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Abstract: Most linguistic-based approaches to multi-attribute group decision making (MAGDM) use
symmetric, uniformly distributed sets of additive linguistic terms to express the opinions of decision
makers. However, in reality, there are also some problems that require the use of asymmetric, uneven,
i.e., non-equilibrium, multiplicative linguistic term sets to express the evaluation. The purpose of
this paper is to propose a new approach to MAGDM under multiplicative linguistic information.
The aggregation of linguistic data is an important component in MAGDM. To solve this problem,
we define a chi-square for measuring the difference between multiplicative linguistic term sets.
Furthermore, the linguistic generalized weighted logarithm multiple averaging (LGWLMA) operator
and linguistic generalized ordered weighted logarithm multiple averaging (LGOWLMA) operator
are proposed based on chi-square deviation. On the basis of the proposed two operators, we develop
a novel approach to GDM with multiplicative linguistic term sets. Finally, the evaluation of transport
logistics enterprises is developed to illustrate the validity and practicality of the proposed approach.

Keywords: multiplicative symmetrical linguistic information; aggregation operator; linguistic chi-
square deviation; group decision making

1. Introduction

Group decision making (GDM) is an important and interesting research topic at
present. It is done by inviting a large number of decision makers (DMs) with experience
and knowledge to share their opinions on the evaluation of each alternative [1]. According
to the evaluation information provided by DMs, the alternatives are comprehensively
evaluated and the best alternative is finally obtained. With the increasingly complex social
and economic environment, the probability that a single DM can consider the problem
comprehensively is extremely low [2]. Therefore, a considerable amount of research has
applied the GDM process to various types of practical problems [3–6], such as emergency
preparedness selection [7,8], the evaluation of pro-environmental behavior [9], waste
incineration plant and wind farm siting [10,11], healthcare facility selection [12], and so on.
As an important form of GDM, MAGAM develops some methods for selecting the most
desirable option from a pre-provided set of options based on the opinion information given
by all decision makers on multiple influential attributes.

In a MAGDM environment, the evaluation of experts cannot be expressed precisely
in quantitative form, but rather in qualitative form, due to human characteristics that
cause judgments to carry inherent subjectivity and ambiguity. In such cases, experts or
DMs prefer to use linguistic variables instead of numbers to express their judgments [13].
For example, when experts try to assess the “excellence” of a project, they use linguistic
terms such as “good”, “average”, “poor”, etc. In order to enhance the robustness and the
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diversity of usage scenarios of classical decision models [14], linguistic variables have been
intensively investigated [15–20] and applied in many fields [10,21–23].

In the existing studies, many linguistic variables are assessed with uniformly and
symmetrically distributed sets. However, there are also some issues that require unevenly
distributed sets of linguistic terms to assess their variables. For example, negative reviews
usually have a greater impact on the final choice of other users than positive reviews when
shopping online since DMs tend to be risk-averse in the realistic situations [24]. Therefore,
Xu [25] proposed an unbalanced linguistic label set called the multiplicative linguistic term
set. Xu [25] demonstrated many practical advantages over additive linguistic term sets
in specific contexts. Xu [26] proposed the definition of incomplete multiplicative linguis-
tic preference relations. An effective method to solve the group decision problem with
multiplicative linguistic information is developed. Meng et al. [27] devised a new type
of linguistic variables, called dual multiplicative linguistic variables (DMLVs), and intro-
duced a novel group decision-making method based on the consistency and consensus
analysis of dual multiplicative linguistic preference relations (DMLPRs). Xie et al. [28]
analyzed the dual probabilistic multiplicative linguistic preference relations (DPMLPRs)
based upon the dual probabilistic multiplicative linguistic term sets (DPMLTSs). Then,
the comparable degree between the DPMLPRs and the consensus of the group DPMLPR
are studied. To compare two uncertain multiplicative linguistic variables, Xia et al. [29]
defined a possibility degree formula and investigated its properties. Then, a group decision-
making method was devised to deal with the case in which the preference is expressed by
an uncertain multiplicative linguistic variable (UMLV).

