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Abstract: A technique based on multiple auxiliary equations is used to investigate the traveling
wave solutions of the Bullough–Dodd (BD) model of the scalar field. We place the model in a flat
and homogeneous space, considering a symmetry reduction to a 2D-nonlinear equation. It is solved
through this refined version of the auxiliary equation technique, and multiparametric solutions are
found. The key idea is that the general elliptic equation, considered here as an auxiliary equation,
degenerates under some special conditions into subequations involving fewer parameters. Using
these subequations, we successfully construct, in a unitary way, a series of solutions for the BD
equation, part of them not yet reported. The technique of multiple auxiliary equations could be
employed to handle several other types of nonlinear equations, from QFT and from various other
scientific areas.

Keywords: scalar field theory; Bullough–Dodd equation; multiple auxiliary equations; traveling
wave solutions

1. Introduction

A model of a scalar field, u(xµ), in Quantum Field Theory (QFT) can be described
through a Lagrangian density of the form:

L =
1
2
(∂µu)2 −V(u). (1)

Depending on the choice of the potential V(u), the model can represent many types of
physical situations. For example, the inflation phenomena in the early Universe is obtained
when we choose a potential expressed through a tachyonic field. A tachyonic nonstandard
Lagrangian of the DBI-type was proposed in [1]. It has the potential to be a multiplicative
factor and a square root of derivatives as a “kinetic” term:

L(u, ∂µu) = −V(u)
√

1 + gµν∂µu∂νu. (2)

This is a particularly attractive model of K-inflation, defined by the local action for a
scalar field minimally coupled to Einstein gravity, useful, as we said, in describing the very
early stage of the Universe.

In this paper, we investigate the model generated by the potential:

V(u) = peu − q
2

e−2u. (3)

It is known as the Bullough–Dodd model [2], and its spectrum consists of a single
massive particle. In the context of QFT, in the perturbative approach, the model has to be
linearized in order to generate a quantum model. At the classical level, in the 2D space,
it can be seen as a nonlinear integrable model, belonging to the class of affine Toda field
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theories and admitting a zero curvature representation with flat connections, defined in
twisted affine Kac–Moody algebras [3]. This is an important feature that, at this classical
level, ensures the existence of soliton-like solutions. Finding such solutions represents an
important issue, as long as, under real circumstances, most of the physical phenomena
are nonlinear ones. From this perspective, the Bullough–Dodd (BD) model became a toy
model for testing various solving methods used in soliton theory. It can describe wave
propagation through optical fibers [4], heat or fluid diffusion [5], or other phenomena from
condensed matter. It is interesting to mention that our approach is in line with the similar
ones that unify the theory of classical fields with that of dynamical systems. Along the
same line, the Yang–Mills field can be transformed into a mechanical model [6], or the
BRST approach can unify the gauge fields with the constrained dynamical systems [7].

Important progress has been achieved and many powerful and effective methods have
been proposed for deriving explicit solutions of nonlinear equations: the inverse scatter-
ing [8], the Hirota bilinear transformation [9–11], the Jacobi elliptic function method [12,13],
the generalized Kudryashov method [14,15], the dynamical system approach and the bifur-
cation method of the phase plane [16], the (G′/G)-expansion method [17,18] and its exten-
sion to the functional expansion method [19,20], the Lie symmetry method [21–25] and the
generalized conditional symmetry approach [26], various extended tanh methods [27–29],
as well as other tools of investigation for the nonlinear dynamical models [30–34].

