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Abstract: We introduce some research results on a type of third-order boundary value problem
for positive iterative solutions. The existence of solutions to these problems was proved using the
monotone iterative technique. As an examination of the proposed method, an example to illustrate
the effectiveness of our results was presented.
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1. Introduction

In the context of the intensification of research in various fields of applied mathematics
and physics, it is necessary to discuss third-order differential equations in more detail.
Third-order differential equation problems are fairly common; we often encounter them
in the study of three-layer beams, the deflection of a curved beam having a constant or
varying cross-section, gravity-driven flows, electromagnetic waves, and so on. For more
on the applications of the third-order boundary value problems, see [1] and related topics.

We focus our attention on the third-order two-point boundary value problems. Some
research has been undertaken into third-order two-point boundary value problems; see
below for a summary.

The authors in [2] and the authors in [3] considered two different classes of third-order
two-point boundary value problems respectively. They dealt with the problems in upper
and lower solutions.

Li in [4] chose to discuss the existence of single and multiple positive solutions to a
singular third-order two-point boundary value problem. Under certain assumptions, they
have obtained some existence results by using Krasnoselskii’s fixed point theorem.

Using the Leray-Schauder continuation principle, the authors obtained the existence
of at least one positive solution for some third-order boundary value problems in [5].

The study focused on the upper and lower solution method because. The authors in [6]
also thought that this method was interesting, so they developed it further. They discussed
a class of third-order differential equations with mixed two-point boundary conditions.
Some new existence results were obtained. Some applications were also presented.

Y. Sun, M. Zhao and S. Li were concerned with the existence of the monotone positive
solution to a class of nonlinear third-order two-point boundary value problems in [7]. They
gave us some suitable assumptions on f and their tool was also a fixed point theorem.
They obtained the existence of at least one positive solution to the problem they were
concerned with.

In [8], the authors focused on a kind of third-order equation. They studied various two-
point boundary value problems for the equation they discussed. A variety of hypothetical
conditions are taken into account. Then they obtained some rational results.

Again, we can study third-order boundary value problems in terms of giving the
numerical solution. Ge and Zhang did this by using the barycentric rational interpolation
collocation method in [9]. They focused on the matrix form of the problem they discussed.
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In the existing literature, most papers studied the existence of the solutions of vari-
ous third-order boundary value problems by different types of techniques, for instance,
see [10–16] and references therein. We focus our attention on computational methods. We
undertook some preliminary work on this. For example, Ma, Du and Ge [17] and our
papers [18,19] considered some boundary value problems with the p-Laplace operator. It is
worth mentioning that we discussed the Pseudo-Symmetric solutions which are based on
symmetry solutions to a kind of boundary value problem in [18]. We chose the monotone
iterative technique. Then we obtained some existence results for the problem we were
concerned with.

From our point of view, on the one hand, it is worthwhile and interesting to discuss
these kinds of problems with computational methods, especially when the nonlinear term
is involved explicitly with the all-order derivatives. It is worth emphasizing that the
problems with all-order derivatives not only bring a lot of difficulties in the discussion
but also have strong practical application value. For example, in mechanics, the problems
with all-order derivatives can describe more precisely the vibration of beams; see [1] and
related topics.

On the other hand, the monotone iteration technique is an interesting and effective
procedure for investigating the existence of solutions to nonlinear problems. For more
information on the monotone iterative method, one may refer to [10,20,21].

Motivated by the studies mentioned above, we will investigate the iteration and the ex-
istence of positive solutions to the following third-order two-point boundary value problem

u′′′(t) + q(t) f (t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(1)

where f (t, x, y, z) ∈ C([0, 1]× [0,+∞)× R2 → [0,+∞)), q(t) is a nonnegative continuous
function defined on (0, 1), q(t) 6≡ 0 on any subinterval of (0, 1), and

∫ 1
0 q(t)dt < +∞. Our

main tool is a monotone iterative technique improved from the classical monotone iterative
technique of Amann [10].