To deal with MAGDM in such settings, several new aggregation operators have been
developed for aggregating multiplicative linguistic information. Xu [25] proposed the
extended OWA (EOWA) operator and extended OWG (EOWG) operator to aggregate mul-
tiplicative linguistic information. Tang [30] further defined an aggregation operator for
fusing multiplicative linguistic variables, namely the extended linguistic geometric mean
(ELGM) operator. The above studies all focus on the decision making of the identified
linguistic variables. However, in some cases, it may still be difficult for decision makers to
provide accurate linguistic values due to a lack information, time constraints, or limited ex-
pertise of the decision maker, etc. Considering this problem, Xu [31] proposed the uncertain
linguistic weighted geometric mean (ULWGM) operator, the ULOWG operator, and the
induced ULOWG operator to aggregate uncertain multiplicative linguistic information.
Lin [32] proposed an integrated algorithm for linguistic group decision making based on
the deviation measure and ULHWG operator. Zhang [33] promoted the continuous OWG
(C−OWG) operator under uncertain linguistic environments. However, multiplicative
linguistic aggregation operators are seldom studied in comparison to additive linguis-
tic information. The aggregation operators studied above focus on original data. In the
decision-making process, the decision makers are more interested in analyzing the differ-
ence between the original data and aggregation result. Therefore, the purpose of this paper
is to develop a new multiplicative linguistic aggregation operator considering deviation.
The ranking of alternatives is one of the most crucial steps of MAGDM. At present, there are
many alternative ranking methods, such as TOPSIS [34,35], VIKOR [36], PROMETHEE [37],
MULTIMOORA [38], and ELECTRE III [39], etc. Wojciech Sałabun et al. [40] performed
simulation experiments on the TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods to
calculate the similarity of their obtained final rankings. Saroj Kumar Patel [41] compared the
application of multi-criteria decision-making methods such as the TOPSIS and VIKOR meth-
ods for alternative industrial robot selection. Bartłomiej Kizielewicz et al. [42] proposed
an MCDA-based method that considers fuzzy versions of TOPSIS, VIKOR, MMOORA,
and WASPAS for evaluating the decision problem of choosing the best housing solution.
Opricovic et al. [43,44] compared the VIKOR method with the TOPSIS and PROMETHEE
methods and concluded that VIKOR can be compared with other methods to obtain the
best results. The VIKOR approach finds a compromise solution to a problem and assists
decision makers in the final decision. A compromise is a suitable solution that comes closest
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to an ideal solution. In addition, the VIKOR method can better retain complete decision
information in the decision-making process. Therefore, scholars have become increasingly
interested in this approach in recent years. However, the VIKOR method has been applied
less in the study of multiplicative linguistic group decision making. Based on this, consid-
ering the superiority of VIKOR compared with other traditional multi-attribute decision
methods, a multiplicative linguistic multi-attribute decision model based on symmetrical
linguistic chi-square deviation and VIKOR is proposed.

The rest of this paper is organized as follows. Section 2 presents some preliminary
knowledge. Section 3 proposes the deviation-based linguistic geometric aggregation op-
erators and proves some of its properties. In Section 4, we propose a MAGDM approach
that is based on this aggregation operator and give a numerical example to illustrate the
feasibility of the proposed approach.

2. Preliminaries
2.1. Multiplicative Linguistic Scale and Its Operational Laws

The linguistic assessment scale is the basis of linguistic decision making. In [25], Xu
defined a multiplicative symmetrical linguistic scale.

Definition 1. Let
S = {sα|α =

1
u

, · · · ,
1
2

, 1, 2, · · · , u}

be a totally ordered discrete linguistic term set, and let S satisfy the following conditions:

(1) sα > sβ if α > β.
(2) There is the reciprocal operator, rec(sα) = sβ, such that αβ = 1. In particular, rec(s1) = s1,

where u is a positive integer and sα refers to linguistic terms.

