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Abstract: Linear Diophantine fuzzy set (LDFS) theory expands Intuitionistic fuzzy set (IFS) and
Pythagorean fuzzy set (PyFS) theories, widening the space of vague and uncertain information
via reference parameters owing to its magnificent feature of a broad depiction area for permissible
doublets. We codify the shortest path (SP) problem for linear Diophantine fuzzy graphs. Linear
Diophantine fuzzy numbers (LDFNs) are used to represent the weights associated with arcs. The
main goal of the presented work is to create a solution technique for directed network graphs by
introducing linear Diophantine fuzzy (LDF) optimality constraints. The weights of distinct routes are
calculated using an improved score function (SF) with the arc values represented by LDFNs. The
conventional Dijkstra method is further modified to find the arc weights of the linear Diophantine
fuzzy shortest path (LDFSP) and coterminal LDFSP based on these enhanced score functions and
optimality requirements. A comparative analysis was carried out with the current approaches
demonstrating the benefits of the new algorithm. Finally, to validate the possible use of the proposed
technique, a small-sized telecommunication network is presented.

Keywords: linear Diophantine fuzzy graphs; Dijkstra’s algorithm; linear Diophantine fuzzy numbers;
score function; shortest path problem

1. Introduction

At the heart of a network’s flow is the shortest path problem (SPP). The main challenge
of an extensive range of real-life network issues is to transfer any products between two
defined nodes efficiently and inexpensively. Therefore, the shortest path (SP) should then
be used to formulate such real applications as discovering a route with respect to the
length with the lowest cost, time, or distance from the start node (SN) to the terminal node
(TN). Traditionally, it was believed that the costs traversing of edges can be represented as
crisp numbers (CNs). However, since prices fluctuate with traffic patterns and weather,
these values are usually imprecise or ambiguous in nature. The fuzzy set (FS) concept was
introduced by Zadeh [1] to address such ambiguity. Economics, medical science research,
and many other areas struggle daily with unclear, imprecise, and sometimes inadequate
knowledge in ambiguous data modeling. There have been proposals for non-classical and
higher-order fuzzy sets for various specialized purposes after the proposal of fuzzy set
theory. Zadeh’s [1] FS theory is a valuable method for dealing with imprecise knowledge
in SPPs. As a result, researchers have made numerous attempts to solve various forms of
SPPs in the fuzzy domain.

Okada [2] suggested an algorithm to solve the fuzzy SPP, hinging on the possibility
principle, to decide the degree of chance for each arc. Based on the fuzzy SPP, Keshavarz
and Khorram [3] generalized the fuzzy SPP to a bi-level programming problem and
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suggested an appropriate algorithm. A constant quantity is a predicament in SPs in solving
the resulting issue. With ambiguous multicriteria decision-making (MCDM) approaches
focused on similarity tests, Dou et al. [4] tackled the fuzzy SP issue in a multiple constraint
network. Deng et al. [5] used the ranked mean integration definition of fuzzy numbers
to extend the Dijkstra algorithm to solve fuzzy SPPs. Furthermore, a few experts [6,7]
have spotlighted solving the SPP in a network using heterogeneous forms of heuristic
algorithm-based fuzzy arc values.

Nevertheless, FS only takes a satisfaction grade and does not convey a dissatisfaction
grade. The dissatisfaction grade here is the counterpart of the satisfaction grade. The intu-
itionistic FS (IFS) is a generalization of FS theory, and it was introduced by Atanassov [8],
who incorporated the dissatisfaction grade during the analysis. Here, the sum of the
satisfaction grade and the dissatisfaction grade is less than or equal to one. In the IFS
environment, some researchers are working on solving the SPP with IFS arc values. Mukher-
jee [9] found the SP in an IFS theory world. To address the IFS theory SPP, an alternative
algorithm for the shortest path length protocol and a similarity metric for the intuition-
istic fuzzy sets were proposed by Geetharamani and Jayagowri [10]. Biswas et al. [11]
established a protocol for finding an intuitionist fuzzy set theory SPP between the start
node (SN) and the terminal node (TN). An algorithm was developed by Kumar et al. [12]
to identify the SP and the shortest distance (SD) in a network using arc weights under
an interval-valued intuitionistic fuzzy set. Sujatha and Hyacinta [13] contemplated two
distinct methods to solve the issue of the SP in an IFS setting. With an additional limitation
under the intuitionist fuzzy setting, Motameni and Ebrahimnejad [14] focused on solving
the SPP.

IFSs have attracted much attention and are seen in many different aspects of real
life. In IFSs, the constraint sum of membership µ and nonmembership ν does not exceed
one, which restricts the option to the satisfaction and dissatisfaction classes. To avoid
this, Yager [15–17] proposed the Pythagorean fuzzy set (PyFS), which is represented
by a satisfaction grade (µ) and a dissatisfaction grade (ν) with the constraint that the
sum of squares of µ and ν does not exceed one. The principle of the Pythagorean fuzzy
number (PyFN) was introduced by Zhang and Xu [18] to interpret the dual aspect of an
element: the expert gives the details about an option with a satisfaction score of 0.9 and a
dissatisfaction grade of 0.3 in a decision-making environment; the IFN struggles to resolve
this case, as 0.9 + 0.3 > 1; however, (0.9)2 + (0.3)2 ≤ 1. Akram et al. [19,20] recently
implemented several new Pythagorean fuzzy graph (PyFG) operations, such as exclusion,
symmetric disparity, residue product, and maximal product. To extend fuzzy sets, several
researchers [21–28] implemented and examined different forms of the SP algorithm.