We aim to obtain the existence of positive solutions for the problem we were concerned
with. At the same time, we focus upon trying to construct some successive iterative schemes
for approximating the solutions. We would like to emphasize that here we do not require
the existence of lower and upper solutions in our discussion. Happily, the starting point
of the successive iterative schemes is a known constant function or a simple quadratic
function. Finally, we will give a numerical example to illustrate the applicability of our
results. Then we will analyze the calculation model, give computation detail process and
draw figures of the results. We remark that knowledge of how to find the solutions is
probably most important from a numerical and application standpoint.

2. Preliminaries

Before reaching the main conclusions, we need to present some background informa-
tion and preparation. Firstly, we present here some general definitions from cone theory.

Definition 1. Let E be a real Banach space. A nonempty closed set P ⊂ E is said to be a cone
provided that

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0, and
(ii) u,−u ∈ P implies u = 0.

Definition 2. The map α is said to be concave on [0, 1], if

α(tu + (1− t)v) ≥ tα(u) + (1− t)α(v)

for all u, v ∈ [0, 1] and t ∈ [0, 1].
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Secondly, let us do some preparatory work. Without loss of generality, the norm is defined as

‖u‖ := max {max
0≤t≤1

|u(t)|, max
0≤t≤1

|u′(t)|, max
0≤t≤1

|u′′(t)|}.

in the Banach space E = C2[0, 1]. We introduce a symbol E+ and define the cone P ⊂ E that

E+ = C2
+[0, 1] = {u ∈ E| u(t) ≥ 0, t ∈ [0, 1]},

P = {u ∈ E| u(t) ≥ 0, u is concave and nondecreasing on [0, 1]}.

Lemma 1. Let g ∈ L1[0, 1] then the boundary value problem{
u′′′(t) + g(t) = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = 0.

has a unique solution u(t) =
∫ 1

0 G(t, s)g(s)ds, where

G(t, s) =
{

t(1− s)− 1
2 (t− s)2, 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.
(2)

It is obvious that 0 ≤ G(t, s) ≤ G(1, s) = 1
2 (1− s2).

Define an operator T : P→ E by

(Tu)(t) =
∫ 1

0
G(t, s)q(s) f (s, u(s), u′(s), u′′(s))ds, (3)

According to the solving process of Lemma 1, if u is a fixed point of T, then Tu = u
means that u = u(t) is a solution to boundary value problem (1). On the contrary, if
u = u(t) is a solution to the boundary value problem (1), we can get Tu = u which implies
that u is a fixed point of T. So the original problem of the solution is transformed into the
fix point problem.

Lemma 2. T : P→ P defined by (2) is completely continuous.

Proof. From the definition of T, we deduce that for each u ∈ P, there is Tu ∈ C2[0, 1] which
satisfies (2). Because (Tu)′′(t) ≤ 0 and (Tu)′(t) ≥ 0, for 0 ≤ t ≤ 1. Thus, Tu is concave and
nondecreasing on [0, 1]. Then, (Tu)(t) ≥ 0, 0 ≤ t ≤ 1. Hence, T : P→ P.

It is obvious that T is continuous. Let Ω ⊂ P be an bounded set. It is easy to prove
that TΩ is bounded and equi-continuous. The Arzela-Ascoli theorem guarantees that TΩ
is relatively compact, which means T is compact. Then, T is completely continuous.

3. The Existence and Iteration of Positive Solutions to (1)

With the preparatory work in hand, let us obtain our main results step by step.

Theorem 1. Assume there exists a > 0, such that the following (H1)–(H3) hold,
(H1): f (t, x1, y1, z1) ≤ f (t, x2, y2, z2)

for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ a, 0 ≤ y1 ≤ y2 ≤ a,−a ≤ z2 ≤ z1 ≤ 0;

(H2): max
0≤t≤1

f (t, a, a,−a) ≤ a
A

, where A =
∫ 1

0
q(s)ds;

(H3): f (t, 0, 0, 0) 6≡ 0 for 0 ≤ t ≤ 1.
then the boundary value problem (1) has at least one positive, nondecreasing and concave solution
w∗ or v∗ with ‖w∗‖ ≤ a and ‖v∗‖ ≤ a. There are some conclusions of w∗ and v∗ as follows

w∗ = lim
n→∞

wn = lim
n→∞

Tnw0, (w∗)′ = lim
n→∞

(wn)
′ = lim

n→∞
(Tnw0)