In particular, s 1
u

and su represent, respectively, the lower and upper limits of the
linguistic terms actually used by decision makers. In order to preserve all the given
information, Xu [25] extended the discrete linguistic term set S to a continuous linguistic
term set S̄ = {sα|α ∈ [1/t, t]}, where t > u. If sα ∈ S, then we call sα the original linguistic
term; otherwise, we call sα the virtual linguistic term. To facilitate the calculation of
linguistic information, Xu [25] proposed the following linguistic operational laws:

Definition 2. Let sα, sβ ∈ S̄, and λ ∈ [0, 1], then

(1) sα
⊗

sβ = sαβ;
(2) (sα)λ = sαλ .

Lemma 1. Let sα, sα1 , sα2 ∈ S̄, and λ, λ1, λ2 ∈ [0, 1], then

(1) sα1

⊗
sα2 = sα2

⊗
sα1 ;

(2) (sα1

⊗
sα2)

λ = (sα1)
λ ⊗(sα2)

λ;
(3) (sα)λ1

⊗
(sα)λ2 = (sα)λ1+λ2 .

2.2. The Linguistic Geometric Aggregation Operators

The question of how to aggregate linguistic information is an important topic; in [45],
Xu defined the LG operator and LWG operator as follows:

Definition 3. Let sα1 , sα2 , · · · , sαn ∈ S̄ be n linguistic variables. If LG : S̄n → S̄ satisfies

LG(sα1 , sα2 , · · · , sαn) = (sα1

⊗
sα2

⊗
· · ·

⊗
sαn)

1
n = s( n

∏
j=1

αj

) 1
n

,

then LG is called the linguistic geometric operator.
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Definition 4. Let sα1 , sα2 , · · · , sαn ∈ S̄ be n linguistic variables. If LWG : S̄n → S̄ satisfies

LWG(sα1 , sα2 , · · · , sαn) = (sα1)
w1
⊗

(sα2)
w2
⊗
· · ·

⊗
(sαn)

wn = s n
∏
j=1

α
wj
j

,

where w = (w1, w2, · · · , wn)T is the weighting vector of linguistic variables and wj ≥ 0,
n
∑

j=1
wj = 1,

then LWG is called the linguistic geometric weighted averaging operator.

In particular, if w = ( 1
n , 1

n , · · · , 1
n )

T , then the LWG operator is reduced to a linguistic
geometric (LG) operator.

To investigate the extension of the OWG operator in a linguistic environment, Xu [25]
defined the following LOWG operator.

Definition 5. A LOWG operator of dimension n is a mapping LOWG : S̄n → S̄ that is associated

with a weighting vector w = (w1, w2, · · · , wn)T , such that wj ≥ 0,
n
∑

j=1
wj = 1, and aggregates a

collection of linguistic variables sα1 , sα2 , · · · , sαn according to the following expression:

LOWG(sα1 , sα2 , · · · , sαn) = (sβ1)
w1
⊗

(sβ2)
w2
⊗
· · ·

⊗
(sβn)

wn = s n
∏
j=1

β
wj
j

,

where sβ j is the jth largest of sα1 , sα2 , · · · , sαn , and LOWG is thus called the linguistic ordered
weighted geometric averaging operator.

In particular, if w = (1, 0, · · · , 0)T , then the LOWG operator is reduced to a linguistic
maximum (LM1) operator; if w = (0, 0, · · · , 1)T , then the LOWG operator is reduced to a
linguistic minimum (LM2) operator, and if w = ( 1

n , 1
n , · · · , 1

n )
T , then the LOWG operator is

reduced to a linguistic geometric (LG) operator.
Based on the LWG operators and LOWG operators, in [46], Xu defined the LHG

operator as follows.

