Equations (44)–(47) be (a10, a20, γ10, γ20), while (a11, a21, γ11, γ21)
is a small perturbation about that steady-state solution. Accordingly, we can assume

a1 = a10 + a11, a2 = a20 + a21, γ1 = γ10 + γ11, γ2 = γ20 + γ21

⇒ da1
dτ = da11

dτ , da2
dτ = da21

dτ , dγ1
dτ = dγ11

dτ , dγ2
dτ = dγ21

dτ

}
(48)

Substituting Equation (48) into Equations (38)–(41), we can obtain the following
linearized model about the equilibrium point (a10, a20, γ10, γ20) as:


da11
dτ

da21
dτ

dγ11
dτ

dγ21
dτ

 =


∂F1
∂a11

∂F1
∂a21

∂F1
∂γ11

∂F1
∂γ21

∂F2
∂a11

∂F2
∂a21

∂F2
∂γ11

∂F2
∂γ21

∂F3
∂a11

∂F3
∂a21

∂F3
∂γ11

∂F3
∂γ21

∂F4
∂a11

∂F4
∂a21

∂F4
∂γ11

∂F4
∂γ21




a11
a21
γ11
γ21

 (49)

where the coefficients of the above Jacobian matrix are given in the Appendix B. Accord-
ingly, the steady-state solutions of the autonomous system (Equations (38)–(41)) can be
given via solving the nonlinear algebraic equations (Equations (44)–(47)). Additionally, the
stability of that solution can be investigated via exploring the eigenvalues of the Jacobian
matrix.

4. Oscillatory Behaviors of the Rotor System with and without Rub-Impact Force

According to the periodic solutions given by Equations (42) and (43), it is easy to
show that the rotor system can oscillate without rub-impact force occurrence if |u(τ)| =
|a1(τ) cos(Ωτ + γ1)| < 1 and |v(τ)| = |a2(τ) cos(Ωτ + γ2)| < 1. This implies that as long
a1 < 1 and a2 < 1, there is no rub-impact force between the rotor and the stator, otherwise
(i.e., if a1 ≥ 1 and/or a2 ≥ 1) the rub-impact force between the rotor and stator occurs.
Accordingly, the steady-state oscillations of the considered system can be investigated via
solving the nonlinear algebraic system given by Equations (44)–(47) numerically in terms
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of the system parameters σ, E, δ1, and δ2 as long as a1 < 1 and a2 < 1. In addition, the
solution stability of Equations (44)–(47) can be explored via examining the eigenvalues
of the linearized system given by Equation (49). However, if a1 ≥ 1 and/or a2 ≥ 1,
this means there is the occurrence of the rub and/or impact forces, which necessitates
the investigation of the whole discontinuous system given by Equations (23) and (24)
numerically when λ 6= 0. The different response curves and bifurcation diagrams are
obtained via adopting the actual and the corresponding dimensionless parameters given in
Table 1 (See Refs. [21,27]). By solving Equations (44)–(47) using MATLAB software, one
can obtain the different response curves as in Figure 2 where the stable solution is shown
by the solid line, while the unstable solution is represented by the dotted line. To confirm
the accuracy of the obtained response curves, Equations (23) and (24) (when λ = 0) has
been integrated numerically using the ODE45 MATLAB function. The obtained numerical
results are illustrated as small circles (when sweeping the bifurcation parameters forward)
and as big dots (when sweeping the bifurcation parameters backward).
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Figure 2. Spinning-speed response curves (i.e., Ω = ωs + σ) of the rotor AMBS at δ1 = 0.9 when E = 0.015, 0.025, and 0.035:
(a,c) oscillation amplitude in X direction, (b,d) oscillation amplitude in Y direction.
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Table 1. Rotor AMBS parameters.

Physical Parameters Dimensionless Parameters

Rotor radius R = 0.15 m E 0.025
Rotor thickness d = 0.015 m α 0.0

Rotor mass m = 8 kg λ 5.0
Rotor eccentricity e = 1.25× 10−4 m µ f 0.2

The angle between the poles (β) β = 45◦ Ω ωs + σ
Air-gap size s0 = 5× 10−3 m δ1 0.9