IFSs and PyFSs have diverse applications in multiple real-life environments, but both
concepts have their own limitations in the satisfaction and dissatisfaction grades. Riaz and
Hashmi et al. in [29,30] presented the approach of the linear Diophantine fuzzy set (LDFS)
with the inclusion of comparison parameters in order to eliminate these constraints. LDFSs
are more flexible and efficient compared to the other concepts as a result of the adoption of
reference parameters, which have seen a boom in recent times [31–35]. Recently, in 2021,
Riaz et al. [30] extended their study to linear Diophantine fuzzy graph (LDFG) theory.

The SPP is the most prominent graph theory problem. For basically any fuzzy struc-
ture, it has been extensively tested (see [2,36–38]) with an algorithm that is relatively
straightforward and gives us the best-predicted performance, as in [7], at that time. Some
common methods for solving SPPs were proposed by Warshall [39], Dijkstra [40], Bell-
man [41], and Floyd [42]. One of the classical and best methods among them is Dijkstra’s
algorithm (DA). Dijkstra’s dynamic programming (DDP) [5,43] approach may be used
to solve fuzzy shortest path problems (FSPPs) by treating the weights of the edges of a
network as uncertain or fuzzy. LDFSs and LDFGs are more efficient, flexible, and com-
patible than the existing fuzzy concepts as they have reference parameters. The research
gap between these two concepts motivated us to introduce the linear Diophantine fuzzy
shortest path via Dijkstra’s algorithm. This work expands the traditional Dijkstra algorithm
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in accordance with the aforementioned fruitful investigations, allowing us to compute
the linear Diophantine fuzzy SPP’s lowest cost (LDFSPP). The LDFSPP attempts to give
decision-makers the length of the LDFSP and the shortest path in a network with the
linear Diophantine fuzzy arc lengths. LDFNs are assumed to be the cost parameters of the
arcs. A pseudocode for this problem is provided based on Dijkstra’s techniques. Several
operational requirements are described, as well as the expected LDFN values and the
similarity measure LDFNs using the score and accuracy functions. Finally, a numerical
example is provided to clarify the technique and demonstrate its utility and efficiency.
Furthermore, our findings are compared to the current research.

The objectives of this manuscript are as follows:

1. Linear Diophantine fuzzy set (LDFS) theory is superior to intuitionistic fuzzy set (IFS),
Pythagorean fuzzy set (PyFS), and q-rung orthopair fuzzy set (q-ROFS) theories, with
a wide space of vague and uncertain information via reference parameters owing to
its magnificent feature of a broad depiction area for permissible doublets;

2. In decision analysis, the membership and nonmembership grades are not enough to
analyze objects in the universe. The addition of reference parameters provides free-
dom to the decision-makers in selecting the membership and nonmembership grades.
The LDFS with the associated reference parameters provides a robust approach for
modeling uncertainties;

3. We codify the shortest path (SP) problem for linear Diophantine fuzzy graphs;
4. Linear Diophantine fuzzy numbers are used to represent the weights associated with

arcs (LDFNs);
5. The main goal of the presented work is to create a solution technique for directed

network graphs by introducing linear Diophantine fuzzy (LDF) optimality constraints;
6. The weights of distinct routes are then calculated using an improved score function

(SF) with the arc values represented by LDFNs;
7. The conventional Dijkstra method is further modified to find the arc weights of linear

Diophantine fuzzy shortest path (LDFSP) and coterminal LDFSP based on these
enhanced score functions and 11 optimality requirements;

8. A comparative analysis is carried out with the current approaches demonstrating the
benefits of the new algorithm. Finally, to validate the possible use of the proposed
technique, a small-sized telecommunication network is presented;

9. The suggested approach’s efficiency, rationality, and superiority are examined using a
numerical example to describe the communications network; the symmetry of the
optimal decision and the ranking of possible alternatives are then compared.

10. The suggested approach’s efficiency, rationality, and superiority are examined using a
numerical example to describe the communications network;

11. A comparative analysis follows the symmetry of the best decision and the ranking of
viable alternatives.

Therefore, this manuscript aims to suggest a technique for solving the SP problem in
the LDFG context. To do so, the mathematical formulation on the SP issues is discussed
first, where the traversal cost of arcs is expressed in terms of LDFNs. Then, we define
the conditions of optimality in LDF networks for the solution algorithm’s design. To do
so, an enhanced score feature is used to compare the costs of various routes with LDFNs
representing their arc costs. The cost of the LDFSP and the corresponding LDFSP are then
calculated using the standard Dijkstra algorithm. A minimal telecommunication network
in the LDF setting is used to explain the proposed algorithm. The rest of the paper is
organized as follows: Section 2 covers some fundamental principles of linear Diophantine
fuzzy sets, while Section 3 covers the statistical formulation of the SP problem in the context
of an LDF network, the LDF shortest path optimality conditions and the expanded Dijkstra
algorithm. Section 4 provides a numerical example that illustrates the proposed solution
methodology. The article is finally concluded in Section 5.
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2. Preliminaries

The definitions from [8,15–17,29,30] are used in the sequel.

Definition 1 ([8]). An IFS I on the universe Q is defined by:

I = {ζ,m(ζ), n(ζ)|ζ ∈ Q}

where m, n : Q→ [0, 1] are the satisfaction and dissatisfaction grades, respectively. The condition
for an IFS is that m+ n ≤ 1. A doublet set (m, n) is said to be an intuitionistic fuzzy number
(IFN). The graphical representation of the two-dimensional (2D) and three-dimensional (3D) plots
of an IFS is given in Figure 1.

(a) 2D representation of an IFS (b) 3D representation of an IFS

Figure 1. Graphical representation of an IFS.