Definition 6. An LHG operator of dimension n is a mapping LHG : S̄n → S̄ that is associated

with an exponential weighting vector ω = (ω1, ω2, · · · , ωn)T , such that ωj ≥ 0,
n
∑

j=1
ωj = 1, and

aggregates a collection of linguistic variables sα1 , sα2 , · · · , sαn according to the following expression:

LHG(sα1 , sα2 , · · · , sαn) = (sβ1)
ω1
⊗

(sβ2)
ω2
⊗
· · ·

⊗
(sβn)

ωn ,

where sβi is the jth largest of s̄α1 , s̄α2 , · · · , s̄αn(s̄αi = (sαi )
nw1 , i = 1, 2, · · · , n), w = (w1, w2, · · · ,

wn)T is the weight vector of the sαi (i = 1, 2, · · · , n) with wj ≥ 0,
n
∑

j=1
wj = 1, and n is the

balancing coefficient, which plays the role of balance; thus, LHG is called the linguistic hybrid
geometric operator.

In particular, if ω = ( 1
n , 1

n , · · · , 1
n )

T , then the LHG operator is degenerated to the
LWG operator, and if w = ( 1

n , 1
n , · · · , 1

n )
T , then the LHG operator is reduced to the

LOWG operator.

2.3. The Penalty Function and BUM Function

In [47], Calvo et al. were the first to theoretically study the relationship between
the aggregation operator and the penalty function. In [48,49], Calvo and Grabisch et al.
described the conditions for constructing an aggregation function from a penalty function
in a general sense.
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Definition 7. Let I be a subset of the set of real numbers. If the function P : In+1 → I satisfies the
following three conditions:

(1) P(X, y) ≥ 0 for all X ∈ In and y ∈ I;
(2) P(X, y) = 0 if X = Y and Y = (y, y, · · · , y);
(3) For every fixed X, the set of minimizers of P(X, y) is either a singleton or an interval.

then P is called a penalty function.

For deriving the associated weight of the OWA operator, Yager [50] proposed the
following BUM function-based formula:

wi = Q
( i

n
)
−Q

( i− 1
n
)
, i = 1, 2, · · · , n. (1)

The BUM function Q is called the fuzzy semantic quantization operator, such that
f (0) = 0, f (1) = 1, and f (x) ≤ f (y) for all x < y. The BUM function reflects the decision
makers’ tendency towards risk. For example, Q(x) = xq can be selected according to
decision makers’ risk preference. If q ∈ (0, 1), then the decision maker is optimistic.
If q = 1, then the decision maker is neutral. If q > 1, then the decision maker is pessimistic.
The BUM function can also be expressed as follows:

Q(r) =


0, r < α
r− α

β− α
, α ≤ r ≤ β

1, r > β

, (2)

where α, β and r are in the range of [0, 1], the fuzzy linguistic “as many as possible ” ,
“more ” and “at least half ” corresponding to the pair (α, β) = (0.5, 1), (α, β) = (0.3, 0.8),
and (α, β) = (0, 0.5), respectively.

3. Linguistic Geometric Aggregation Operators Based on Symmetrical Linguistic
Chi-Square Deviation

Let S̄ = {sα|α ∈ [1/t, t]} be an extended multiplicative linguistic scale of S = {sα|α =
1
u , · · · , 1

2 , 1, 2, · · · , u}. In general, t is a constant slightly larger than u. Inspired by the
existing studies [46,48,51], in this section, we will introduce a novel aggregation operator
by minimizing a new penalty function and obtain the expression of the proposed operator.

3.1. Linguistic Generalized Weighted Logarithm Multiple Averaging Operator

Definition 8. Let sα ∈ S̄, T : S̄→ [1/t, t] be a mapping, such that T(sα) = α.

Obviously, T is a bijection and T−1(α) = sα. For all α, β ∈ ( 1
u , u), we have tT(sα) > 1

and tT(sβ) > 1. It follows that logtT(sα)
tT(sβ)

=
log(tT(sα))
log(tT(sβ))

> 0. Since

(
(logtT(sα)

tT(sβ)
)λ − 1

)2
= (logtT(sα)

tT(sβ)
)2λ − 2(logtT(sα)

tT(sβ)
)λ + 1 ≥ 0,

and logtT(sα)
tT(sβ)

=
(

log
tT(sβ)

tT(sα)

)−1, we have
(

logtT(sα)
tT(sβ)

)λ
+
(

log
tT(sβ)

tT(sα)

)λ − 2 ≥ 0. The equal

sign holds if and only if α = β.

