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Abstract: The existing dehazing algorithms are problematic because of dense haze being unevenly
distributed on the images, and the deep convolutional dehazing network relying too greatly on large-
scale datasets. To solve these problems, this paper proposes a generative adversarial network based
on the deep symmetric Encoder-Decoder architecture for removing dense haze. To restore the clear
image, a four-layer down-sampling encoder is constructed to extract the semantic information lost
due to the dense haze. At the same time, in the symmetric decoder module, an attention mechanism is
introduced to adaptively assign weights to different pixels and channels, so as to deal with the uneven
distribution of haze. Finally, the framework of the generative adversarial network is generated so that
the model achieves a better training effect on small-scale datasets. The experimental results showed
that the proposed dehazing network can not only effectively remove the unevenly distributed dense
haze in the real scene image, but also achieve great performance in real-scene datasets with less
training samples, and the evaluation indexes are better than other widely used contrast algorithms.

Keywords: deep learning; generative adversarial network; image dehazing; attention mechanism

1. Introduction

Images collected by the imaging sensor are seriously affected by the atmospheric
environment such as haze, and therefore lose a lot of contextual information. The purpose
of image dehazing is to eliminate the negative impact of the atmospheric environment on
image quality and increase the visibility of the image (Figure 1). It also provides support
for downstream visual tasks such as image segmentation.
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Image dehazing is mainly divided into traditional algorithms and learning-based
algorithms. The traditional dehazing algorithms use the atmospheric scattering model [1–4]
to simulate the generation of haze. Usually, they need additional prior knowledge to detect
the distribution of haze. When haze is located, the parameters of the atmospheric scattering
model can be used to solve the dehazed image. The atmospheric scattering model can be
formulated as [1,2]:

I(z) = J(z)t(z) + A(1 − t(z)), (1)

where I(z) is the observed hazy image, and J(z) is the corresponding haze-free image.
A is global atmosphere light, and t(z) is the medium transmission map. Moreover, the
transmission map is formulated as [1,2]:

t(z) = e−βd(z), (2)

where β is the atmosphere scattering parameters, and d(z) is scene depth. As can be
seen from the above two formulas, once global atmosphere light, atmosphere scattering
parameters, and scene depth can be correctly calculated, we can directly restore the haze-
free image from a hazy input.

Based on the atmospheric scattering model, a lot of early traditional dehazing al-
gorithms [5–15] are proposed. Among them, dark channel prior (DCP) [5] is the most
successful traditional dehazing algorithm. Through the statistics of many real haze-free
images, it is found that most local color blocks of haze-free images contain some pixels
with very low intensity in at least one color-channel. Through this prior knowledge, DCP
method can quickly locate the hazy area in an image and solve the global atmosphere light
and coarse transmission map. However, because DCP method is sensitive to pixel intensity,
it usually fails in high brightness areas such as the sky, which limits its practical application.
Other traditional dehazing algorithms are also facing the problem of large errors when
estimating parameters and are therefore difficult to apply to sophisticated real scenes.

With deep learning making great strides in the field of image processing [16–20], the
convolutional neural network (CNN) also shows good application prospects in the field
of single image dehazing. Many learning-based algorithms [21–24] have been proposed
and achieved better performance over traditional algorithms. Some learning-based dehaz-
ing algorithms learn the transmission map, atmosphere light, scene depth and other key
parameters through large-scale datasets, so as to calculate the predicted dehazing image
according to the atmospheric scattering model. Inspired by other low-level image task
algorithms, the latest dehazing model selects a direct end-to-end network to avoid employ-
ing the atmospheric scattering model [25–28]. This design can not only avoid the error
accumulation caused by the atmospheric scattering model, but also be more conducive to
the support of downstream high-level semantic tasks.

Although the learning-based image dehazing algorithm has achieved good results,
it still faces the following problems. First, the performance of the complete end-to-end
network depends heavily on the training results on large-scale datasets. Most of the
dehazing datasets are synthesized by computer simulation [29,30], which is far from the
real scene, and the large-scale real scene dehazing datasets are difficult to obtain, which
limits the performance of the model. Second, most of the existing methods deal with the
pixels on the image equally, which cannot deal with the uneven haze in the real scene.