Definition 2 ([15–17]). A PyFS P on the universe U is defined by:

P = {ζ,m(ζ), n(ζ)|ζ ∈ P}

where m, n : P→ [0, 1] are the satisfaction and dissatisfaction grades, respectively. The condition
for a PyFS is that m2 + n2 ≤ [0, 1]. A doublet set (m, n) is said to be a PyFN. The graphical
representation of the 2D and 3D plots of a PyFS is given in Figure 2.

(a) 2D representation of a PyFS (b) 3D representation of a PyFS

Figure 2. Graphical representation of a PyFS.
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Definition 3 ([29,30]). An LDFS L is an object on the nonempty reference set Q of the form:

LD = {(ζ, 〈mD(ζ), nD(ζ)〉, 〈α, β〉) : ζ ∈ Q}

where mD(ζ), nD(ζ) are the satisfaction grade and dissatisfaction grade and α, β ∈ [0, 1] are the
reference parameters, respectively. These grades satisfy the constraint 0 ≤ αmD(ζ) + βnD(ζ) ≤ 1 for
all ζ ∈ Q and with 0 ≤ α + β ≤ 1. In describing or classifying a specific system, these comparison
parameters will help. By moving the physical meaning of these parameters, we can categorize the
system. They expand the space used in LDFSs for grades and lift the limitations on them. The
refusal grade is defined as γπD = (ζ) = 1− (αmD(ζ) + βnD(ζ)), where γ is the refusal reference
parameter. The linear Diophantine fuzzy number (LDFN) is defined as TD = (〈mD, nD〉, 〈α, β〉)
with 0 ≤ α + β ≤ 1 and 0 ≤ αmD + βnD ≤ 1. The graphical representation of the 2D and 3D
plots of an LDFS can be seen in Figure 3, and the comparison spaces of the IFS, PyFS, and LDFS
are given in Figure 4.

(a)

(b) (c)

Figure 3. Graphical representation of an LDFS. (a) The 2D representation of an LDFS; (b) the 3D representation of an LDFS
with (α, β) = (0.1, 0.1); (c) the 3D representation of an LDFS with (α, β) = (0.5, 0.2).
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Figure 4. Spaces of the IFS, PyFS, and LDFS.

Example 1. If mD = 0.96 and nD = 0.62, then 0.96+ 0.62 = 1.58 � 1 and (0.96)2 + (0.62)2 �
1.306, but for an arbitrary choice of reference parameters (α, β) ∈ [0, 1] with 0 ≤ α + β ≤ 1, we
have 0 ≤ αmD + βnD ≤ 1. As for (α, β) = (0.46, 0.58), we have (0.46)(0.96) + (0.58)(0.62) =
0.8012 < 1. As a result, we managed to establish a space that is bigger than the IFS and PyFS, and
we have more options to assign values to mD and nD, which is unachievable in the IFS and PyFS.

Definition 4. An LDFS on Q is said to be:

(i) An absolute LDFS, if it is of the form L1
D = {ζ, (〈1, 0〉, 〈1, 0〉) : ζ ∈ Q};

(ii) A null or empty LDFS, if it is of the form L0
D = {ζ, (〈0, 1〉, 〈0, 1〉) : ζ ∈ Q}.

Definition 5. Let TD = (〈mD, nD〉, 〈α, β〉) be an LDFN, then the score function (SF) is denoted
by S(TD) and the accuracy function (AF) by A(TD) on D and can be defined by the mapping
S : TD(Q) −→ [−1, 1] and given by:

1. S(TD) =
1
2 [(mD − nD) + (α− β)]

2. A(TD) =
1
2 [

(mD+nD)
2 + (α + β)]

where TD(Q) is the assembling of all LDFNs on Q.

Definition 6. Let TDi
= (〈mDi

, nDi
〉, 〈αDi , βDi 〉) for i ∈ ∆ be an assembling of LDFNs on Q

and X > 0, then:

(i) Tc
D1

= (〈nD1 ,mD1〉, 〈βD1 , αD1〉);
(ii) TD1 = TD2 ⇔ mD1 = mD2 , nD1 = nD2 , αD1 = αD2 , βD1 = βD2 ;
(iii) TD1 ⊆ TD2 ⇔ mD1 ≤ mD2 , nD1 ≥ nD2 , αD1 ≤ αD2 , βD1 ≥ βD2 ;
(iv) TD1 ⊕ TD2 = (〈mD1 +mD2 −mD1mD2 , nD1nD2〉, 〈αD1 + αD2 − αD1 αD2 , βD1 βD2〉);
(v) TD1 ⊗ TD2 = (〈mD1mD2 , nD1 + nD2 − nD1nD2〉, 〈αD1 αD2 , βD1 + βD2 − βD1 βD2〉);
(vi) XTD1 = (〈(1− (1−mD1)

X), nXD1
〉, 〈(1− (1− αD1)

X), βX
D1
〉);

(vii) TX
D1

= (〈mX
D1

, (1− (1− nD1)
X)〉, 〈αX

D1
, (1− (1− βD1)

X)〉);
(viii) TD1 ∪ TD2 = (〈mD1 ∨mD2 , nD1 ∧ nD2〉, 〈αD1 ∨ αD2 , βD1 ∧ βD2〉);
(ix) TD1 ∩ TD2 = (〈mD1 ∧mD2 , nD1 ∨ nD2〉, 〈αD1 ∧ αD2 , βD1 ∨ βD2〉).