Definition 9. Let sα, sβ ∈ S = {sα|α = 1
u , · · · , 1

2 , 1, 2, · · · , u}, D(sα, sβ) be the symmetrical
linguistic chi-square deviation between sα and sβ, if

D(sα, sβ) =

(
(logtT(sα)

tT(sβ)
)λ − 1

)2

(
logtT(sα)

tT(sβ)

)λ
(3)
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that is,
D(sα, sβ) =

(
logtT(sα)

tT(sβ)

)λ
+
(

log
tT(sβ)

tT(sα)

)λ − 2. (4)

Obviously, the smaller the value of D(sα, sβ) , the smaller the difference between two
multiplicative linguistic values sα and sβ. Therefore, Equations (3) and (4) can effectively
describe the deviation between two multiplicative linguistic values.

Let sα1 , sα2 , · · · , sαn be a set of linguistic variables and w = (w1, w2, · · · , wn)T be a

weighting vector satisfying wj ≥ 0,
n
∑

j=1
wj = 1. Assume that the aggregation operator of

dimension n is a mapping f determined by the following formula: sβ = f (sα1 , sα2 , · · · , sαn).
In the aggregation process, the deviation between the arguments sα1 , sα2 , · · · , sαn and the
aggregation result sβ should be minimized. In order to reduce the deviation between
sαi (i = 1, 2, · · · , n) and sβ, we can also construct the penalty function F and the minimiza-
tion problem as follows:

minF =
n

∑
i=1

wiD(sαi , sβ) =
n

∑
i=1

wi

((
ln(tT(sαi ))

ln(tT(sβ))

)λ

+

(
ln(tT(sβ))

ln(tT(sαi ))

)λ

− 2
)

,

where λ is a parameter such that λ ∈ (−∞,+∞) and λ 6= 0. According to the necessary
conditions for the existence of extremum, we take the partial derivative of F with respect to
β, and then we have

∂F
∂β

=
n

∑
i=1

wi

(
ln(tT(sαi ))

ln(tT(sβ))

)λ−1(
− ln(tT(sαi ))

ln2(tT(sβ))

)
λ

β
+

n

∑
i=1

wi

(
ln(tT(sβ))

ln(tT(sαi ))

)λ−1 1
ln(tT(sαi ))

λ

β
.

Let ∂F
∂β = 0; we obtain the formula as follows:

β =
1
t

exp
{( n

∑
i=1

wi lnλ(tT(sαi ))

n
∑

i=1
wi/ lnλ(tT(sαi ))

) 1
2λ
}

. (5)

From Equation (5), the linguistic generalized weighted logarithm multiple averaging
(LGWLMA) operator can be defined as follows.

Definition 10. An LGWLMA operator of dimension n is a mapping LGWLMA : S̄n → S̄ that

is associated with a weighting vector w = (w1, w2, · · · , wn)T , such that wj ≥ 0,
n
∑

j=1
wj = 1,

according to the following expression:

LGWLMA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{( n
∑

i=1
wi lnλ(tT(sαi ))

n
∑

i=1
wi/ lnλ(tT(sαi ))

) 1
2λ
}.

where λ is a parameter such that λ ∈ (−∞, 0) ∪ (0,+∞).

By using different cases of the parameter λ in the LGWLMA operator, we can obtain
different types of aggregation operator.

Remark 1. If λ = 1 or λ = −1, then we obtain the linguistic weighted logarithm multiple
averaging (LWLMA) operator:

LWLMA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{( n
∑

i=1
wi ln(tT(sαi ))

n
∑

i=1
wi/ ln(tT(sαi ))

) 1
2
}.
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Remark 2. If λ→ 0, then the LGWLMA operator reduces to the linguistic weighted logarithm
geometric averaging (LWLGA) operator. Since

lim
λ→0

ln β = lim
λ→0

( n
∑

i=1
wi lnλ(tT(sαi ))

n
∑

i=1
wi/ lnλ(tT(sαi ))

) 1
2λ

+ ln
1
t
=

n

∏
i=1

lnwi (tT(sαi )) + ln
1
t

.