′,

(w∗)′′ = lim
n→∞

(wn)
′′ = lim

n→∞
(Tnw0)

′′, where w0(t) = at(1− t
2
), 0 ≤ t ≤ 1,
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and
v∗ = lim

n→∞
vn = lim

n→∞
Tnv0, (v∗)′ = lim

n→∞
(vn)

′ = lim
n→∞

(Tnv0)
′,

(v∗)′′ = lim
n→∞

(vn)
′′ = lim

n→∞
(Tnv0)

′′, where v0(t) = 0, 0 ≤ t ≤ 1,

where (Tu)(t) is defined by (3).
The iterative schemes in this theorem are w0(t) = at(1 − t

2 ), wn+1 = Twn = Tnw0,
n = 0, 1, 2 . . . which starts off with a known simple quadratic function and v0(t) = 0, vn+1 =
Tvn = Tnv0, n = 0, 1, 2 . . . which starts off with the zero function.

Proof. We denote Pa = {u ∈ P | ‖u‖ ≤ a}. Firstly, we will prove that T : Pa → Pa.
If u ∈ Pa, by (H1) and (H2) we have

0 ≤ f (t, u(t), u′(t), u′′(t)) ≤ f (t, a, a,−a) ≤ max
0≤t≤1

f (t, a, a,−a) ≤ a
A

, for 0 ≤ t ≤ 1.

Since

(Tu)(1) ≤ a
A

1
2

∫ 1

0
q(s)ds < a, (Tu)′(0) ≤ a

A

∫ 1

0
q(s)ds = a,

−(Tu)′′(1) ≤ a
A

∫ 1

0
q(s)ds = a.

Hence, we assert that T : Pa → Pa.
By (H1) we have, for any ui ∈ P (i = 1, 2) with u1 ≤ u2, u′1 ≤ u′2 and u′′1 ≥ u′′2 . Then

by (2) and (3), we can easily get Tu1 ≤ Tu2, (Tu1)
′ ≤ (Tu2)

′ and (Tu1)
′′ ≥ (Tu2)

′′.
Let w0(t) = at(1− t

2 ), 0 ≤ t ≤ 1, then w0(t) ∈ Pa. Let w1 = Tw0, then w1 ∈ Pa. We
denote wn+1 = Twn, n = 0, 1, 2 . . . Then we have wn ⊆ Pa, n = 1, 2, . . . Due to the complete
continuity of T, {wn}∞

n=1 is asserted a sequentially compact set.
Because

w1(t) =Tw0(t) =
∫ 1

0
G(t, s)q(s) f (s, w0(s), w′0(s), w′′0 (s))ds ≤ at(1− t

2
) = w0(t), 0 ≤ t ≤ 1,

w′1(t) =(Tw0)
′(t)

=
∫ t

0
(s− t)q(s) f (s, w0(s), w′0(s), w′′0 (s))ds +

∫ 1

0
(1− s)q(s) f (s, w0(s), w′0(s), w′′0 (s))ds

≤ a(1− t) = w′0(t), 0 ≤ t ≤ 1,

and

w′′1 (t) = (Tw0)
′′(t) = −

∫ t

0
q(s) f (s, w0(s), w′0(s), w′′0 (s))ds ≥ −a = w′′0 (t), 0 ≤ t ≤ 1.

We obtain that

w2(t) = Tw1(t) ≤ Tw0(t) = w1(t), w′2(t) = (Tw1)
′(t) ≤ (Tw0)

′(t) = w′1(t),

w′′2 (t) = (Tw1)
′′(t) ≥ (Tw0)

′′(t) = w′′1 (t), 0 ≤ t ≤ 1.

Compute continuously according to the iteration rule and by the induction, then

wn+1 ≤ wn, w′n+1(t) ≤ w′n(t), w′′n+1(t) ≥ w′′n(t), 0 ≤ t ≤ 1, n = 0, 1, 2 . . .

Then we can show there exists w∗ ∈ Pa that satisfies wn → w∗. By applying the
continuity of T and the iteration of wn+1 = Twn in combination, we obtain Tw∗ = w∗.