Example 2. Let TD1 = (〈0.72, 0.37〉, 〈0.51, 0.41〉) and TD2 = (〈0.93, 0.31〉, 〈0.66, 0.25〉) be
two LDFNs, then:

(i) Tc
D1

= (〈0.37, 0.72〉, 〈0.41, 0.51〉);
(ii) TD1 ⊆ TD2 by the Definition 6 (iii);
(iii) TD1 ⊕ TD2 = (〈0.9804, 0.1147〉, 〈0.8334, 0.1025〉);
(iv) TD1 ⊗ TD2 = (〈0.6696, 0.5653〉, 〈0.3366, 0.5575〉);
(v) TD1 ∪ TD2 = (〈0.93, 0.31〉, 〈0.66, 0.25〉) = TD2 ;
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(vi) TD1 ∩ TD2 = (〈0.72, 0.37〉, 〈0.51, 0.41〉) = TD1 .
If X = 0.2, then we have the following:

(vii) XTD1 = (〈0.2248, 0.8197〉, 〈0.1330, 0.8367〉);
(viii) TX

D1
= (〈0.9364, 0.0883〉, 〈0.8740, 0.0214〉).

Definition 7. Two LDFNs TD1 and TD2 can be comparable using the SF and the AF. This is
defined as follows:

(i) TD1 > TD2 if S(TD1) > S(TD2);
(ii) TD1 < TD2 if S(TD1) < S(TD2);
(iii) If S(TD1) = S(TD2), then:

(a) TD1 > TD2 if A(TD1) > A(TD2);
(b) TD1 < TD2 if A(TD1) < A(TD2);
(c) TD1 = TD2 if A(TD1) = A(TD2).

Definition 8. A pair G = (M,N) is called an LDFG on an underlying set V, where M is an
LDFS in V and N is a linear Diophantine fuzzy relation on V×V such that:

mN(ab) ≤ min{mM(a),mM(b)}, αM(ab) ≤ min{αM(a), αM(b)}

nN(ab) ≤ max{nM(a), nM(b)}, βN(ab) ≤ max{βM(a), βM(b)}

where m is known as the satisfaction grade, n is known as the dissatisfaction grade, and α, β are
the reference parameters that fulfill the condition 0 ≤ α + β ≤ 1 and 0 ≤ αN(ab)mN(ab) +
βN(ab)nN(ab) ≤ 1 for all a, b ∈ V, where M is a linear Diophantine fuzzy vertex set and N is a
linear Diophantine fuzzy edge set of G.

Definition 9. A linear Diophantine fuzzy digraph or linear Diophantine fuzzy directed graph
(LDFDG) with an underlying set V is defined to be a pair G = (LD;LP) where LD is an LDF set
on the vertex set V and LP is an LDF set on the edge set E ⊆ V×V such that:

mP(ab) ≤ min{mD(a),mD(b)}, nP(ab) ≤ max{nD(a), nD(b)}

αP(ab) ≤ min{αD(a), αD(b)}, βP(ab) ≤ max{βD(a), βD(b)}

for all a, b ∈ V, where αD(a), αD(b) are the reference parameters associated with the vertex a,
βD(a), βD(b) are the reference parameters associated with the vertex b, and αP(ab), βP(ab) are
the reference parameters associated with the edge ab.

Remark 1. As the name implies, an LDFDG does not hold a symmetric relation on V, as an LDFG
holds on V.

Example 3. Let G = (V;E) with the vertices V = {v1, v2, v3, v4, v5, v6} where the LDFNs of
each vertex in V are v1 = (〈0.98, 0.11〉, 〈0.43, 0.10〉), v2 = (〈0.52, 0.23〉, 〈0.25, 0.61〉), v3 =
(〈0.69, 0.33〉, 〈0.74, 0.12〉), v4 = (〈0.73, 0.61〉, 〈0.63, 0.33〉), v5 = (〈0.95, 0.14〉, 〈0.57, 0.31〉),
and v6 = (〈0.85, 0.24〉, 〈0.51, 0.29〉) and the edge values are v12 = e1 = (〈0.51, 0.23〉, 〈0.25, 0.60〉),
v13 = e2 = (〈0.69, 0.33〉, 〈0.42, 0.61〉), v23 = e3 = (〈0.52, 0.32〉, 〈0.25, 0.50〉), v24 = e4 =
(〈0.45, 0.61〉, 〈0.21, 0.59〉), v25 = e5 = (〈0.52, 0.14〉, 〈0.23, 0.61〉), v34 = e6 = (〈0.65, 0.60〉,
〈0.61, 0.12〉), v36 = e7 = (〈0.64, 0.21〉, 〈0.43, 0.10〉), v45 = e8 = (〈0.71, 0.11〉, 〈0.52, 0.29〉),
v46 = e9 = (〈0.70, 0.22〉, 〈0.49, 0.28〉), and v56 = e10 = (〈0.81, 0.13〉, 〈0.49, 0.25〉). The
LDFDG and its index matrix are shown below in Figure 5 and Table 1.
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Figure 5. G: the linear Diophantine fuzzy digraph (LDFDG).

Table 1. Index matrix of the graph G.

Vertices v1 v2 v3 v4 v5 v6

v1 L0
D e1 e2 L0

D L0
D L0

D

v2 L0
D L0

D e3 e4 e5 L0
D

v3 L0
D L0

D L0
D e6 L0

D e7

v4 L0
D L0

D L0
D L0

D e8 e9

v5 L0
D L0

D L0
D L0

D L0
D e10

v6 L0
D L0

D L0
D L0

D L0
D L0

D

3. Dijkstra Algorithm for Finding the Shortest Path in a Network

The SPP is the most prominent graph theory problem. For basically any fuzzy struc-
ture, it has been extensively tested (see [2,36–38])) with an algorithm that is relatively
straightforward and that gives us the best-predicted performance, as in [7], at that time.