Many among the above-mentioned methods allow constructing traveling wave solutions
of the model. The focus of this paper is on how such traveling waves can be obtained using
a very general approach, based on the auxiliary equation technique. It consists of looking
for solutions of a complicated nonlinear partial differential equation (NPDE) in terms of the
known solutions of an “auxiliary equation”. The NPDE solutions will be combinations or
series expansions of the auxiliary equation solutions, and they will strongly depend on the
choice of this equation. Papers published so far, such as [17–20] or [35] and the references
therein, tend to use a predefined and fixed auxiliary equation and do not investigate how
NPDE solutions would depend on the choice of the auxiliary equation. This is actually
exactly the main purpose of this study. To this end, we use the technique of multiple auxiliary
equations [36], a refined version of the auxiliary equation technique in which any of the
subequations belonging to a given class can be seen as an auxiliary equation. To be very
specific, we consider as an auxiliary equations reductions arising from the generalized Jacobi
elliptic equation, and we investigate the BD equation generated by (1) with the potential (3).
It has the form:

uxt + peu + qe−2u = 0. (4)

Equation (4) contains in fact many nonlinear models. For example, for q = 0, we ob-
tain the Liouville equation, an important NPDE, which appears in many physical problems
from QFT, but also from nonlinear optics and hydrodynamics. On the other hand, Equation (4)
can be included, in its turn, in a more general equation, the generalized Tzitzeica–Dodd–
Bullough–Mikhailov (gTDBM) equation [37,38].

Due to the nonpolynomial form of (4), special techniques have to be applied in order
to obtain its solutions. Such solutions, both for BD and Liouville equations, were outlined
in [39] using the tanh method combined with the Painlevé transformation. Soliton and
compacton-like solutions were generated in [40], with the exponential function method,
or in [41], by the generalized Kudryashov method and by an improved F-expansion method.
Other traveling wave solutions were derived in [42] through the

(
G′
G

)
-expansion method,

while in [43], an approach close to the first integral method was presented.
Despite the numerous studies on the BD equation and the various techniques used to

solve it, it seems that the model contains a much richer phenomenology, and as we will see,
our investigation allows generating new classes of solutions, depending on a larger number
of parameters. The key issue of our approach, based on this multiple auxiliary equation
technique, is to take a full advantage of the algebraic relations that can be established
among the parameters involved in the procedure. In our case, when the BD equation is
studied using reductions of the generalized Jacobi equation as an auxiliary equations, these
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relations contain: four parameters appearing in (4) transformed in the ODE by passing
to the wave variables, five parameters appearing in the general elliptic equation, and the
parameters introduced by the auxiliary equation method. Various solutions of the algebraic
system generated among all these parameters give us not only new, more complex, BD
solutions, but also their dependence on the specific forms of auxiliary equations. As we
mentioned, these equations represent in fact reductions of the general elliptic equation with
five parameters. This approach seems to be indeed the most suitable, not only for solving
the BD equation, but for investigating the majority of NPDEs of interest. In the BD case,
as we will check, the technique provides all solutions reported already and, moreover, some
new families of wave solutions, depending on a larger number of parameters. For various
chosen values of the parameters, we generate various kinds of traveling wave solutions,
starting from singular solutions under blow-up or broken forms, periodic solutions, kinks,
or unbounded wave solutions.

The present paper is organized as follows: In Section 2, we explain some reductions
of the general elliptic equation into several subequations that could occur under special
conditions among their respective parameters. In Section 3, we outline the main steps
specific to the use of the auxiliary equation technique. In Section 4, we apply this method to
the nonlinear dynamical model (4), and therefore, several classes of new and more general
wave solutions are highlighted. Section 5 is devoted to the discussion of our main results.
Finally, some essential facts are pointed out as concluding remarks.

2. Reductions of the General Elliptic Equation

Let us take into consideration the general elliptic equation with five parameters hi,
i = 0, 4:

(
φ′
)2

=

(
dφ(ξ)

dξ

)2

= h0 + h1φ(ξ) + h2φ2(ξ) + h3φ3(ξ) + h4φ4(ξ). (5)

In special conditions, Equation (5) can be rewritten in terms of fewer parameters. We
point out here a few of the possible such reductions. They were presented in more detail
in [44].

If hi 6= 0, i = 0, 4, there may exist Hj, j = 0, 1, 2 such that (5) can be reduced from a
five- to a three-parameter equation:(

φ′
)2

= h0 + h1φ(ξ) + h2φ2(ξ) + h3φ3(ξ) + h4φ4(ξ)

= (H0 + H1φ(ξ) + H2φ2(ξ))2. (6)

Equation (6) requires for its validity the following relationships:

h0 = (H0)
2, h1 = 2H0H1, h2 = 2H0H2 + (H1)

2, h3 = 2H1H2, h4 = (H2)
2. (7)

Practically, in this case, the general elliptic equation is reduced to the generalized
Riccati equation [45].