The other iteration direction is start off with the zero function. We choose v0(t) =
0, 0 ≤ t ≤ 1, then v0(t) ∈ Pa. Let v1 = Tv0, then v1 ∈ Pa. We denote vn+1 = Tvn, n =
0, 1, 2 . . . Then we have vn ⊆ Pa, n = 1, 2, . . . Since T is completely continuous, we assert
that {vn}∞

n=1 is a sequentially compact set.
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Since v1 = Tv0 ∈ Pa, we have v1(t) = Tv0(t) ≥ 0, v′1(t) = Tv′0(t) ≥ 0, v′′1 (t) =
(Tv0)

′′(t) ≤ 0, for 0 ≤ t ≤ 1. Then v2(t) ≥ v1(t), v′2(t) ≥ v′1(t), v′′2 (t) ≤ v′′1 (t), for 0 ≤
t ≤ 1. By an induction argument similar to the above we obtain

vn+1 ≥ vn, v′n+1(t) ≥ v′n(t), v′′n+1(t) ≤ v′′n(t), 0 ≤ t ≤ 1, n = 0, 1, 2 . . .

Hence there exists v∗ ∈ Pa such that vn → v∗. Applying the continuity of T and
vn+1 = Tvn, we get Tv∗ = v∗.

If f (t, 0, 0, 0) 6≡ 0, 0 ≤ t ≤ 1, then the zero function is not the solution of (1). Thus
max

0≤t≤1
|v∗(t)| > 0, we have v∗ > 0, for 0 < t < 1.

From the previous discussion, if we find the fixed point of T in P, we get the solution
to (1). Hence, we can conclude that that the boundary value problem (1) has at least one
positive nondecreasing and concave solution w∗ or v∗.

Furthermore, if limn→∞ wn 6= limn→∞ vn, then w∗ and v∗ are different. We ob-
tain problem (1) has two positive nondecreasing and concave solutions. The other case
is limn→∞ wn = limn→∞ vn, then w∗ = v∗ which means the two values coincide and
problem (1) has a positive nondecreasing and concave solution. Anyway, the problem (1)
has at least one positive nondecreasing and concave solution.

The proof is completed.

The following corollary follows easily.

Corollary 1. Assume that (H1) and (H3) hold, and there exists a > 0, such that

(H4): lim`→+∞ max
0≤t≤1

f (t, `, a,−a)
`

≤ 1
A

, (particularly, lim`→+∞ max
0≤t≤1

f (t, `, a,−a)
`

= 0).

Then the boundary value problem (1) has at least one positive, nondecreasing and concave solution
w∗ or v∗. Consequently, the relevant conclusions about w∗ and v∗ in Theorem 1 hold.

4. Example

Example 1. Let q(t) = 1, we consider the following boundary value problem

u′′′(t) + f (t, u(t), u′(t), u′′(t)) = 0, 0 < t < 1, (4)

u(0) = u′(1) = u′′(0) = 0, (5)

where f (t, x, y, z) = 1
4 t2 + 1

4 x + 1
8 y2 − 1

4 z. Choose a = 2, and we have A = 1.

So by Theorem 1, the boundary value problem (4) and (5) has at least one positive,
nondecreasing and concave solution w∗ or v∗ with ‖w∗‖ ≤ 2 and ‖v∗‖ ≤ 2 , such that

w∗ = lim
n→∞

wn = lim
n→∞

Tnw0, (w∗)′ = lim
n→∞

(wn)
′ = lim

n→∞
(Tnw0)

′,

(w∗)′′ = lim
n→∞

(wn)
′′ = lim

n→∞
(Tnw0)

′′, where w0(t) = 2t− t2, 0 ≤ t ≤ 1,

and

v∗ = lim
n→∞

vn = lim
n→∞

Tnv0, (v∗)′ = lim
n→∞

(vn)
′ = lim

n→∞
(Tnv0)

′,

(v∗)′′ = lim
n→∞

(vn)
′′ = lim

n→∞
(Tnv0)