The graph G = (V,E) is an LDF-directed graph, where V = {s = 1, 2, ..., e = m} and
V×V = E = {(i, j) : i, j ∈ V, i 6= j} represents the vertex and edge set, respectively. The
ordered pair (i, j) denotes an edge of the graph that connects the two different vertices
i, j ∈ V. It is considered a connected network with given arcs and nodes in which s is the SN
and e is the TN. It is assumed that from the node i to the node j, there is only one directed arc.
The route (path) pij from node i to node j is a series of arcs pij = {(i, i1), (i1, i2), ..., (ik, j)} in
which each arc’s initial node is the same as the corresponding arc’s terminal node in the
sequence. The cost of the path that is directed is specified as the route costs the sum of the
arc. The problem is to identify the SP between s and e for each arc-related parameter in
terms of cost (or time, or space, etc.). In terms of LDFNs, this parameter is assumed to be
Cij = 〈αM(ab)mN(ab), βN(ab)nN(ab)〉, where mN(ab) is the satisfaction grade, nN(ab) is
the dissatisfaction grade, and αM(ab), βM(ab) are the reference parameters of the arc i− j.
This is included in the shortest path with respect to the cost for traveling along the arc i− j.

The parameters associated with each arc i, j reflect the expense of the arc in consid-
eration. The objective of the SPP is to find the path or route with the lowest cost, from
starting node s to destination node e. Certain and precise values for the arc are considered
in conventional SP issues.As time and costs fluctuate regarding the payload, weather,
and traffic conditions, various fuzzy set extensions may be used to reflect imprecise and
ambiguous arc costs. LDFNs are used in this work to represent the ambiguous criteria of
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the issue of the SP under discussion. Therefore, the subsequent problem is referred to as
the linear Diophantine fuzzy SP (LDFSP) problem. In an LDFSP problem with LDFNs for
the arc length setting, there are two major topics that must be addressed:

1. To the linear Diophantine fuzzy arc prices, two edges are added;
2. Score functions are used to compare distance values between two distinct paths with

edge lengths depicted by LDFNs.

The linear Diophantine fuzzy Dijkstra algorithm is a generalized form of the fuzzy
Dijkstra’s algorithm based on its predicted values. In our next subsection, we give the
linear Diophantine fuzzy Dijkstra algorithm followed by an example.

3.1. The Dijkstra Algorithm: Our Extension via the LDFG

The algorithm assigns a state to each point, with the state of a node consisting of
two specificities: the distance value and the status mark. A node’s “distance value” is a
measurement of its source distance, and the “status mark” is a function that decides when
a node’s distance value equals the shortest distance. If this is the case, the status label is
permanent; otherwise, it is temporary. The algorithm incrementally preserves and updates
the nodes. A single node is allocated as the current one at every stage. The pseudocode
and the flowchart for the suggested process are introduced in the algorithm below and in
Figure 6, respectively. Table 2 explains the set of notations used in Algorithm 1.

Algorithm 1: Pseudo-code for the proposed linear Diophantine fuzzy Dijkstra’s
algorithm (LDFDA).

1. function linear Diophantine fuzzy Dijkstra’s (G, s)
2. for each node j ∈ G //initialization
3. status label [j]← (∞, t); //an attribute specifying the distance value of node j
4. previous [j]← not defined; //former node in optimized path from the start

node
5. end for
6. status label [s]← (0, p); // distance of the start node to itself
7. T← set of all possible nodes with temporary labels in G
8. while T is nonvoid // the main loop
9. i← node in T with the minimum distance value di;
10. if status label [i]← (∞, p), then
11. stop; // all the other nodes are impenetrable form the start node
12. end if
13. delete i from T;
14. for every j such that there exists link (i, j)
15. alt← di + cij; //defuzzification of the linear Diophantine fuzzy number
16. if alt < di, then // comparison of the distance values values to obtain the

smallest distance value
17. di ← alt;
18. previous [j]← [i];
19. end if
20. status label [j]← (alt, p); //updated distance label
21. end for
22. end while
23. return status label [];
24. end function
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Figure 6. Flowchart for the proposed algorithm.

Table 2. Notations used in the proposed Algorithm 1.

T {all temporary labeled nodes}

P {all permanent labeled nodes}

i the SD from the start node to a node

j a variant

dj renovated distance from the start node

cij cost value between nodes i and j

alt alternate variant

3.2. The Proposed Dijkstra Algorithm: A View

The methodology suggested in this article, in contrast to the available techniques, is
more useful in finding the SP. The primary benefit of using FNs’ predicted values is that
they bring out only a single value. Without the method of rating FNs, decision-making can
be achieved quickly. In an area of highly ambiguous parameters, this is computationally
useful for addressing SPPs. The characteristics and a comparison analysis of the four types
of systems that can be used in the evaluation of SPPs are summarized in Table 3.

We claim that there are benefits to linear Diophantine fuzzy sets over ordinary FSs
and IFSs, as they have a more impartial perspective of the functional situation. Therefore,



Symmetry 2021, 13, 1616 11 of 19

our approach deals with the SPP with a network with linear Diophantine fuzzy arc lengths
from the SN to the TN.

The shortest path analysis of the linear Diophantine fuzzy set is as follows:

• First of all, our approach modifies the principle of the predicted values for LDFNs.
For the predicted values of LDFNs, we obtain novel results;

• We use this method of implementation to solve a well-known shortest path algorithm,
the so-called Dijkstra algorithm, under which the method of the defuzzification of
LDFNs allocated to network arcs is performed by computing their predicted values;

• To calculate the SD value, a juxtaposition of the LDFNs is accomplished in terms of
the score function, gleaned from the predicted LDFN values, leading directly to a crisp
number.