It follows that

lim
λ→0

LGWLMA(sα1 , sα2 , · · · , sαn) = LWLGA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{ n
∏

i=1
lnwi (tT(sαi ))

}.

3.2. The LGOWLMA Operator and Its Desirable Properties

If we rearrange the arguments in descending order in the LGWLMA operator, then
we can obtain the linguistic generalized ordered weighted logarithm multiple averaging
(LGOWLMA) operator, which can be defined as follows.

Definition 11. A LGOWLMA operator of dimension n is a mapping LGOWLMA : S̄n → S̄

that is associated with a weighting vector w = (w1, w2, · · · , wn)T , such that wj ≥ 0,
n
∑

j=1
wj = 1,

according to the following expression:

LGOWLMA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{( n
∑

i=1
wi lnλ(tT(sβi

))

n
∑

i=1
wi/ lnλ(tT(sβi

))

) 1
2λ
}. (6)

where sβi is the ith largest of arguments sα1 , sα2 , · · · , sαn and λ is a parameter such that λ ∈
(−∞, 0) ∪ (0,+∞).

Similar to the LGWLMA operator, the LGOWLMA operator has some special cases
as follows.

Remark 3. If λ = 1 or λ = −1, then we obtain the LOWLMA operator:

LOWLMA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{( n
∑

i=1
wi ln(tT(sβi

))

n
∑

i=1
wi/ ln(tT(sβi

))

) 1
2
}.

Remark 4. If λ→ 0, then the LGOWLMA operator reduces to the LOWLGA operator. That is,

lim
λ→0

LGOWLMA(sα1 , sα2 , · · · , sαn) = LOWLGA(sα1 , sα2 , · · · , sαn) = s
1
t exp

{ n
∏

i=1
lnwi (tT(sβi

))
}.

Let ϕ(λ) be the LGOWLMA operator and let

g(λ) =
( n

∑
i=1

wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

) 1
2λ

.

It is clear that g(−λ) = g(λ); hence, we have ϕ(−λ) = ϕ(λ). Obviously, the
LGOWLMA operator is an even function with respect to the parameter λ. For the sake of
simplicity, assume λ > 0. The LGOWLMA operator is monotonic, commutative, idempo-
tent and bounded. These properties are presented as follows.
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Theorem 1 (Monotonicity). Let f be the LGOWLMA operator. If sαi ≥ sα′i
for i = 1, 2, · · · , n,

then
f (sα1 , sα2 , · · · , sαn) ≥ f (sα′1

, sα′2
, · · · , sα′n).

Proof. Let

γ =
1
t

exp
{( n

∑
i=1

wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

) 1
2λ
}

,

then

ln γ = ln
1
t
+

( n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

) 1
2λ

,

∂ ln γ

∂βi
=

1
2λ

( n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

) 1
2λ−1

·
(wi/αi)λ

(
lnλ−1(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi )) +

n
∑

i=1
wi lnλ(tT(sβi ))

/
lnλ+1(tT(sβi ))

)
(

n
∑

i=1
wi/ lnλ(tT(sβi )))

2
.

Obviously, ∂ ln γ/∂βi ≥ 0 holds, i.e., ln γ is a monotonically increasing function
of βi. Then, γ increases monotonically with respect to βi. Based on Equation (6), it is
clear that function f increases monotonically with respect to αi. Accordingly, we have
f (sα1 , sα2 , · · · , sαn) ≥ f (sα′1

, sα′2
, · · · , sα′n).

Theorem 2 (Idempotency). Let f be the LGOWLMA operator. If Sαi = Sα for i = 1, 2, · · · , n,
then f (sα1 , sα2 , · · · , sαn) = sα.