Effective cross-sectional area of
the pole A cos θ = 7.44× 10−4 m2 δ2 0.008

turn-numbers of each coil n = 1000
Bias current I0 = 2 A

Magnetic permeability µ = 4π × 10−7 NA−2

Impact stiffness coefficient k = 3.7397× 104 N·m−1

Proportional gain k1 = 360 A/m
Velocity gain k2 = 0.105 A·S/m

The constant ωn ωn =

√
µI2

0 n2 Acos(θ)
4ms3

0
= 30.58

4.1. The Rotor System Response Curves at Small Proportional Gain (δ1 = 0.9)

Figure 2 shows the considered system oscillation amplitudes a1 and a2 against the
detuning parameter σ via solving Equations (44)–(47) at δ1 = 0.9, E = 0.015, 0.025, and
0.035. It is clear from the figure that the system responds as a linear system for the small
disc eccentricities (i.e., E = 0.015), while the nonlinearities dominate the system response
as the disc eccentricity increases (i.e., E = 0.025, 0.035). The figure also shows that at
E = 0.025, 0.035, the system has a bistable solution close to σ = 0, indicating that the rotor
system can oscillate harmonically with one of two stable amplitudes depending on the
initial conditions. Furthermore, the maximum oscillation amplitude either in the horizontal
or the vertical directions is lower than unity (i.e., a1 < 1 and a2 < 1) along the σ axis, which
causes the lateral oscillations for the rotor system without rub and/or impact between the
rotor and stator.

Figure 3 shows numerical simulations for the system equations of motion (i.e., Equa-
tions (23) and (24)) corresponding to Figure 2c,d when σ = 0.0. The figure shows the system
temporal oscillations u(τ) and v(τ) (i.e., Figure 3a,b) and the corresponding whirling orbits
(i.e., Figure 3c) when E = 0.035, δ1 = 0.9, δ2 = 0.008 σ = 0, λ = 5.0 and µ f = 0.2 at the two
initial conditions u(0) = v(0) =

.
u(0) =

.
v(0) = 0.0 and u(0) = v(0) =

.
u(0) =

.
v(0) = 0.5.

The system’s sensitivity to the initial conditions is shown in Figure 3, where the system
performs one of two spinning motions depending on the initial conditions. By examining
Figure 3, we can conclude that the rotor system can oscillate by the oscillation amplitudes
a1 = 0.42 & a2 = 0.2 or a1 = 0.2 & a2 = 0.42 depending on the initial conditions, which
agree with Figure 2c,d at σ = 0.0. Accordingly, it is worth mentioning that the obtained
nonlinear algebraic system (i.e., Equations (44)–(47)) describes with excellent accuracy the
steady-state oscillation amplitude of the studied system (i.e., Equations (23) and (24)) when
λ = 0.0.

To investigate the oscillatory behaviors of the rotating disc when the rub-impact force
occurs (i.e., when a1 ≥ 1 and a2 ≥ 1), the eccentricity response curve and the corresponding
bifurcation diagrams are plotted as shown in Figure 4 when σ = 0.0. Utilizing Equations
(44)–(47), the system eccentricity response curves are obtained as in Figure 4a,b when
σ = 0.0, δ1 = 0.9. Figure 4a,b shows that the rotor system can vibrate with oscillation
amplitudes lower than unity (i.e., a1 < 1 and a2 < 1) if the disc eccentricity E < 0.1176,
which means that the rotating disc can oscillate harmonically without rub and/or impact
forces as long as E < 0.1176. However, when increasing the disc eccentricity to become
0.1176 < E < 0.4, the rotor system will perform at an oscillation amplitude higher than
unity either in the horizontal or the vertical direction depending on the initial conditions
(i.e., a1 > 1 or a2 > 1), resulting in rub and/or impact forces between the rotating disc and
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the pole legs. Moreover, Figure 4a,b illustrates that increasing the disc eccentricity beyond
0.4 (i.e., E > 0.4) results in losing the stability of the rotor system.
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Figure 3. (a,b) The steady-state temporal oscillations, and (c) the corresponding whirling motion of the rotor AMBS
according to Figure 2 when σ = 0 (i.e., when Ω = ωs) at the two initial conditions u(0) = v(0) =

.
u(0) =

.
v(0) = 0.0 and

u(0) = v(0) =
.
u(0) =

.
v(0) = 0.5.