As a result of the two problems mentioned above, this paper proposes an attention
optimized deep symmetrical encoder-decoder generative adversarial network for removing
uneven dense haze in real scene. This network is fully end-to-end. When inputting a hazy
image, it can directly generate the corresponding haze-free image without calculating
other parameters. We use the generative adversarial network (GAN) [31] as the main
structure of the method, which makes our model robust on small-scale datasets. The
densely connected four-layer down-sampling structure is used to fully extract the deep
semantic information lost by dense haze. At the same time, local residual learning block
is utilized to ensure that the shallow information such as outline, contrast and texture
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will not disappear when transmitted to the deep layer. After the information is encoded,
a symmetrical four-layer upsampling decoder is employed to restore the features to the
original resolution. Because the haze is usually unevenly distributed in the real scene, it is
unreasonable to directly give the same weight to the multi-channel and each pixel of the
feature map. Therefore, we apply the attention mechanism [32] to the decoder network
to learn the distribution of haze in spatial domain and channel domain. Through these
designs, our method can more effectively eliminate the haze in the image and output a
more real haze-free image. Experiments show the network performs much better than the
widely used dehazing algorithms.

Our contributions are as follows:

• We propose a fully end-to-end network for single image dehazing. It can output
a haze-free image directly from one hazy image without calculating intermediate
parameters. Our method uses a generative adversarial network as the framework,
which makes our network more robust, and even trained in a small-scale dataset.

• To better extract the semantic information degraded due to the dense haze, we employ
a densely connected four-layer down-sampling. At the same time, the local learning
mechanism is also introduced to allow the information of the thin haze region and
low-frequency information to be passed through the down-sampling operation and
be reserved.

• Spatial attention and channel attention module are introduced to our method. Con-
sidering the uneven distribution of haze in space and different feature channels have
different sensitivity to haze concentration, it is not appropriate to use the same weights
for them. Attention module allows for the assignment of different weights to different
locations and channels, which helps the network to learn the uneven distribution haze
and better deal with uneven dense haze.

2. Related Works
2.1. Traditional Algorithms

DCP [5] method is the most classical dehazing algorithm based on statistical prior
knowledge. However, it usually fails when the background light intensity is high. To solve
the shortcomings of DCP method, He et al. further propose the guided filter dehazing
algorithm [8]. Because the haze noise is usually characterized by large gradient and
little difference in all directions centered on it, guided filter dehazing algorithm locates
the haze area independent of the background light. However, this method is usually
accompanied by color distortion that cannot be ignored. Zhu et al. propose a color-
attenuation-prior-based dehazing algorithm [6]. They create a linear model to calculate
the scene depth of the hazy image. Fattal finds a generic regularity in natural images
known as color-lines [9] to recover the scene transmission based on the lines’ offset from
the origin. Although a considerable amount of prior knowledge [7,10–12] has been applied
to traditional dehazing algorithms to improve their performance, these algorithms still face
the problem of insufficient robustness. When the prior knowledge is not satisfied, the effect
of these algorithms will be seriously affected.

2.2. Learning-Based Algorithms

With deep learning making great strides in the field of image processing, learning
the difference between hazy and haze-free images with the help of the powerful learn-
ing ability of the neural network, and then restoring haze-free images, has become the
mainstream dehazing algorithm. The early learning-based dehazing algorithms still use
the atmospheric scattering model. They used the fitting ability of the neural network to
estimate parameters such as scene depth and transmission map. DehazeNet [21] is one
of the first end-to-end dehazing networks based on a deep learning architecture. It learns
the transmission rate map in the atmospheric scattering model from hazy images and
recovers haze-free images accordingly. The design of each layer of the network reflects the
idea of prior knowledge such as DCP. Zhang et al. propose a densely connected pyramid
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network called DCPDN [22] to jointly learn the transmission map, atmosphere light and
dehazing all together. Its network structure is two parallel subnetworks; a pyramid densely
connected module for calculating the transmission map and a U-net-based [33] subnetwork
for estimating atmosphere light. Ren et al. propose a multi-scale deep neural network
called MSCNN [23]. Given a hazy input, the network can recover a potentially haze-free
image by estimating the scene transmission map. This network consists of a coarse-scale
subnetwork for predicting a holistic transmission map and a fine-scale subnetwork for
refining results locally. AOD-Net [24] is an end-to-end dehazing network based on an
improved atmospheric scattering model, which does not require any additional parameters
to be computed during training. AOD-Net can be seamlessly integrated with subsequent
high-level vision tasks. However, there will be errors in predicting the parameters of the
atmospheric scattering model. Moreover, the atmospheric scattering model itself is a simu-
lation of the causes of haze formation. Therefore, even the dehazed images generated by the
learning-based dehazing algorithm are still quite different from the real haze-free images.