When h0 = h1 = 0 and hj 6= 0, j = 2, 3, 4, the general elliptic equation is transformed
into an equation with three parameters:(

φ′
)2

= h2φ2(ξ) + h3φ3(ξ) + h4φ4(ξ). (8)

This equation can be solved in special cases, and it is sometimes used as an auxiliary
equation [46]. We do this in Section 4 below, considering the case when the parameters
h2, h3, and h4 are expressed in terms of other parameters, r, s, and ρ, as:

h2 = 4, h3 = −4(2s± ρ)

r
, h4 =

(2s± ρ)2

r2 . (9)
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In this case, (8) has the interesting solution [47]:

φ(ξ) =
r(sech ξ)2

s(sech ξ)2 + ρ(tanh ξ ± 1)
. (10)

When h1 = h3 = 0 and hn 6= 0, n = 0, 2, 4, the general elliptic equation is reduced to
the Jacobi elliptic equation, again with three parameters:(

φ′
)2

= h0 + h2φ2(ξ) + h4φ4(ξ). (11)

For h0 = R2, h2 = 2R, h4 = 1, Equation (11) becomes the Riccati equation:(
φ′
)2

= (R + φ2(ξ))2. (12)

Therefore, the solutions of Equation (12) could be reduced from the ones of Equation (11)
in the specific case where the modulus m of the Jacobi elliptic functions would be chosen
as one and zero.

When h2 = h4 = 0 and hα 6= 0, α = 0, 1, 3, the general elliptic equation becomes:(
φ′
)2

= h0 + h1φ(ξ) + h3φ3(ξ). (13)

This is another example of the reduction of (5) to a solvable equation that can be
considered as an auxiliary equation, as we explain below.

3. Basics of the Auxiliary Equation Method

In this section, we describe the auxiliary equation method for solving NPDEs. It consists
of discovering if the studied NPDE accepts various types of solutions accepted by the
considered auxiliary equation. In our case, it is the general elliptic Equation (5). The method
allows finding, in a unified way, a series of new and more general solitons, triangular
solutions, and doubly periodic solutions of NPDEs. The main steps of this method are
as follows:

Step 1: For a given NPDE:

E(u, ut, ux, utt, uxx, utx, ...) = 0, (14)

the wave transformation is applied:

ξ = kx + ωt, u(t, x) = U(ξ), (15)

where k, w are arbitrary constants. The traveling wave variable (15) allows us to reduce
Equation (14) to an ODE for U(ξ) and its derivatives U′, U′′, ...:

F(U, U′, U′′, ...) = 0; (16)

Step 2: Let us suppose that the solution of Equation (16) could be expressed in the form:

U(ξ) =
N

∑
j=0

ajφ
j(ξ), (17)

where aj are constants to be determined later and φ(ξ) is the solution of the chosen auxiliary
equation. The integer N is fixed by balancing in Equation (16) its term of the highest order
in derivatives with its most nonlinear term. This means choosing N so that the two
mentioned terms have the same polynomial degrees;

Step 3: Let us substitute the generic solution (17) along with the auxiliary
Equation (5) into (16), and let us equate the coefficients of all the powers of φ(ξ) to zero.
This leads us towards a set of algebraic equations for the unknowns k, ω, aj, j = 1, N, hi,
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i = 0, 4. By solving the appropriate algebraic system by making use of the Maple program,
the links that exist between the previous parameters and the ones that are related to the
dynamical model (14) can be derived;

Step 4: By taking into consideration the results that we obtained through the above
steps, a series of traveling wave solutions of Equation (16) that depend on the solutions of
the generalized auxiliary Equation (5) can be derived. The latter possesses various types of
traveling wave solutions that depend on the special conditions that can be imposed for the
parameters hi, i = 0, 4. They were explicitly enumerated in [44].