According to Figure 4a,b, the bifurcation diagram of the system is obtained as
shown in Figure 4c utilizing the disc eccentricity as the bifurcation parameter when
δ1 = 0.9, σ = 0, λ = 5.0, µ f = 0.2. Figure 4c is obtained by plotting the Poincare
map of the instantaneous radial displacement r(τ) =

√
u2(τ) + v2(τ) versus the disc

eccentricity via solving of the system original equations (i.e., Equations (23) and (24))
numerically. It is clear from Figure 4c that the rotor system exhibits a periodic solution
regardless of the disc eccentricity magnitudes. However, Figure 4a,b show that the sys-
tem’s stability may be lost when E > 0.4. Accordingly, we can deduce that the existence
of rub and/or impact forces may result in stabilizing the system’s unstable motions. The
instantaneous radial displacement r(τ) and the corresponding whirling orbit, Poincare
map, and frequency spectrum of the rotor system are shown in Figures 5 and 6 according to
the obtained results in Figure 4. The radial oscillation r(τ) and the corresponding whirling
motion of the rotor system are simulated in Figure 5 at E = 0.2 and µ f = 0.2 when the
impact stiffness coefficient λ = 0.0, 5.0. Figure 5a–c shows the system temporal oscillation
when λ = 0 (i.e., when the rub-impact force is zero), while Figure 5d–f illustrates the
system temporal oscillation when λ = 5.0. Generally, Figure 5 confirms that the rotor
AMBS system can execute periodic-1 motion either when λ = 0.0 or λ = 5.0 at E = 0.2.
However, the existence of the rub-impact force (i.e., λ = 5.0) between the rotor and stator
can play an important role in mitigating the system oscillations (i.e., compare Figure 5b,e).

Figure 6 is a repetition for Figure 5 when the disc eccentricity E = 0.45. Figure 6a–c
shows the system temporal oscillations, whirling motion, and frequency spectrum when
λ = 0.0, while Figure 6d–f illustrates the system temporal oscillations, whirling motion,
and frequency spectrum when λ = 5.0. It is clear from Figure 6c that the rotor system
can perform chaotic oscillations at E = 0.45 when λ = 0.0, which agrees with Figure 4a,b.
However, Figure 6f shows that the existence of rub-impact forces between the rotor and
stator (i.e., λ = 5.0) can force the chaotic oscillation to become a periodic-1, which agrees
with the bifurcation diagram given in Figure 4c.
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The eccentricity response curve when σ = 0.1 and δ1 = 0.9 and the corresponding
bifurcation diagram are depicted in Figure 7. The steady-state oscillation amplitudes (a1 and
a2) are plotted versus the disc eccentricity E via solving Equations (44)–(47) numerically in
terms of E as shown in Figure 7a,b, while the bifurcation diagram in Figure 7c is obtained via
solving Equations (23) and (24) numerically and plotting the corresponding Poincare map
versus the disc eccentricity E when σ = 0.1, δ1 = 0.9, µ f = 0.2 and λ = 5.0. Figure 7a,b
illustrates that the system can oscillate harmonically without rub-impact occurrences if
the disc eccentricity E < 0.116 while increasing the disc eccentricity beyond 0.116 (i.e.,
E > 0.116) results in losing the stability of the rotor system. Figure 7c confirms that the
rotor system can exhibit periodic motions if E < 0.116, but increasing the disc eccentricity
beyond 0.116 results in periodic-n motion. According to Figure 7c, we can confirm that the
existence of the rub-impact force between the rotor and stator may result in stabilizing the
unstable oscillations of the rotor system.
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Figure 5. The steady-state radial oscillation r(τ), the whirling orbit, and frequency spectrum of the rotor AMBS according
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frequency spectrum when λ = 5.0, µ f = 0.2.
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The temporal vibrations of the rotor system when E = 0.2, 0.4 according to Figure 7
are simulated in Figures 8 and 9. Figure 8 simulates the radial oscillation, whirling orbit,
and frequency spectrum of the AMBS system at E = 0.2 when λ = 0.0 (as shown in
Figure 8a,c), and when λ = 5.0 (as shown in Figure 8d–f). It is clear from Figure 8 that the
quasiperiodic motion of the system that occurs when λ = 0.0 becomes a periodic one if
the rub-impact force is considered (i.e., when λ = 5.0). Furthermore, Figure 9 shows the
rotor system temporal oscillations at E = 0.4 when λ = 0.0, 5.0, where Figure 9a–c shows
that the rotor system can respond with chaotic oscillation when the rub and impact forces
between the rotor and stator are zero. However, Figure 9d–f confirms that the existence of
rub and/or impact forces between the rotor and the pole legs (i.e., λ = 5.0) can force the
chaotic motions to become a periodic-13 one.
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Figure 9. The steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and frequency spectrum of the rotor AMBS according 
to Figure 7 when 𝐸 = 0.4, 𝛿 = 0.9, 𝜎 = 0.1: (a–c) Steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and frequency 
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Figure 8. The steady-state radial oscillation r(τ), the whirling orbit, and frequency spectrum of the rotor AMBS according
to Figure 7 when E = 0.2, δ1 = 0.9, σ = 0.1: (a–c) Steady-state radial oscillation r(τ), the whirling orbit, and frequency
spectrum when the rub-impact is neglected (i.e., λ = 0.0), (d–f) steady-state radial oscillation r(τ), the whirling orbit, and
frequency spectrum when λ = 5.0, µ f = 0.2.