In order to avoid the error caused by atmospheric scattering model, the latest dehazing
algorithms adopt a fully end-to-end structure [25–28], which means that the haze-free
image is generated directly from the hazy image and the calculation of intermediate
parameters is ignored. Ren et al. propose a gated fusion dehazing network for single image
dehazing [25]. The constructed network adopts three image pre-processing methods for
image enhancement. The network will learn the confidence feature map to process the
three pre-processed images obtained from the original image to automatically obtain the
proportion of these three image features in the final output image. At last, the final dehazed
image is yielded by gating the important features of the derived inputs. Inspired by visual
perception global-first theory, Qu et al. design an enhanced pix2pix dehazing network
(EPDN) [26] embedded by a generative adversarial network (GAN). EPDN consist of a
discriminator for guiding the generator to create more realistic images and a generator
followed by a receptive-field-model-based enhancer used to reinforce the dehazing effect
in both color and details.

2.3. Generative Adversarial Network

The GAN [31] model was first proposed by Goodfellow et al. to synthesize realistic
images by effectively learning the distribution of the training images. GAN usually consists
of a discriminator network and a generator network. The discriminator network is used
to judge whether the sample generated by the generator network is true or false. After
receiving the feedback, the generator network will generate more real samples to deceive
the discriminator network. In such a game process, the whole GAN network will have a
more powerful performance. GAN structure has been introduced in some low-level image
restoration tasks [34–39]. Similarly, the dehazing algorithm based on GAN also began to
appear [40–43].

3. Methods
3.1. Overall Framework

Our network adopts the architecture of generative adversarial network, which is
divided into generator network and discriminator network. The generator network receives
the input hazy image and generates the dehazed image. The discriminator network receives
the dehazed image generated by the generator and the corresponding ground truth image.
It will identify whether the images generated by the generator network are true or false
and supervise the generator network to continue training according to the corresponding
results. In this model, as shown in Figure 2, the generator network adopts a densely
connected four-layer down-sampling encoder structure to fully extract the text information
of the image. At the same time, the skip-connection strategy is also applied to ensure that
the shallow information is not lost in the transmission process and prevent the gradient
from disappearing. The decoder module adds a specially designed attention module to
deal with the unevenly distributed haze. As shown in Figure 3, the discriminator network
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is a common binary classification network. By generating the framework of generative
adversarial network, the model can reduce the requirements for large-scale training datasets
and broaden the application scenario of the model.
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Figure 2. The architecture of generator. The symmetrically designed encoder and decoder make
the generator network output dehazed images directly. The encoder module directly adopts the
pre-trained DenseNet-121, which can speed up the training speed. The encoder module integrates
the attention mechanism to remove the uneven haze.
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Figure 3. The architecture of discriminator. The discriminator network judges whether the image
generated by the generator network is true or false, and helps the generator network training by
integrating the adversarial loss into the loss function.

3.2. Four-Layer Down-Sampling Encoder with Dense Residual Connection

Fewer convolution layers can only extract shallow features, while more convolution
layers can extract deep features. Shallow information is usually syntax information, such as
outline, color, texture and so on [40]. Deep information is usually semantic information that
is difficult to perceive. Due to the existence of dense haze, the shallow features of the input
image become imperceptible, which is reflected in color distortion and edge virtualization.
Compared with other networks, DenseNet is better at exploring the inlining between
features and extracting deeper features. Inspired by the method of using multi-layer
down-sampling operation as encoder, we design a densely connected four-layer down-
sampling encoder to fully extract the contextual information covered by dense haze. The
encoder uses DenseNet-121 [44] pre-trained on ImageNet [45] dataset as feature extractor.
DenseNet’s remarkable feature is the use of densely connected residual network. Compared
with simply stacking convolution layers directly or extracting features using Resnet [46],
DenseNet not only fully extracts image contextual information, but also improves feature
utilization without introducing additional parameters, which is conducive to recovering
image information lost due to high concentration haze. In addition, it establishes sufficient
skip-connections between different layers. Through the structure of skip-connections, the
features extracted from the previous layer are integrated into the current layer to ensure
the accuracy of visual tasks. The encoder structure is shown in Figure 2. Firstly, we
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introduce a preprocessing process, which includes a convolutional (Conv) layer, a batch-
norm (BN) layer and a rectified linear unit (ReLU) layer. The original features obtained
after preprocessing are then sent to the encoder. The encoder includes four groups of
pre-trained denseblock and transblock. Both denseblock and transblock layers are standard
DenseNet-121 block. After pre-training on the ImageNet dataset, the pre-training weights
are used to replace the random initialization weights, which can speed up the convergence
of the model. The transblock of each layer contains a max-pool layer, which will reduce
the features by half, and four-layer down-sampling finally reduces the feature map to one
sixteenth of the original size.