4. New and More General Solutions of the BD Equation

In this section, we illustrate the efficiency of the algorithmic method mentioned in
Section 3 as concerns the BD class of equations. We derive a series of explicit traveling
wave solutions of (4) that have not yet been spoken about in the specialized literature. Due
to the transformation u = ln v, the governing Equation (4) takes the form:

vxtv− vxvt + pv3 + q = 0. (18)

By taking into consideration the wave transformation v(x, t) = V(ξ), ξ = kx + ωt,
Equation (18) can be written as:

kω[V′′V − (V′)2] + pV3 + q = 0. (19)

We would like to find solutions of (19) using the technique of the auxiliary equation
presented in the previous section. In fact, we use the technique of the multiple auxiliary
equations, considering that the solutions of (19) can be expressed as expansions of the
form (17), in terms of any solution of the general elliptic Equation (5), or of all its reductions
considered in Section 2.

By asking, as mentioned in Step 2 before, that the term from (19) with the higher
derivative, V′′V, should have the same polynomial degrees as the most nonlinear term, V3,
we obtain that, in our case, the sum from (17) should stop at N = 2. Therefore, we have to
look for a solution of (19) in the form:

V(ξ) = a + bφ(ξ) + cφ2(ξ). (20)

Substituting (20) along with Equation (5) into (19) yields a polynomial equation in φα

α = 0, 6. The fulfillment of this equation imposes that all coefficients vanish for the various
powers of φ(ξ). This requirement leads to the following set of algebraic equations in the
unknown arbitrary constants a, b, c, hi, i = 0, 4, p, q, k, and ω:

c2(2kωh4 + p) = 0,

3pbc2 + kωc(4bh4 + ch3) = 0,

3cp(ca + b2) + kω

[
5bc
2

h3 + (6ca + b2)h4

]
= 0,

pb(6ac + b2) + kω

[
−c2h1 + bch2 +

(
5ac +

b2

2

)
h3 + 2abh4

]
= 0,

3pa(ac + b2) + kω

[
−2c2h0 −

cb
2

h1 + 4ach2 +
3ab
2

h3 + 2abh4

]
= 0,

pba2 + kω

[
−2cbh0 +

(
3ac− b2

2

)
h1 + abh2

]
= 0,

q + pa3 + kω

[
(2ac− b2)h0 +

ab
2

h1

]
= 0.

(21)
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The Maple program was used in order to solve the previously mentioned system,
providing the following two solutions:

h0 =
h2(8ac3 − b2c2) + h4(b4 − 6acb2 − 12a2c2)

4c4 ,

h1 =
b(c2h2 − b2h4)

c3 , h3 =
2bh4

c
, p = −2kωh4

c
,

q =
kω[h2(8ab2c3 − c2b4 − 16a2c4) + h4(b6 + 32a3c3 − 6acb4)]

4c4 ,

∀h2, ∀h4, ∀a, ∀b, ∀c, ∀k, ∀ω.

(22)

and:

c = h4 = 0, h1 =
2a(3ap + kωh2)

kωb
, h3 = −2pb

kω
,

q = kω(b2h0 − a2h2)− 4pa3, ∀h0, ∀h2, ∀a, ∀b, ∀k, ∀ω, ∀p.
(23)

4.1. Classes of Solutions Related to (22)

In this part of our work, several new solutions of the master Equation (18) are pointed
out through the choice of several cases that are related to some special conditions for
parameters hi, i = 0, 4 which appear in the elliptic auxiliary Equation (5).