Symmetry 2021, 13, x FOR PEER REVIEW  19 of 30 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. The steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and frequency spectrum of the rotor AMBS according 
to Figure 7 when 𝐸 = 0.2, 𝛿 = 0.9, 𝜎 = 0.1: (a–c) Steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and frequency 
spectrum when the rub-impact is neglected (i.e., 𝜆 = 0.0), (d–f) steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and 
frequency spectrum when 𝜆 = 5.0, 𝜇 = 0.2. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. The steady-state radial oscillation 𝑟(𝜏), the whirling orbit, and frequency spectrum of the rotor AMBS according 
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Figure 9. The steady-state radial oscillation r(τ), the whirling orbit, and frequency spectrum of the rotor AMBS according
to Figure 7 when E = 0.4, δ1 = 0.9, σ = 0.1: (a–c) Steady-state radial oscillation r(τ), the whirling orbit, and frequency
spectrum when the rub-impact is neglected (i.e., λ = 0.0), (d–f) steady-state radial oscillation r(τ), the whirling orbit, and
frequency spectrum when λ = 5.0, µ f = 0.2.
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4.2. The Rotor System Response Curves at Large Proportional Gain (δ1 = 1.1)

Figure 10 shows the rotor system response curve at different values of the proportional
gain (i.e., δ1 = 0.9, 1.0, 1.1) when the disc eccentricity E = 0.035. It is clear from the figure
that the increase of the proportional gain increases the rotor oscillation amplitudes and
bends the response curves to the right leading to hard spring characteristics. However, in
all previously studied control configurations (see Refs. [2,3,9,10,15–17]), it is found that the
increase of the proportional gain results in increasing the oscillation amplitudes of the rotor
system and bends the response curves to the left leading to softening spring characteristics.
In addition, Figure 10 depicts that the controlled rotor AMBS can respond as in the case of
the cartesian control configuration when the proportional control gain is small (i.e., when
δ1 = 0.9), but increasing the proportional gain to δ1 = 1.1 causes the response curve to be
like that of the radial control configuration (see Refs. [15,17]). Accordingly, we can confirm
that the proposed control method behaves like the Cartesian controller when δ1 = 0.9, but
when δ1 = 1.1, the suggested control algorithm behaves as in the case of radial control
configuration. According to Figure 10, the effect of increasing the disc eccentricity on the
rotor system spinning speed response curves is illustrated in Figure 11 when δ1 = 1.1. It
is clear from the figure that the system oscillation amplitude is a monotonic increasing
function of the disc eccentricity. Moreover, the rotor system responds as a linear system
when E = 0.015, but the nonlinearity dominates the system response when increasing the
eccentricity to E = 0.025, 0.035.

Comparing Figure 2 with Figure 11, we can deduce that the proportional control gain
plays an important role in controlling the system dynamical behaviors, where at the low
value of δ1, the rotor system exhibits a bistable solution and responds with the maximum
oscillation amplitude close to σ = 0.0. However, Figure 11 illustrates that the increase
of the proportional gain to δ1 = 1.1 has bent the frequency response curves to the right
leading to hard spring characteristics and a bistable solution on the right-hand side of
σ = 0.0. In addition, the controlled rotor system responds as in the case of the cartesian
control configuration (see Refs. [15,17]) as in Figure 2 when δ1 = 0.9, while the system
responds as in the case of radial control strategy (see Refs. [15,17]) as in Figure 11 when
δ1 = 1.1.
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Figure 10. Spinning-speed response curves (i.e., Ω = 𝜔 + 𝜎) of the rotor AMBS at 𝐸 = 0.035 when 𝛿 = 0.9, 1.0, and 1.1: 
(a) oscillation amplitude in 𝑋 direction, (b) oscillation amplitude in 𝑌 direction. 
Figure 10. Spinning-speed response curves (i.e., Ω = ωs + σ) of the rotor AMBS at E = 0.035 when δ1 = 0.9, 1.0, and 1.1:
(a) oscillation amplitude in X direction, (b) oscillation amplitude in Y direction.
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Figure 11. Spinning-speed response curves (i.e., Ω = ωs + σ) of the rotor AMBS at δ1 = 1.1 when E = 0.015, 0.025, and
0.035: (a) oscillation amplitude in X direction, (b) oscillation amplitude in Y direction.