3.3. Attention Optimized Decoder

Because the encoder reduces the feature size to one sixteenth of the original size, a
symmetrical four-layer upsampling module is required to recover the feature size. Similar
to the encoder, we use four symmetrical groups of denseblock and transblock. This symmet-
rical codec module design can make it easier for shallow features to be integrated into deep
features through skip-connection. However, the denseblock and transblock of the decoder
are different from those in the encoder, which are specially designed and simplified. The
purpose is to process the sampled feature map and restore the size of the feature map to the
size of the original picture. The simplified structure of denseblock and transblock is shown
in Figure 2. The denseblock of each decoder includes two groups of ReLU layers and Conv
layers. In order to restore the size of the feature map to the original size, each transblock
must contain an upsampling operator. Compared with direct quadratic linear interpolation
for upsampling, this paper uses the learnable upsampling module called pixelshuffle (as
shown in Figure 4) [47] to avoid artificial traces caused by interpolation during upsampling.
It is more suitable for end-to-end image tasks.
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Figure 4. Comparation of different upsampling methods. (a) Bilinear Interpolation, (b) Pixelshuffle.
Pixelshuffle method is a learnable upsampling method. By integrating four feature channels into one
feature channel, the pixel method can double the size without artificial trace.

Usual dehazing method assigns uniform weights to all pixels and channels, which is
inconsistent with the real experience. Because the haze is unevenly distributed in the real
scene, setting the same weights for all pixel values will lead to insufficient dehazing in areas
with higher haze concentration and affect the final image restoration quality. Moreover,
for all channels of the feature map, their sensitivity to haze concentration is also different.
Therefore, in the reconstruction of the feature map, the introduction of the attention module
helps the network better learn the haze distribution and achieve a more ideal dehazing
effect. Different from other dehazing methods using the attention mechanism [48–50], after
each transblock in decoder, we add an attention module, whose structure is shown in
Figure 5. Inspired by literature [32], the attention module is divided into channel domain
attention branch and spatial domain attention branch. In channel domain attention branch,
we first take the average value of all pixels of each channel of the feature map in the decoder
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as the original channel attention feature vector. For a c*h*w feature map, we can produce a
feature vector of c*1 size. The channel attention of k-th channel can be formulated as [32]:

Ak
c =

1
h ∗ w ∑h

i=1 ∑w
j=1 valuek(i, j), (3)

where valuek(i, j) means the pixel value of k-th channel at position (i, j).
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In order to enable the feature vector to learn the sensitivity of different channels, we
perform Conv, ReLU, Conv and Sigmoid operations on it in turn. In this way, the feature
vector can learn the attention of different channels through training. Finally, we multiply
the attention vector with the original feature map.

The calculation of attention in spatial domain is similar to that in channel domain.
For the obtained channel attention feature map, we first perform average pooling and
maximum pooling along the channel dimension to obtain two 1 ∗ h ∗ w original spatial
attention. The pixels at each point on the feature map are the average and maximum values
of all pixels at that position on all channels. Average spatial attention at position (i, j) can
be formulated as [32]:

A(i, j)
s, avg =

1
m ∑m

k=1 valuek(i, j), (4)

where m is the number of feature channel.
Then, Conv and Sigmoid operations are performed on the two feature maps to obtain

the learned spatial domain attention. Finally, the spatial domain attention is multiplied by
the feature map mixed with channel domain attention. The uneven distribution of haze in
channel and space is learned by feature map.