Case I: Let us take into consideration the case when the main Equation (5) reduces
to (8). We ask for the condition h2 = 4 from (9). This means that we have to impose:

h0 = h1 = 0 ; h2 = 4. (24)

Equating the parameters hi, i = 0, 1 from Equations (22) and (24), we come to
the relations:

b2 = 6ac, h3 =
4b
3a

, h4 =
2c
3a

. (25)

From (25), we observe that:
h3 = 4

√
h4. (26)

If we also consider the choices from (9) for hi, i = 3, 4, we can write down, in an
explicit form, the solution (20) of the Equation (19). Coming back to the initial set of
variables, {x, t}, we obtain:

v(x, t) = −b
{

r
3(2s± ρ)

− φ(x, t) +
2s± ρ

2r
φ(x, t)2

}
. (27)

Here, (2s± ρ)r < 0 and φ(ξ) has the form (10), that is:

φ(x, t) =
r[sech(kx + ωt)]2

s[sech(kx + ωt)]2 + ρ[tanh(kx + ωt)± 1]
. (28)

Practically, we generated a new six-parameter family of hyperbolic solutions for the
master Equation (18). It is also worth pointing out that the hyperbolic solutions (27) and (28)
correspond to the following relationship between p and q from (18), imposed by (22):

p =

[
3(2s± ρ)

br

]3

q. (29)

The graphical representations of the solution (27) and (28) are shown in Figure 1 for
the parametric relationships b = −2s = 6k = 12, ω− 20ρ = −34r = −10.
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Figure 1. The graphical representations corresponding to the hyperbolic solution (27) and (28) with
the parametric values b = −2s = 6k = 12, ω − 20ρ = −34r = −10: (a) the surface plot; (b) the
contour plot of (a).

Case I I: Another type of hyperbolic solutions, also related to (29), could be generated
by maintaining the condition (24), but considering for h3 and h4 the choices:

h3 =
4(±ρ− 2s)

r
, h4 =

(±ρ− 2s)2

r2 , (30)

where (±ρ− 2s)r > 0. For these choices, it was mentioned in [47] that (8) accepts another
interesting solution of the form:

φ(x, t) =
r[csch(kx + ωt)]2

s[csch(kx + ωt)]2 + ρ[coth(kx + ωt)± 1]
. (31)

The class of solutions for (18) associated with these conditions is a six-parameter one,
with the form:

v(x, t) = b
{

r
3(±ρ− 2s)

− φ(x, t) +
±ρ− 2s

2r
φ(ξ)2

}
. (32)

Case I I I: Starting from the same special constraint (29), we can also derive two types
of periodic solutions for the governing Equation (18). We consider now the following
conditions to be satisfied by hi, i = 0, 4 :

h0 = h1 = 0, h2 = −4, h3 =
4(2s + σ)

r
, h4 =

ρ2 − 4s2 − 4sσ

r2 . (33)

Practically, we replaced the five parameters hi, i = 0, 4 through a set of four parameters:
r, s , ρ, and σ. In the case when (2s± ρ)r > 0, for similar reasons as in Case I I, we can
write down the associated solutions as follows:

v(x, t) = b
{
− r

3(2s± ρ)
+ φ(x, t)− 2s± ρ

2r
φ(ξ)2

}
, σ = ±ρ, (34)

We are again in the case when (5) reduces to (8), and it accepts as solutions:

φ(x, t) =
r[sec(kx + ωt)]2

s[sec(kx + ωt)]2 + ρ[tan(kx + ωt)± 1]
(35)

or:

φ(x, t) =
r[csc(kx + ωt)]2

s[csc(kx + ωt)]2 + ρ[cot(kx + ωt)± 1]
. (36)

The solution (34) depicts a new class of six-parameter solutions of (18). For the
particular choice of parameters ω = −2k = −8b = −16r = −16ρ = −8s/3 = −4,
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Figure 2 presents the surface configuration and the contour plot of the doubly periodic
wave solution (34) and (35).

Figure 2. The graphical representations corresponding to the doubly periodic solution (34) and (35)
with the parametric relationships ω = −2k = −8b = −16r = −16ρ = −8s/3: (a) the surface plot;
(b) the contour plot of (a).