According to Figure 11, the eccentricity response curve of the rotor system at δ1 = 1.1
when σ = 0.0 is illustrated in Figure 12a via solving Equations (44)–(47). It is clear from
the figure that the rotor system can oscillate with vibration amplitudes lower than unity
(i.e., a1 < 1 and a2 < 1) as long as the disc eccentricity E < 0.3888, which means that the
rotating disc can oscillate harmonically without a rub-impact force if E < 0.3888. However,
increasing the disc eccentricity to become E > 0.3888, the rotor system will perform at an
oscillation amplitude higher than unity in both the horizontal and the vertical direction,
resulting in rub and/or impact forces among the rotor and the stator. Depending on the
reported results in Figure 12a, the system bifurcation diagram is obtained via plotting
the steady-state Poincare map for the system original equations (i.e., Equations (23) and
(24)) versus the disc eccentricity E when δ1 = 1.1, σ = 0.0, λ = 5.0, µ f = 0.2 as shown in
Figure 12b. The figure confirms that the rotor system can execute periodic-1 motions if the
eccentricity E < 0.3888, but for E > 0.3888, the system performs quasiperiodic oscillations.
Comparing Figure 12a,b, we can deduce that the rotor AMBS system executes periodic
oscillation as long as the rub-impact force between the rotor and stator does not occur,
while the occurrence of a rub-impact force at large disc eccentricities (i.e., E > 0.3888)
results in a quasiperiodic oscillation.

The temporal oscillation of the rotor system according to Figure 12 (i.e., when δ1 =
1.1, σ = 0.0) is simulated when the disc eccentricity E = 0.3, 0.45 as shown in Figures 13
and 14, respectively. the figures are obtained via solving Equations (23) and (24) numerically
when λ = 5.0, µ f = 0.2. It is clear from Figure 13 that the system performs periodic-1
motion with oscillation amplitudes lower than unity, where the rub-impact does not occur
as is clear in Figure 13b. On the other hand, Figure 14 illustrates the rotor system temporal
oscillations according to Figure 12 at E = 0.45. The figure confirms that the system oscillates
with oscillation amplitudes higher than unity, resulting in rub-impact force between the
rotor and the pole legs, which ultimately leads to quasiperiodic motion.

Figure 15 is a repetition pf Figure 12, but when the detuning parameter σ = 0.1 (i.e.,
when Ω = ω + 0.1). comparing Figure 15 with Figure 12, we can confirm the dominance
of the nonlinearity on the system eccentricity response curve, where the system has a
bistable solution for some values of the disc eccentricity. In addition, Figure 15a illustrates
that the rotor AMBS may encounter rub and/or impact forces if the disc eccentricity
E > 0.2371, which leads to quasiperiodic oscillation as illustrated in Figure 15b. According
to Figure 15, numerical simulations for radial oscillation of the rotor system are illustrated
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in Figures 16–18 when E = 0.25, 0.45, and 0.475, respectively. Comparing Figures 16–18
with Figure 15, we can demonstrate the great agreement between the analytic results (i.e.,
Figure 15) and the numerical simulations (i.e., Figures 16–18).
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Figure 18. (a)The steady-state radial oscillation r(τ), (b) the whirling orbit, and (c) frequency spectrum of the rotor AMBS
according to Figure 15 when E = 0.475, δ1 = 1.1, σ = 0.1, λ = 5.0, and µ f = 0.2.

The dynamical behavior of the rotor system when δ1 = 1.1 and σ = 0.1 at different
values of both the impact stiffness coefficient (λ) and the dynamic friction coefficient (µ f )
is investigated in Figure 19 via plotting the system bifurcation diagrams utilizing λ or
µ f as a bifurcation control parameter. Figure 19a shows the qualitative change of the
rotor motion with varying the impact stiffness coefficient from λ = 1 to λ = 20 when
E = 0.35, δ1 = 1.1, σ = 0.1 and µ f = 0.2, while Figure 19b illustrates the qualitative
change of the system motion when varying the dynamic friction coefficient from µ f = 0.05
to µ f = 0.4 when E = 0.35, δ1 = 1.1, σ = 0.1 and λ = 5.0. It is clear from Figure 19a that
the rotor system executes full annular rub mode with a periodic-1 motion as long as λ < 2,
while increasing the impact stiffness coefficient beyond 2 results in a quasiperiodic partial
rub motion. On the other hand, Figure 19b shows that the rotating disc can oscillate with
full annular rub mode if µ f < 0.095, while increasing the friction coefficient beyond 0.095
results in a quasiperiodic partial rub motion.
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Figure 19. The rotor system bifurcation diagrams when E = 0.35, δ1 = 1.1, and σ = 0.1: (a) Stiffness coefficient λ versus r
when µ f = 0.2, and (b) friction coefficient µ f versus r when λ = 5.0.