3.4. Discriminator Network

The discriminator network is a conventional binary classification network. Its input is
a symmetrical image pair consisting of the dehazed image generated by the generator and
the corresponding haze-free image. The output of the discriminator network is to identify
whether the image is true or false and guide the generator network training accordingly.
In the training process, the discriminator will improve the ability to identify true data
and false data as much as possible, and the generator will generate true data as much as
possible. The discriminator uses real data and false data for training to update the weight.
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When the generator is trained, it will use the complete model with frozen discriminator.
At this time, the false data generated by the generator is output to the discriminator and
the false data is marked as true data. The parameter update of the generator network
is realized by transmitting the error of the discriminator forward, which means that the
weight update of the generator is guided by the discriminator. In the discriminator, we
use a series of combinations of LeakyReLU [51] layer, Conv layer and BN layer. In the
process of gradient back propagation, LeakyReLU function (as shown in Figure 6) adds an
extra hyperparameter to calculate the gradient when the input of the activation function is
less than 0, which solves the problem of neuron death due to the emergence of negative
samples. The BatchNorm layer can centralize and standardize each batch. This operation
can avoid the continuous increase in parameters when the parameters change too much
due to a different data distribution. Of course, it can also avoid gradient explosion and
accelerate the convergence speed while using a more accurate learning rate. These two
layers have good applications in classification networks.
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3.5. Loss Function

In order to comprehensively consider all aspects of the performance of the generated
haze-free image and better guide the model to complete the training, we use an integrated
loss function consisting of reconstruction loss, perceptual loss [52], and adversarial loss.

The reconstruction loss measures the average absolute error between the output
dehazed image and the corresponding reference image, and can be formulated as:

Lr =
1
n ∑i L1(G(Ii)− Ji), (5)

where I means the hazy input of the generator, and J stands for the corresponding ground
truth haze-free image. G(·) means the generator, and L1(·) represents least absolute error.
Reconstruction loss can measure the distortion on pixel value between dehazed image and
ground truth but is often inconsistent with human visual perception. Therefore, perceptual
loss is proposed to solve this problem.

Perceptual loss is formulated as [52]:

Lp =
1
n ∑i L2(vgg(G(Ii))− vgg(Ji)), (6)

where L2(·) means least square error, and vgg(·) means pre-trained VGG16 network [53].
VGG16 network is also a network trained in ImageNet. It can extract image edge, color,
brightness, texture and even deeper imperceptible semantic features. Simulating the
difference of human eye perception of the image with VGG16 is also widely used in tasks
such as super-resolution and style migration.
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Finally, the adversarial loss is also integrated into the loss function to reflect the
guiding role of the discriminator network to the generator network. It is formulated as [31]:

La =
1
n ∑i(− log (1 − D(G(Ii)))), (7)

where D(·) means the discriminator.
Finally, we combine the reconstruction loss, perceptual loss and adversarial loss

together to regularize our network.

L = αLr + βLp + γLa, (8)

In our experiment, α, β, γ are set to be 1, 0.9, 0.1 correspondingly.

4. Experiments
4.1. Datasets and Metrics

Considering the application effect in real scene, we selected small-scale real-world
datasets I-HAZY [54] and O-HAZY [55]. The I-HAZY and O-HAZY datasets are proposed
to solve the problem that the current learning-based dehazing method relies too much on
large-scale synthetic datasets. Compared with the most commonly used dehazing datasets,
I-HAZY and O-HAZY datasets are more challenging for the performance of the model. The
I-HAZY dataset includes 30 pairs of indoor real hazy images and corresponding haze-free
images, of which 25 pairs are used for training and five pairs are used for testing. The O-
HAZY dataset includes 45 pairs of outdoor real hazy images and corresponding haze-free
images, of which 40 pairs are used for training and five pairs are used for testing. The real
hazy images are generated by a professional haze generator. They are taken under the
same illumination parameters as the corresponding haze-free images, which is closer to the
practical application.

In this paper, two objective performance indexes and one subjective index commonly
used in image restoration are used to evaluate the performance of the model proposed in
this paper, and compared with other dehazing methods. The objective indexes are peak
signal to noise ratio (PSNR) and structural similarity index (SSIM) [56]. The subjective
index is Learned Perceptual Image Patch Similarity (LPIPS) [57].