Case IV: Let us assume now that the parameters hi, i = 0, 4 are:

h1 = h3 = 0, h0 = 1, h2 = 2−m2, h4 = 1−m2, (37)

where 0 ≤ m ≤ 1 is the modulus of the Jacobi elliptic function solution φ of the NODE (5).
By imposing the compatibility between Equations (22) and (37), we obtain the follow-

ing relationships among their parameters:

c = 2−m2 ±
√

1−m2 + m4a, p = − 2kω(1−m2)

(2−m2 ±
√

1−m2 + m4)a
.

q =
4kωa2[2 + (m2 − 2)(m2 −

√
1−m2 + m4)]

m2 − 2−
√

1−m2 + m4
, ∀k, ∀ω, ∀a, 0 ≤ m < 1.

(38)

Under the conditions (37), the master Equation (18) admits a Jacobian elliptic solution
of the form:

v(x, t) = a

{
1 + (2−m2 ±

√
1−m2 + m4)

[
sn(kx + ωt)
cn(kx + ωt)

]2
}

, ∀a, ∀m, 0 ≤ m < 1. (39)

In the limiting case of m→ 0, the solutions (39) become periodic ones:

v1(x, t) = a
{

1 + 3[tan(kx + ωt)]2
}

, v2(x, t) = a
{

1 + [tan(kx + ωt)]2
}

. (40)

Remark 1. The special values for {h0, h2, h4} from (37) represent one among the fifteen other
possible expressions considered in [48]. The Jacobi elliptic functions associated with these values
degenerate either into some hyperbolic functions or into some trigonometric functions, while m→ 1
and, respectively, m→ 0 [44].

Case V: Let us consider now the case (6), when the general elliptic equation with five
parameters is reduced to an equation with three parameters. The initial parameters hi,
i = 0, 4 take the values mentioned in (7), but with the supplementary requirement h2 = 0,
hi 6= 0, i = 0, 1, 3, 4. This means that we have:

h0 = (H0)
2, h1 = 2H0H1, h2 = 2H0H2 + (H1)

2 = 0, h3 = 2H1H2, h4 = (H2)
2. (41)



Symmetry 2021, 13, 1529 9 of 14

The compatibility between Equations (22) and (41) could be ensured if the following
system is verified:

2H0H1c3 + b3(H2)
2 = 0,

4c4(H0)
2 − (H2)

2(b4 − 12a2c2 − 6acb2) = 0,

bH2 − cH1 = 0,

(H1)
2 + 2H0H2 = 0.

(42)

By solving the previous system, we obtain the relations:

a = − c(H1)
2

2(H2)2 , b =
cH1

H2
, ∀c, ∀H1, ∀H2. (43)

By substituting (43) into the general expressions for p and q from (22), we find the
special parameter values:

p = −2kω(H2)
2

c
, q = 0. (44)

Remark 2. Should we look for p = −1 in (44) or, equivalently, should we choose ω = c
2k(H2)2 , we

would turn towards a particular form of the master Equation (18), which is the so-called Liouville
equation. Because under the conditions from (41), the general elliptic Equation (5) admits twelve
solutions [44], we are able to provide the expression of a four-parameter family of solutions for the
Liouville equation. It admits the generic form:

v(x, t) = c

{
(H1)

2

2(H2)2 +
H1

H2
φ

(
kx +

c
2k(H2)2 t

)
+

[
φ

(
kx +

c
2k(H2)2 t

)]2
}

, ∀c, ∀H1, ∀H2, (45)

where φ(ξ) and ξ = kx + c
2k(H2)2 t is one of the twelve soliton solutions φl(l = 1, 2, ...12) of the

general elliptic Equation (5).

Let us mention only a few among the possible expressions of φ(ξ) :

φ(ξ) =
1

2H2

[
∓
√
−2H0H2 +

√
−6H0H2(

√
A2 + B2 − A cosh

(√
−6H0H2ξ)

)
A sinh

(√
−6H0H2ξ

)
+ B

]
,

φ(ξ) =
2H0 cosh

(√
−6H0 H2

2 ξ
)