The temporal oscillations of the rotor system according to Figure 19 are simulated as
shown in Figures 20–23, where Figures 20 and 21 simulate the rotating disc according to
Figure 19a when λ = 1.5 and λ = 20, respectively. It is clear from Figure 20 that the rotating
disc executes periodic-1 motion with a full annular rub, while the impact force between the
rotor and stator disappeared when λ = 1.5. However, Figure 21 shows that the rotor system
can perform quasiperiodic oscillation with partial rub mode. Figures 22 and 23 illustrate
the temporal oscillations of the rotor system according to Figure 19b when µ f = 0.09 and
µ f = 0.35, respectively. Figure 22 demonstrates that the system may exhibit periodic-1
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motion with a full annular rub at µ f = 0.09, while the system performs quasiperiodic
motion when increasing the friction coefficient to µ f = 0.35 as shown in Figure 23.
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to Figure 19a (i.e., when 𝐸 = 0.35, 𝛿 = 1.1, 𝜎 = 0.1, 𝜇 = 0.2) at 𝜆 = 1.5. 

   
(a) (b) (c) 
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according to Figure 19b (i.e., when 𝐸 = 0.35, 𝛿 = 1.1, 𝜎 = 0.1, 𝜆 = 5) at 𝜇 = 0.09. 

Figure 20. (a) The steady-state radial oscillation r(τ), (b) the whirling orbit, and (c) frequency spectrum of the rotor AMBS
according to Figure 19a (i.e., when E = 0.35, δ1 = 1.1, σ = 0.1, µ f = 0.2) at λ = 1.5.
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Figure 22. (a) The steady-state radial oscillation r(τ), (b) the whirling orbit, and (c) frequency spectrum of the rotor AMBS
according to Figure 19b (i.e., when E = 0.35, δ1 = 1.1, σ = 0.1, λ = 5) at µ f = 0.09.
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Figure 23. (a) The steady-state radial oscillation r(τ), (b) the whirling orbit, and (c) frequency spectrum of the rotor AMBS
according to Figure 19b (i.e., when E = 0.35, δ1 = 1.1, σ = 0.1, λ = 5) at µ f = 0.35.

5. Conclusions

A new control scheme for the 8-pole rotor active magnetic bearing system is introduced
for the first time within this article. The system mathematical model is derived including
the rub and impact forces between the rotating disc and the 8-pole legs by means of
classical mechanics. Including the rub and impact forces between the rotating disc and
the poles legs results in obtaining a discontinuous two-degree-of-freedom dynamical
system. Accordingly, the derived mathematical model is investigated analytically to
determine the conditions at which the system may encounter rub and/or impact forces
between the rotor and stator utilizing perturbation methods. Then, the different bifurcation
diagrams are plotted to explore the nature of the system motion, either periodic, periodic-
n, quasiperiodic, or chaotic. Finally, numerical confirmations for all obtained analytical
results are introduced. According to the above discussion, the following remarks can
be concluded:

1. The proposed control method can behave either as a cartesian control strategy or as
radial control one depending on the magnitude of the proportional gain.

2. At small values of the proportional gain (i.e., when 0.8 < δ1 < 1), the rotor system
may exhibit unstable periodic oscillation at the larger disc eccentricities when the
impact stiffness coefficient is zero (i.e., when λ = 0.0).

3. At large disc eccentricities, the existence of rub and/or impact forces between the
rotating disc and the poles legs can cause the chaotic and quasiperiodic motions of
the rotor system to become periodic-n motions.

4. The rotor system exhibits stable periodic motions at large values of the proportional
gain (i.e., when δ1 > 1.1) as long as the rub-impact force between the rotor and stator
does not occur regardless of the disc eccentricity magnitude.

5. The occurrence of rub and/or impact forces between the rotor and stator (when
δ1 > 1.1) results in a quasiperiodic oscillation for the rotor system.