PSNR is used to measure the pixel-wise error between the image and the correspond-
ing reference image. PSNR is an error sensitive image quality evaluation index, and is
formulated as:

PSNR = 10log10

(
(2n − 1)2

MSE

)
, (9)

where n represents the bit width of the pixel, and MSE stands for the mean absolute error.
SSIM considers the error between the dehazed image and the corresponding reference

image from three aspects: brightness, contrast and structure. Compared with PSNR, SSIM is
more comprehensive and according with people’s intuitive feelings. SSIM is formulated as:

l(x, y) = 2µxµy+c1
µ2

x+µ2
y+c1

c(x, y) = 2σxσy+c2

σ2
x+σ2

y+c2

s(x, y) = σxy+c3
σxσy+c3

, (10)

SSIM = l(x, y) ∗ c(x, y) ∗ s(x, y), (11)

where µ means mean, σx means variance, and means covariance. l, c, s stand for brightness,
contrast and structure. c1, c2, c3 are constant.

LPIPS uses the similarity measurement of high-dimension image structure to replace
the distance measurement that cannot be formed in practice, which means the difference
of pixel values is not always consistent with people’s subjective perception. In practical
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use, LPIPS uses the deep network pre-trained on ImageNet dataset to extract the deep
features of images and reference images. The lower the LPIPS value, the higher the feature
similarity between the generated image and the corresponding reference image, and the
more similar the subjective perception.

4.2. Implement Details

The program in this paper is written in Pytorch framework and trained on computer
configured with Intel i9-9900k CPU and NVIDIA GeForce RTX 2080ti GPU. Our initial
learning rate is set to 0.0001. Adam [58] is used as the learning rate optimization strategy,
and StepLR is used to adjust the basic learning rate periodically. The image is cut to a
fixed size of 256 × 256. Every patch transferred to the generator is randomly rotated by 0◦,
90◦, 180◦ or 270◦ to prevent over fitting. In order to further improve the robustness of the
generative adversarial network, we set up a sample pool. When the generator receives 50
pairs of hazy images and corresponding haze-free images, the subsequent image pairs will
have a 50% probability to be consisted of a hazy image and a random mismatched haze-free
image. The purpose of this sample pool is to prevent the discriminator network from
stopping training and supervise the training of the generator network in the small-scale
dataset. In the training process, num of threads is set to eight, batch size is set to one, and
epoch is set to 5000. Learning rate step is set to 1000 and learning rate decay is set to 0.5.
The last two parameters mean that for every 1000 epochs trained, the basic learning rate is
attenuated to half of the initial learning rate. The code can be available at [59].

4.3. Experiment Results

The model in this paper is compared with DCP [5], CAP [6], DehazeNet [21], DCPDN [22]
and AOD-Net [24]. The visual comparison results are shown in Figure 7, and the experi-
mental results of quantitative analysis are shown in Tables 1 and 2, respectively.
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Figure 7. Visual comparisons on I-HAZY and O-HAZY datasets. In the figure, column (a) is the input
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DCPDN [22], AOD-Net [24] and ours respectively. Column (h) is the corresponding ground truth.
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Table 1. Objective metrics PSNR and SSIM comparisons.

DCP [5] CAP [6] DehazeNet [21] DCPDN [22] AOD-Net [24] Ours

I-HAZY
PSNR 14.43 14.62 15.72 16.21 13.98 22.17

SSIM 0.752 0.767 0.734 0.755 0.732 0.793

O-HAZY
PSNR 16.78 16.01 16.12 15.16 15.03 22.72

SSIM 0.653 0.681 0.612 0.673 0.539 0.784

Table 2. Subjective metric LPIPS comparisons.

DCP [5] CAP [6] DehazeNet [21] DCPDN [22] AOD-Net [24] Ours

I-HAZY 0.333 0.298 0.313 0.274 0.374 0.218

O-HAZY 0.411 0.675 0.405 0.377 0.445 0.269

4.4. Experiment on Large-Scale Dataset

Although it is better to measure the robustness of the proposed method in the real-
scene in small-scale real-world datasets, we also conduct quantitative analysis on a large-
scale benchmark for making the experiment results more convincing. Considering the
number of samples in the dataset, we select RESIDE as the dataset used for training and
testing. RESIDE is a large-scale benchmark including five subsets collected from both
synthetic and real-world images. In this experiment, we choose ITS subset, consisting of
10,000 haze-free images as ground truth and their corresponding 100,000 synthetic hazy
images, and OTS subset, consisting of 8970 haze-free images as ground truth and their
corresponding 313,950 synthetic hazy images for training. For quantitatively analyzing the
dehaze performance of our network, we test it on SOST subset, which consists of 500 pairs
of haze-free and corresponding hazy images not included in ITS and OTS. We compared
our method with four different algorithms: DCP, DehazeNet, DCPDN, AOD-Net, and the
results are shown in Figure 8 and Table 3.
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Column (b–f) are dehazed images generated by DCP [5], DehazeNet [21], DCPDN [22], AOD-Net [24]
and ours respectively. Column (g) is the corresponding ground truth.
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Table 3. Metrics comparisons with other methods on SOTS dataset.