√
−6H0H2 sinh

(√
−6H0 H2

2 ξ
)
∓
√
−2H0H2 cosh

(√
−6H0 H2

2 ξ
) ,

φ(ξ) = − 1
4H2

{
±2
√
−2H0H2 +

√
−6H0H2

[
tanh

(√
−6H0H2

4
ξ

)
+ coth

(√
−6H0H2

4
ξ

)]}
,

(46)

where H0H2 < 0 and A, B are real arbitrary constants with B2 − A2 > 0.
The numerical evolution of the localized W-shaped solitary wave solution (45) associ-

ated with the second expression of φ from (46) is depicted in Figure 3.
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Figure 3. The numerical evolution of the W-shaped soliton wave solution (45) with φ(ξ) =

2H0 cosh
(√

−6H0 H2
2 ξ

)
√
−6H0 H2 sinh

(√
−6tH0 H2

2 ξ

)
∓
√
−2H0 H2 cosh

(√
−6H0 H2

2 ξ

) at parametric choices H2 = −4c = −4k = −4H1 =

−68H0 = −8.

4.2. Classes of Solutions Related to (23)

By choosing some other appropriate values for the parameters hi, i = 0, 4 appearing
in the general elliptic Equation (5), we can derive some new classes of traveling wave
solutions for the studied model (18).

Case VI: Let us assume that the parameters α and β exist so that the parameters hi,
i = 0, 4 from (23) appear in the form:

h0 = h1 = 0, h2 = 1, h3 = −2β

α
, h4 = 0. (47)

The compatibility requirement between Equations (23) and (47) imposes the fulfillment
of the following constraint conditions:

b = −3βa
α

, ω = −3ap
k

, q = −pa3, ∀p, ∀a, ∀k, ∀α, ∀β. (48)

Taking into consideration the known solution of the auxiliary ODE (5) under the
conditions (47), we can generate for the master Equation (18) with q = −pa3 a four-
parameter family of soliton solutions:

v(x, t) = a

1− 2 sech
(

kx− 3ap
k t
)

1 + sech(kx− 3ap
k t)

. (49)

Case VII: Let us use, instead of (47), some quite similar values of the parameters,
namely:

h0 = h1 = 0, h2 = −1, h3 =
2β

α
, h4 = 0. (50)

We could point out other four-parameter families of solutions, periodic this time:

v(x, t) = a

1− 2 sec
(

kx + 3ap
k t
)

1 + sec(kx + 3ap
k t)

, v(x, t) = a

1− 2 csc
(

kx + 3ap
k t
)

1 + csc(kx + 3ap
k t)

. (51)

Case VII I: Let us look further for some parameters α, β, γ, ρ so that the following
specific conditions could be fulfilled:

h0 = h1 = 0, h2 = 4, h3 = −4(2β + ρ)

α
, h4 =

γ2 + 4β2 + 4βρ

α2 . (52)
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Invoking the compatibility condition between (23) and Equation (52), we can state that
the nonlinear model (18) with p = − 4kω

3α and q = 4kωa2

3 (or equivalently with q = −pα3)
also admits another type of hyperbolic solutions, depending now on six parameters:

v(x, t) = a

1− 3(γ2 − 4β2)

8β

[sech(kx + ωt)]2

β[sech(kx + ωt)]2 + γ tanh(kx + ωt)− γ2+4β2

4β

,

∀a, ∀k, ∀ω, ∀α, ∀β, ∀γ.

(53)

Case IX: With a slight change into (52), we consider that:

h0 = h1 = 0, h2 = 4, h3 = −4(ρ− 2β)

α
, h4 =

γ2 + 4β2 − 4βρ

α2 . (54)

This choice could allow the transformation of the six-parameter family of solutions
(53) into the following five-parameter one:

v(x, t) = a

1− 3(γ2 − 4β2)

8β

[csch(kx + ωt)]2

β[csch(kx + ωt)]2 + γ tanh(kx + ωt) + γ2+4β2

4β


∀a, ∀k, ∀ω, ∀β, ∀γ.