6. The magnitudes of both the impact stiffness coefficient (λ) and the friction coefficient(
µ f ) have a great influence on the rotor oscillation mode, where the system can

oscillate in full annular rub mode or a quasiperiodic partial rub mode depending on
the magnitudes of the impact stiffness coefficient and the dynamic friction coefficient.
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Abbreviations

x, y The rotating disc displacements in X and Y directions, respectively.
s0 The nominal air-gab size.

u, du
dτ , d2u

dτ2 Normalized displacement
(

u = x
s0

)
, velocity, and acceleration of the 8-pole

rotor in X direction.

v, dv
dτ , d2v

dτ2 Normalized displacement
(

v =
y
s0

)
, velocity, and acceleration of the 8-pole

rotor in Y direction.
τ Normalized time variable.
r Normalized radial displacement of the 8-pole rotor, where r =

√
u2 + v2.

µs Normalized linear damping coefficient of the 8-pole rotor system.
ωs The normalized linear natural frequency of the 8-pole rotor system.
Ω The normalized spinning speed of the 8-pole rotor system.
σ Detuning parameter, where σ = Ω−ωs
E The normalized eccentricity of the rotating disc.
δ1, δ2 Normalized proportional and velocity gains, respectively.
ηj, j = 1, 2, . . . , 8. Normalized cubic nonlinearities coefficients.
λ Normalized impact stiffness coefficient between the rotor and stator.
µ f The normalized dynamic friction coefficient between the rotor and stator.
H(r− 1) Heaviside function.
a1, a2 Normalized oscillation amplitudes in X and Y directions, respectively.
γ1, γ2 Normalized phase angles in X and Y directions, respectively.

Appendix A

µs = (4 + 8 cos(β))δ2,
ω2

s = 4δ1 + 8 cos(β)δ1 − 8 cos2(β)− 4,
η1 = 24 cos3(β)δ1 − 8 cos2(β)δ2

1 − 16 cos4(β)− 4δ2
1 + 12δ1 − 8

η2 = 72 cos3(β)δ1 − 48 cos4(β)− 24 cos2(β)δ2
1 ,

η3 = 24 cos3(β)δ2 − 16 cos2(β)δ1δ2 + 12δ2 − 8δ1δ2 ,
η4 = −4δ2

2 − 8 cos2(β)δ2
2 ,

η5 = 48 cos3(β)δ2 − 32 cos2(β)δ1δ2,
η6 = −8 cos2(β)δ2

2 ,
η7 = −16 cos2(β)δ2

2 ,
η8 = 24 cos3(β)δ2 − 16 cos2(β)δ1δ2
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Appendix B
∂F1
∂a11

= − 1
2 µs +

1
8ω η2a2

20 sin(2γ10 − 2γ20)− 3
8 η3a2

10 −
1
8 η5a2

20 cos(2γ10 − 2γ20)

− 1
8 η6ωsa2

20 sin(2γ10 − 2γ20) +
1
8 η7ωa2

20 sin(2γ10 − 2γ20)− 1
4 η8a2

20
+ 1

8 η8a2
20 cos(2γ10 − 2γ20),

∂F1
∂a21

= 1
4ω η2a10a20 sin(2γ10 − 2γ20)− 1

4 η5a10a20 cos(2γ10 − 2γ20)− 1
4 η6ωsa10a20 sin(2γ10 − 2γ20)

+ 1
4 η7ωsa10a20 sin(2γ10 − 2γ20)− 1

2 η8a10a20 +
1
4 η8a10a20 cos(2γ10 − 2γ20),

∂F1
∂γ11

= 1
4ω η2a10a2

20 cos(2γ10 − 2γ20) +
1
4 η5a10a2

20 sin(2γ10 − 2γ20)− 1
4 η6ωsa10a2

20 cos(2γ10 − 2γ20)

+ 1
4 η7ωsa10a2

20 cos(2γ10 − 2γ20)− 1
4 η8a10a2

20 sin(2γ10 − 2γ20)− 1
2ωs

EΩ2 cos(γ10),
∂F1
∂γ21

= − 1
4ω η2a10a2

20 cos(2γ10 − 2γ20)− 1
4 η5a10a2

20 sin(2γ10 − 2γ20) +
1
4 η6ωsa10a2

20 cos(2γ10 − 2γ20)

− 1
4 η7ωsa10a2

20 cos(2γ10 − 2γ20) +
1
4 η8a10a2

20sin(2γ10 − 2γ20),
∂F2
∂a11

= − 1
4ωs

η2a20a10 sin(2γ10 − 2γ20)− 1
4 η5a20a10 cos(2γ10 − 2γ20) +

1
4 η6ωsa20a10 sin(2γ10 − 2γ20)