Method PSNR SSIM LPIPS

DCP [5] 16.62 0.818 0.293
DehazeNet [21] 21.14 0.847 0.261

DCPDN [22] 19.98 0.857 0.243
AOD-Net [24] 19.06 0.850 0.228

ours 27.12 0.909 0.213

As can be seen from the results, the dehazed images generated from our method
are best restored to the ground truth images both in metrics and visualization results.
DehazeNet has achieved a relatively high PSNR, which is reflected in the outdoor images.
In the RESIDE dataset, the haze of outdoor images is uneven, while the haze of indoor
images is related to the depth of field and is uneven. So, when it comes to indoor images,
DehazeNet performs badly due to lack of sufficient information extracted by its encoder.
The color distortion of DCPDN is obvious, which is consistent with its performance in
I-HAZE and O-HAZY datasets. For the high brightness area in the third row of the Figure 8
and the sky area in the fourth and fifth rows of Figure 8, there exists visible color distortion.
AOD-Net has a better dehazing effect, but from the perspective of visual perception, the
color brightness of the pictures generated by AOD-Net is significantly lower than that of the
ground truth. Because a more effective encoder is used to extract contextual information,
there is almost no obvious differences between the images generated by our method and
the ground truth. At the same time, due to the attention mechanism, its performance is not
lost when it comes to indoor images. For the thicker haze caused by deeper depth of field,
our method can also learn and remove the haze perfectly.

4.5. Experiment on Real-World Images

In order to show the dehazing effect of our method on real hazy images, we compare
the visual quality of different methods on real-world images from RTTS, a subset of RESIDE.
Due to the lack of corresponding haze-free images, quantitative analysis cannot be carried
out. As shown in Figure 9, our method can remove the haze on the image to the greatest
extent, and better restore the contour and color information of the object. The comparison
methods have some problems of insufficient dehazing and color distortion to varying
degrees. The dehazing of DCP method is more average, which is reflected in that it may
well remove the haze on the surface (in the first row of Figure 9), but it is weak for deeper
haze (in the second row of Figure 9). DCPDN suffers heavily from color distortion that can
not be ignored, which can obviously be seen in the second row. The brightness of dehazed
images generated by DehazeNet is lower than ours, and there still exists a strong sense of
haze in the images generated by AOD-Net. Overall, our proposed method can best restore
details and achieve a pleasing visual appearance.
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5. Conclusions

In this paper, we propose an attention optimized deep generative adversarial network
for removing uneven dense haze in real scene. Through the framework of generative
adversarial network, the model can achieve better training effects in small-scale datasets.
The generator network adopts the structure of a deep symmetric encoder-decoder structure.
The encoder adopts a densely connected four-layer down-sampling structure to ensure the
full extraction of image contextual information and recover the information lost due to the
dense haze. Then, a symmetric decoder is used to restore the resolution decreased by the
encoder. The attention mechanism is introduced into the decoder, which can adaptively
give attention weights to different pixels and channels, so as to deal with the uneven
distribution of haze in the real scene. The experiment results on I-HAZY and O-HAZY
datasets show that compared with the widely used dehazing algorithms and models, our
model has excellent performance in both objective metric and subjective visual perception.

Although the proposed network has achieved good results in removing haze in real
scenes, it can still be improved in the following aspects. First, the network adopts a
relatively simple structure design, namely symmetrical encoder-decoder, so its encoder and
decoder can be adjusted quickly. Designing a more effective feature extraction backbone
network will help to improve the ability of dehazing. Second, the special loss function
design will also help to improve the dehazing metrics of the model, such as SSIM loss
function designed in [40]. Finally, the proposed method is also suitable for other low-level
visual tasks, such as decloud, derain, and so on. More experiments can be conducted to
verify the effect of the network as a general low-level visual method.
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