(55)

Case X: Should we operate a small modification to (54), as follows:

h0 = h1 = 0, h2 = −4, h3 = −4(2β + ρ)

α
, h4 =

γ2 − 4β2 − 4βρ

α2 , (56)

we could attach to the previously mentioned solutions two other types of five-parameter
periodic ones as:

v(x, t) = a

1− 3(γ2 + 4β2)

8β

[sec(kx + ωt)]2

β[sec(kx + ωt)]2 + γ tan(kx + ωt) + γ2−4β2

4β

 (57)

and:

v(x, t) = a

1− 3(γ2 + 4β2)

8β

[csc(kx + ωt)]2

β[csc(kx + ωt)]2 + γ cot(kx + ωt) + γ2−4β2

4β

. (58)

5. Results and Discussions of the Traveling Wave Solutions

In this paper, we used the general Jacobi elliptic Equation (5), associated with special
choices of the parameters hi, i = 0, 4, as a multiple auxiliary equation. With the help of
its solutions, we determined traveling wave solutions of the scalar BD field. The aim
was not only to find more general solutions, but also to investigate how they depend on
and how they are correlated with various types of auxiliary equations, in our case the
reductions of (5). This is an important aim, as long as in the usual auxiliary equation
technique, a pre-established and unique auxiliary equation is considered. This is the case
with the results previously reported on the BD solutions, as well. They are restricted to
combinations or extensions of solutions of the concerned auxiliary equation. Therefore,
the great advantage brought by the technique used here is related exactly to the freedom
of finding BD solutions in correlation with various types of auxiliary equations; this is
true, as all of them are reductions of the general Jacobi elliptic equation. The main idea
was to find relations among the 12 involved parameters: 4 in the BD Equation (19), 3 in
the form of its desired solutions (20), and the 5 parameters {hi, i = 0, 1, 2, 3, 4} from the
Jacobi Equation (5). The compatibility condition among the three mentioned equations
generated an algebraic system among parameters that can be solved in various situations.
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Doing that, some already known classes of traveling wave solutions, but also some new
and more general ones were pointed out for the BD model, in a unified way. More exactly,
the solutions (39), the soliton-type solutions (49), as well as the periodic ones (51) were
already analyzed, for example in [48,49]. Supplementary to this, at least 11 families of
new solutions—to our best knowledge, not yet reported in the specialized literature—have
been generated:

- Five six-parameter classes—(27), (32) and (34) with (35), (36) and (53);
- Three five-parameter classes—(55), (57) and (58);
- At least three four-parameter classes—(45) with (46), (49) and (51).

It is important to note that each family of solutions corresponds to one or to another
form of reduced Jacobi equation, considered as an auxiliary equation. We also need to
mention the crucial role that the parameters play in controlling the physical properties of
the solutions: by changing them, the dynamics can dramatically change. The features of
some novel wave solutions are revealed in Figure 1, Figure 2, and Figure 3, respectively.

All our results stand as completions of some less parametric BD solutions that had been
previously reported, in the references mentioned in the Introduction for example. Many of
the solutions outlined here are completely new, which could help researchers investigate
more complex physical phenomena associated with the dynamics of the BD fields.

6. Concluding Remarks

The present paper used the multiple auxiliary equations technique to construct traveling
wave solutions of the scalar BD field. We applied the technique on the BD model because,
in addition to a scalar field in QFT, it describes phenomena in many scientific applications,
such as fluid dynamics, nonlinear optics, and solid-state physics.

Compared with the investigations of the BD equation mentioned in the Introduction,
the multiple auxiliary equations technique led to more general solutions, depending on
many parameters. We highlighted soliton-like solutions, triangular solutions, and doubly
periodic ones. All these solutions are related to specific forms of the auxiliary equations, all
of them representing here reductions of the general Jacobi elliptic equation. We displayed
some of the novel solutions for suitable values of the parameters in order to show their
evolutions in space and time, but also to illustrate their dependence on the specific form of
the auxiliary equation.

We are therefore able to conclude that this technique, with multiple auxiliary equations,
does indeed provide a powerful and more effective mathematical tool. Applied here to
the BD equation, it might also become applicable to a large variety of other choices of
potentials in (1), obtaining information on phenomena from plasma physics [50,51], solid-
state physics, chemical kinetics, fluid mechanics [52], population models, and so on.
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