− 1
4 η7ωsa20a10 sin(2γ10 − 2γ20)− 1

2 η8a20a10 +
1
4 η8a20a10 cos(2γ10 − 2γ20),

∂F2
∂a21

= − 1
2 µ− 1

8ωs
η2a2

10 sin(2γ10 − 2γ20)− 3
8 η3a2

20 −
1
8 η5a2

10 cos(2γ10 − 2γ20) +
1
8 η6ωsa2

10 sin(2γ10 − 2γ20)

− 1
8 η7ωsa2

10 sin(2γ10 − 2γ20)− 1
4 η8a2

10 +
1
8 η8a2

10 cos(2γ10 − 2γ20),
∂F2
∂γ11

= − 1
4ωs

η2a20a2
10 cos(2γ10 − 2γ20) +

1
4 η5a20a2

10 sin(2γ10 − 2γ20) +
1
4 η6ωsa20a2

10 cos(2γ10 − 2γ20)

− 1
4 η7ωsa20a2

10 cos(2γ10 − 2γ20)− 1
4 η8a20a2

10 sin(2γ10 − 2γ20),
∂F2
∂γ21

= 1
4ωs

η2a20a2
10 cos(2γ10 − 2γ20)− 1

4 η5a20a2
10 sin(2γ10 − 2γ20)− 1

4 η6ωsa20a2
10 cos(2γ10 − 2γ20)

+ 1
4 η7ωsa20a2

10 cos(2γ10 − 2γ20) +
1
4 η8a20a2

10 sin(2γ10 − 2γ20) +
1

2ωs
EΩ2 sin(γ20),

∂F3
∂a11

= 3
4ωs

η1a10 ++ 1
4 η4ωsa10 +

1
2ωs a2

10
EΩ2 cos(γ10),

∂F3
∂a21

= 1
4ωs

η2a20 cos(2γ10 − 2γ20) +
1

2ωs
η2a20 +

1
4 η5a20 sin(2γ10 − 2γ20)− 1

4 η6ωsa20 cos(2γ10 − 2γ20)

+ 1
2 η6ωsa20 +

1
4 η7ωsa20 cos(2γ10 − 2γ20)− 1

4 η8a20 sin(2γ10 − 2γ20),
∂F3
∂γ11

= − 1
2ωs

η2a2
20 sin(2γ10 − 2γ20) +

1
4 η5a2

20 cos(2γ10 − 2γ20) +
1
4 η6ωsa2

20 sin(2γ10 − 2γ20)

− 1
4 η7ωsa2

20 sin(2γ10 − 2γ20)− 1
4 η8a2

20 cos(2γ10 − 2γ20) +
1

2ωs a10
EΩ2 sin(γ10),

∂F3
∂γ21

= 1
2ωs

η2a2
20 sin(2γ10 − 2γ20)− 1

4 η5a2
20 cos(2γ10 − 2γ20)− 1

4 η6ωsa2
20 sin(2γ10 − 2γ20)

+ 1
4 η7ωsa2

20 sin(2γ10 − 2γ20) +
1
4 η8a2

20 cos(2γ10 − 2γ20),
∂F4
∂a11

= 1
4ωs

η2a10 cos(2γ10 − 2γ20) +
1

2ωs
η2a10 − 1

4 η5a10 sin(2γ10 − 2γ20)− 1
4 η6ωsa10 cos(2γ10 − 2γ20)

+ 1
2 η6ωsa10 +

1
4 η7ωsa10 cos(2γ10 − 2γ20) +

1
4 η8a10 sin(2γ10 − 2γ20),

∂F4
∂a21

= 3
4ωs

η1a20 ++ 1
4 η4ωsa20 − 1

2ωs a2
20

EΩ2 sin(γ20),
∂F4
∂γ11

= − 1
4ωs

η2a2
10 sin(2γ10 − 2γ20)− 1

4 η5a2
10 cos(2γ10 − 2γ20) +

1
4 η6ωsa2

10 sin(2γ10 − 2γ20)

− 1
4 η7ωsa2

10 sin(2γ10 − 2γ20) +
1
4 η8a2

10 cos(2γ10 − 2γ20),
∂F4
∂γ21

= 1
4ωs

η2a2
10 sin(2γ10 − 2γ20) +

1
4 η5a2

10 sin(2γ10 − 2γ20)− 1
4 η6ωsa2

10 sin(2γ10 − 2γ20)

+ 1
4 η7ωsa2

10 sin(2γ10 − 2γ20)− 1
4 η8a2

10 cos(2γ10 − 2γ20) +
1

2ωs a20
EΩ2 cos(γ20).
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