′′, where v0(t) = 0, 0 ≤ t ≤ 1,

where (Tu)(t) is defined by (3).
For n = 0, 1, 2 . . . The two iterative schemes are
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w0(t) =2t− t2, 0 ≤ t ≤ 1,

w1(t) =−
1

120
t5 +

1
48

t4 − 1
6

t3 +
11
24

t, 0 ≤ t ≤ 1,

w2(t) =−
1

4561920
t11 +

1
829440

t10 − 1
82944

t9 +
1

26880
t8 − 73

483840
t7 − 11

138240
t6

− 5
2304

t5 − 35
2304

t4 − 121
27648

t3 +
24989
290304

t, 0 ≤ t ≤ 1,

w3(t) =−
t23

14620753605427200
+

t22

1271369878732800
− 23t21

2196002517811200
+

271t20

3660004196352000

− 9649t19

18666021401395200
+

2201t18

982422179020800
− 823t17

74912366592000
+

5503t16

299649466368000

− · · · · · · · · · − 807311t6

11466178560
− 632025743t5

128421199872
− 8153t4

6967296
− 624450121t3

4045267795968

+
5622836449329950699t

186846874227965952000
, 0 ≤ t ≤ 1,

w4(t) =−
t47

314515486692275039735441994547200000
+

t46

13383637731586171903635829555200000

− 173t45

118852522029411983100766008115200000
+

571t44

29581072149542538016190650908672000

− · · · · · · · · · − 31616289735913447234529323165770588601t3

1675764211620543699419355421020782592000000

+
160511358248153446347381073284028009201404114366497t
6780718732903555345790847898231140300789645312000000

, 0 ≤ t ≤ 1,

· · · · · · · · · · · · · · ·

wn+1(t) = (Twn)(t) =
∫ 1

0
G(t, s)(

1
4

s2 +
1
4

wn(s) +
1
8

w′2n (s)−
1
4

w′′n(s))ds, 0 ≤ t ≤ 1.

which starts off with a known simple quadratic function, and
v0(t) =0,

v1(t) =−
1

240
t5 +

1
48

t, 0 ≤ t ≤ 1,

v2(t) =−
1

18247680
t11 +

1
322560

t8 +
1

1935360
t7 − 1

5760
t6 − 1

240
t5 − 1

4068
t4

− 1
110592

t3 +
33011

1451520
t, 0 ≤ t ≤ 1,

v3(t) =−
t23

233932057686835200
+

t20

1830002098176000
+

t19

10666297943654400
− t18

31188005683200

− 251t17

318377558016000
− 41t16

898948399104000
+

55247t15

23372658376704000
+

3919t14

59513713459200

− · · · · · · · · · − 132359t4

557383680
− 1089726121t3

101131694899200
+

251944745719415081t
10990992601645056000

, 0 ≤ t ≤ 1,
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v4(t) =−
t47

80515964593222410172273150604083200000
+

t44

295810721495425380161906509086720000

+
t43

1691155758433176951246880411484160000
− t42

4855457244999072498555499315200000

+ · · · · · · · · · − 63476154895620723780956748770236561t3

5798492081731985119098115643670528000000

+
49776339527441954834684459870069552303067862246322909t

2169829994529137710653071327433964896252686499840000000
, 0 ≤ t ≤ 1,

· · · · · · · · · · · · · · ·

vn+1(t) = (Tvn)(t) =
∫ 1

0
G(t, s)(

1
4

s2 +
1
4

wn(s) +
1
8

w′2n (s)−
1
4

w′′n(s))ds, 0 ≤ t ≤ 1.

which starts off with the zero function.
In Figures 1 and 2 below, we will illustrate the first several elements in the schemes.

The figures demonstrate the iterative process.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

w0HtL

w1HtL

w2HtL

w3HtL

w4HtL

Figure 1. Curves of successive iterations.

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

v0HtL

v1HtL

v2HtL

v3HtL

v4HtL

Figure 2. Curves of successive iterations.

and

‖w1 − w0‖ = 2.000000000000000000, ‖v1 − v0‖ = 0.0833333333333333333,

‖w2 − w1‖ = 0.657289255401234568, ‖v2 − v1‖ = 0.0076774691358024691,

‖w3 − w2‖ = 0.144307032230180722, ‖v3 − v2‖ = 0.0007056973781479649,

‖w4 − w3‖ = 0.020648460036251130, ‖v4 − v3‖ = 0.0000666371356413746.
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