Therefore, as compared to other fuzzy shortest path methods, our accomplishment is
rationally more structured, sound, and simple to add.

Table 3. Comparison to crisp and other fuzzy models.

SPP under Models Links or Edges Satisfaction Grade Dissatisfaction Grade Parameterization

Crisp set CN - - -

FS FN X - -

IFS IFN X X -

PyFS PyFN X X -

LDFS LDFN X X X

4. Numerical Application

It is very important to save any victims anytime a disaster happens. The urgency
of time is the most salient characteristic of time-sensitive decision-making. The rescue
plan must be completed within a short period, and helping the rescuers immediately
know the position of any trapped persons is the job of the decision-maker. The time
required to reach the rescue location almost always directly affects the performance of the
rescue mission; the primary objective function is therefore considered to be the soonest
achievable arrival time. When the rescue team and the police have fixed arrival times, it
is possible to simplify the shortest rescue time as the shortest path desired and further
as the shortest transportation time. For other factors that may present obstacles, such as
damage to a bridge, the accumulation of water on a road, and damaged roads, the grade
values are defined by the amount of damage to the transport infrastructure, and the weight
of the path is represented by the LDFNs. This combinatorial optimization dilemma is
typical of SPPs. Dijkstra’s algorithm is used to solve these types of problem. In real-time
applications, a digital vector map is typically the descriptive model of an urban road
network. The layout of the map related to the vertices and edges is abstracted to effectively
analyze the SP. During the emergency, finding the SP to reach the destination/target is
difficult. An effective deployment will boost the rescue team’s rapid response capability
and total command capacity. An algorithm for the SP is developed for the directed graph,
and the weights of all the edges are represented by LDFNs. Because of the unrestricted
choice of attribute grades and the parameterized classification of the LDFS, this model is
superior to the others. As a result, this model provides the best option for selecting an
appropriate action.

The rescue location and the location of each rescue team are denoted by the vertices
of the graph. The N emergency team sites, passing points, and rescue points comprise a
disaster area. In directed graph G(V,E), V denotes the location of the rescue team, the
passing points, and the recovery location, and E denotes the path between two rescue
locations. The length of the path is important to find the minimum time to reach the
rescue locations, the road conditions, etc. The edge weight is represented as an LDFN.
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Node v1, considering the geography, geographical location, the degree of the disaster’s
impact, and other factors, is the beginning point of the rescue, and the point of the rescue
site is node vn. A directed path from node v1 to node vn can be represented in the form
of (v1; v2); (v2; v3); ..., (vk; vn) as a series of directed edge sequences in a directed graph.
Depending on the strength of the relations of a directed graph, the number of paths that
connect node v1 to node vn can differ.

4.1. Case Study

The coastal area of Wenling City, Zhejiang Province, was hit by the strong typhoon
Lekima on 10 August 2019. The highest wind force was 16 levels (52 m/s), and a mean
air pressure of 930 hPa was recorded at the center. Due to this strong typhoon, roads were
blocked with floods, rocks, and trees, bridges were destroyed, etc. Because of this condition,
it was impossible to traverse the road network based on the prior conditions. Given the
road conditions, it was important to identify the safest way to the rescue point and provide
the emergency rescue teams of the appropriate departments with decision-making support.
During this time, the topological structure of the road network was as seen in Figure 7.
We built the input data in the context of LDFSs, where the satisfaction and dissatisfaction
grades informed us about the satisfaction and dissatisfaction with respect to the associated
routes and their traffic signal parameters α, β, which symbolize “very less traffic” and “very
heavy traffic”. Table 4 indicates the side lengths considered. A rescue team in Fuzhou must
start from Point (1) and proceed to Point (7) to rescue trapped people, so the shortest route
from Point (1) to Point (7) must be identified; the sequence is illustrated below.

1

2

3

4

5

6

7

Figure 7. The graph of the road network with the linear Diophantine fuzzy distance.

Table 4. Details of the edge information in terms of the LDFN.

Edges LDFN Edges LDFN

(1,2) (〈0.81, 0.37〉, 〈0.51, 0.18〉) (3,6) (〈0.91, 0.73〉, 〈0.46, 0.18〉)
(1,3) (〈0.93, 0.68〉, 〈0.53, 0.12〉) (4,5) (〈0.64, 0.29〉, 〈0.37, 0.28〉)
(2,4) (〈0.74, 0.47〉, 〈0.43, 0.32〉) (4,6) (〈0.87, 0.39〉, 〈0.25, 0.22〉)
(2,5) (〈0.93, 0.63〉, 〈0.46, 0.29〉) (4,7) (〈0.78, 0.57〉, 〈0.45, 0.21〉)
(3,2) (〈0.94, 0.58〉, 〈0.58, 0.13〉) (5,7) (〈0.73, 0.68〉, 〈0.41, 0.37〉)
(3,4) (〈0.64, 0.21〉, 〈0.37, 0.28〉) (6,7) (〈0.83, 0.43〉, 〈0.51, 0.15〉)
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Let T = {nodes labeled as temporary nodes}, and let P = {nodes labeled as perma-
nent nodes}. The start node (1) is moved from set T to set P at the initial point since the
distance from (1) to (1) is zero, which is the shortest. The steps defined by Figure 7 to define
the shortest path in the network and the SD value for all paths are defined as follows:
Let T be the set of nodes labeled temporarily, and let P be the set of nodes labeled perma-
nently. The start node (1) is moved from set T to set P at the initial point since the distance
from (1) to (1) is zero, which is the shortest:

• Iteration 0: Assign Node (1) = the permanent label = [(〈0, 1〉, 〈0, 1〉),−];
• Iteration 1: We calculated the distance from the start (last permanently marked) Node

(1) to its accessible neighbor Nodes (2) and (3). Consequently, the lexicon (temporary
and permanent) of tagged nodes is:

Nodes Label Status

1 [(〈0, 1〉, 〈0, 1〉),−] P

2 [(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] T

3 [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] T

In order to compare (〈0.81, 0.37〉, 〈0.51, 0.18〉), (〈0.93, 0.68〉, 〈0.53, 0.12〉) and
(〈0.74, 0.47〉, 〈0.43, 0.32〉), we used Definition 5 (1)
S(〈0.81, 0.37〉, 〈0.51, 0.18〉) = 1

2 [(0.81− 0.37) + (0.51− 0.18)] = 0.385
S(〈0.93, 0.68〉, 〈0.53, 0.12〉) = 1

2 [(0.93− 0.68) + (0.53− 0.12)] = 0.33.
Since the score value of [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] is less than the score value of
[(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1], the status of Node (3) is changed to permanent;

• Iteration 2: Nodes (2), (4), and (6) can be accessed from the (last permanently marked)
Node (3). Thus, the list (temporary and permanent) of labeled nodes becomes:

Nodes Label Status

1 [(〈0, 1〉, 〈0, 1〉),−] P

2
[(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] (or)

[(〈0.9958, 0.3944〉, 〈0.8026, 0.0156〉), 3]
T

3 [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] P

4
[(〈0.95060.1739〉, 〈0.72070.0576〉), 2] (or)
[(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉), 3]

T

6
[(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉), 3] (or)

[(〈0.9935780.067821〉, 〈0.7905250.012672〉), 4]
T

S(〈0.81, 0.37〉, 〈0.51, 0.18〉) = 1
2 [(0.81− 0.37) + (0.51− 0.18)] = 0.385

S(〈0.9958, 0.3944〉, 〈0.8026, 0.0156〉) = 0.6942
S((〈0.95060.1739〉, 〈0.72070.0576〉) = 0.7199
S(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉) = 0.75115
S(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉) = 0.61095
S(〈0.9935780.067821〉, 〈0.7905250.012672〉) = 0.851805.
Since the score value of [(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] is less than the remaining nodes,
the status of Node (2) is changed to permanent;

• Iteration 3: Nodes (4) and (5) can be accessed from the (last permanently marked)
Node (2). Thus, the list (temporary and permanent) of labeled nodes becomes:
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Nodes Label Status

1 [(〈0, 1〉, 〈0, 1〉),−] P

2 [(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] P

3 [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] P

4
[(〈0.95060.1739〉, 〈0.72070.0576〉), 2] (or)
[(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉), 3]

T

5
[(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉), 2] (or)

[(〈0.9822160.050431〉, 〈0.824041, 0.016128〉), 4]
T

6
[(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉), 3] (or)

[(〈0.9935780.067821〉, 〈0.7905250.012672〉), 4]
T

S(〈0.9506, 0.1739〉, 〈0.7207, 0.0576〉) = 0.7199
S(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉) = 0.75115
S(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉) = 0.7184
S(〈0.9822160.050431〉, 〈0.8240410.016128〉) = 0.869849
S(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉) = 0.61095
S(〈0.9935780.067821〉, 〈0.7905250.012672〉) = 0.851805.
Since the score value of [(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉), 3] is less than the remaining
nodes, the status of Node (6) is changed to permanent;

• Iteration 4: Node (7) can be accessed from the (last permanently marked) Node (6).
Thus, the list (temporary and permanent) of labeled nodes becomes:

Nodes Label Status

1 [(〈0, 1〉, 〈0, 1〉),−] P

2 [(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] P

3 [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] P

4
[(〈0.9506, 0.1739〉, 〈0.7207, 0.0576〉), 2] (or)
[(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉), 3]

T

5
[(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉), 2] (or)

[(〈0.982216, 0.050431〉, 〈0.824041, 0.016128〉), 4]
T

6 [(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉), 3] P

7
[(〈0.989132, 0.099123〉, 〈0.846385, 0.012096〉), 4] (or)
[(〈0.996409, 0.158508〉, 〈0.843886, 0.019314〉), 5] (or)

[(〈0.998929, 0.213452〉, 〈0.8756380.00324〉), 6]
P

S(〈0.989132, 0.099123〉, 〈0.846385, 0.012096〉) = 0.862149,
S(〈0.996409, 0.158508〉, 〈0.843886, 0.019314〉) = 0.8312365,
S(〈0.998929, 0.213452〉, 〈0.8756380.00324〉) = 0.8289375.
Since the score value of [(〈0.998929, 0.213452〉, 〈0.8756380.00324〉), 6] is less than the
remaining nodes, the position of the seventh node is converted to permanent.
As the point TN 7 has the permanent label, we can stop the operations at this point,
and to change the remaining points as the permanent label, we have
S(〈0.9506, 0.1739〉, 〈0.7207, 0.0576〉) = 0.7199
S(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉) = 0.75115.
Here, the score of [(〈0.9506, 0.1739〉, 〈0.7207, 0.0576〉), 2] is less than the score
[(〈0.9748, 0.1428〉, 〈0.7039, 0.0336〉), 3]
S(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉) = 0.7184
S(〈0.982216, 0.050431〉, 〈0.824041, 0.016128〉) = 0.869849.
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Here, the score of [(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉), 2] is less than the score
[(〈0.982216, 0.050431〉, 〈0.824041, 0.016128〉), 4]:

Nodes Label Status

1 [(〈0, 1〉, 〈0, 1〉),−] P

2 [(〈0.81, 0.37〉, 〈0.51, 0.18〉), 1] P

3 [(〈0.93, 0.68〉, 〈0.53, 0.12〉), 1] P

4 [(〈0.9506, 0.1739〉, 〈0.7207, 0.0576〉), 2] P

5 [(〈0.9867, 0.2331〉, 〈0.7354, 0.0522〉), 2] P

6 [(〈0.9937, 0.4964〉, 〈0.7462, 0.0216〉), 3] P

7 [(〈0.998929, 0.213452〉, 〈0.8756380.00324〉), 6] P

Working backward from the terminal point “7”, one can conveniently create the short-
est path by moving to the predecessor from which the current node received its permanent
name. Going backward, the shortest or least-expensive route becomes 1 → 3 → 6 → 7.
Here, L(7) = (〈0.998929, 0.213452〉, 〈0.875638, 0.00324〉), the weighted aggregated LDFN
of the minimum cost path or the shortest path in terms of the overall linear Diophantine
fuzzy cost/time for going along the shortest path is as seen in Figure 8.
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Figure 8. Shortest path of the graph of the road network with the linear Diophantine fuzzy distance.

The comparative analysis of the characteristics of Dijkstra’s algorithms in the four
types of systems that were used in the evaluation of SPPs are elaborated in the following
Table 5.
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Table 5. Comparison analysis of Dijkstra’s algorithm under different environments.

Types of DAs Advantages Limitations

Classical DA [40] It can be applied when precise arc weights are avail-
able

Its performance is degradedwhen arc
weights are imprecise

Fuzzy DA [5] It can be applied when arc weights are imprecise It is degradedby the degree of rejection
present in the arc weight

IF DA [9] It deals with imprecise arc weights involving both
the degree of acceptance and the degree of rejection

It does not work if the sum of the accep-
tance grade and the rejection grade of
an arc weight exceeds 1

PyF DA [44]
It can handle imprecise arc weights even if the sum
of the acceptance grade and the rejection grade ex-
ceeds 1 with some constraints

It does not work if a reference parameter
is added to the arc weight

LDF DA (proposed
method)

It can be applied in many real-time situations that
ave the reference parameters

It cannot work if the indeterminacy
grade is present in the arc weight

4.2. Summary

The SPP under an LDF environment is important when the reference parameter is
added to the arc weight. People and their livelihoods are affected by natural disasters in
many countries such as flood, high wind force, land slides, tsunamis, etc. We considered
the disaster that occurred in Wenling City, Zhejiang. Dijkstra’s algorithm was used under
an LDF environment to make the right decision during an emergency. A novel Dijkstra’s
algorithm was introduced and developed under an LDF setting to find the SP with the aid
of the SF. The classical, fuzzy, IF, and PyF theories have their own limitations in finding
the shortest paths and fail to address the reference parameters, which are important to our
problem. Therefore, the LDFSPP using Dijkstra’s algorithm helped a rescue team reach the
rescue destination in a short time. The proposed algorithm is more suitable for any network
involving the satisfaction and dissatisfaction grades with the reference parameters.

5. Conclusions

The shortest path problem is a very important field of analysis, and it is used to solve
a variety of real-world problems. In this article, a new and groundbreaking approach
for solving SPPs in an unpredictable world was presented. In real-world settings, the
exact cost, time, or distance values relative to the network arcs may not be possible to
obtain. Fuzzy numbers can be used to describe imprecise parameters to account for this
ambiguity. To reflect the unknown weights of going along each arc, the most generic
kind of fuzzy numbers, LDFNs, were used. The decision-maker’s hopeful and cynical
views were represented by LDFNs. The suggested technique of LDFDA was developed
successfully using the LDF operator and its score functions, which are essential areas of
LDFSs. SPPs with the LDF edge weight/distance have never been addressed or solved in
the literature before this work. This kind of real-world problem was successfully solved
using the proposed LDFDA, which successfully applied the various existing theories of
LDFSs. The benefits and objectives of the paper were that the LDF optimality restrictions
in directed network graphs be established and a solution method created, and then, an
improved SF was used to compute the weights of alternative pathways with edge weights
represented by LDFNs. To find the LDFSP and coterminal LDFSP established on these
enhanced scores, the score functions and the optimality constraints of the traditional
Dijkstra method were modified. Finally, to confirm the potential usage of the suggested
technique, a small-scale communications network was presented, as well as a comparison
study with the present approaches, proving the value of the proposed algorithm. This
is the paper’s most significant contribution. Other methods for solving certain problems
could be suggested in the future, and the outcomes could be compared. For large networks,
computer programs may be designed to incorporate the suggested technique. In future
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work, we will apply the existing algorithm to solve large-scale real-time problems in a
linear Diophantine fuzzy environment and compare the results with the existing algorithms
with respect to the efficiency, time for computation, optimality, etc.
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Abbreviations
The following abbreviations are used in this manuscript:

FS fuzzy set
IFS intuitionistic fuzzy set
PyFS Pythagorean fuzzy set
LDFS linear Diophantine fuzzy set
CN crisp number
DA Dijkstra’s algorithm
FN fuzzy number
IFN intuitionistic fuzzy number
PyFN Pythagorean fuzzy number
LDFN linear Diophantine fuzzy number
SN start node
TN terminal node
SP shortest path
SF score function
SPP shortest path problem
2D plot two-dimensional plot
3D plot three-dimensional plot
SD shortest distance
LDFSP linear Diophantine fuzzy shortest path
MCDM multicriteria decision-making
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