Proof. Let sαi = sα for i = 1, 2, · · · , n, then sαi = sᾱ, where

ᾱ =
1
t

exp
{( n

∑
i=1

wi lnλ(tT(sα))

n
∑

i=1
wi/ lnλ(tT(sα))

) 1
2λ
}

=
1
t

exp{ln(tT(sα))} = α.

Therefore, we have f (sα1 , sα2 , · · · , sαn) = sα.

Theorem 3 (Commutativity). Let f be the LGOWLMA operator, and (sα′1
, sα′2

, · · · , sα′n) is any
permutation of the linguistic arguments (sα1 , sα2 , · · · , sαn), then

f (sα1 , sα2 , · · · , sαn) = f (sα′1
, sα′2

, · · · , sα′n).

Proof. Let
f (sα1 , sα2 , · · · , sαn) = sγ,

f (sα′1
, sα′2

, · · · , sα′n) = sγ′ .
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where

γ =
1
t

exp
{( n

∑
i=1

wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

) 1
2λ
}

,

and

γ′ =
1
t

exp
{( n

∑
i=1

wi lnλ(tT(sβ′i
))

n
∑

i=1
wi/ lnλ(tT(sβ′i

))

) 1
2λ
}

.

Since (sα′1
, sα′2

, · · · , sα′n) is any permutation of the linguistic arguments (sα1 , sα2 , · · · , sαn),
we have sβi = sβ′i

for i = 1, 2, · · · , n. Thus, we obtain

f (sα1 , sα2 , · · · , sαn) = f (sα′1
, sα′2

, · · · , sα′n).

Theorem 4 (Boundedness). Let f be the LGOWLMA operator, LM1 be the linguistic maximum
operator and LM2 be the linguistic minimum operator. Then,

LM2(sα1 , sα2 , · · · , sαn) ≤ f (sα1 , sα2 , · · · , sαn) ≤ LM1(sα1 , sα2 , · · · , sαn).

Proof. It is clear by Theorems 1 and 2.

Theorem 5. Let f be the LGOWLMA operator, and w = (w1, w2, · · · , wn)T be the weighting

vector satisfying wj ≥ 0 and
n
∑

j=1
wj = 1.

(1) If w1 ≥ w2 ≥ · · · ≥ wn, then

f (sα1 , sα2 , · · · , sαn) ≥ s
1
t exp

{( n
∑

i=1
lnλ(tT(sαi ))

n
∑

i=1
1/ lnλ(tT(sαi ))

) 1
2λ
}.

(2) If w1 ≤ w2 ≤ · · · ≤ wn, then

f (sα1 , sα2 , · · · , sαn) ≤ s
1
t exp

{( n
∑

i=1
lnλ(tT(sαi ))

n
∑

i=1
1/ lnλ(tT(sαi ))

) 1
2λ
}.

Proof. From Equation (6),

f (sα1 , sα2 , · · · , sαn) = s
1
t exp

{( n
∑

i=1
wi lnλ(tT(sβi

))

n
∑

i=1
wi/ lnλ(tT(sβi

))

) 1
2λ
},

where sβi is the ith largest of arguments sα1 , sα2 , · · · , sαn . It is clear that sβ1 ≥ sβ2 ≥ · · · ≥
sβn ≥ 1

t . If w1 ≥ w2 ≥ · · · ≥ wn, then

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

−

n
∑

i=1
lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))
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=

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))−

n
∑

i=1
lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

j=1
1/ lnλ(tT(sβ j))−

n
∑

j=1
lnλ(tT(sβ j))

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

n
∑

i=1

n
∑

j=1
wi
(

ln(tT(sβi ))/ ln(tT(sβ j))
)λ −

n
∑

i=1

n
∑

j=1
wi
(

ln(tT(sβ j))/ ln(tT(sβi ))
)λ

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

n
∑

i=1

n
∑

j=1
wi

((
ln(tT(sβi ))/ ln(tT(sβ j))

)λ −
(

ln(tT(sβ j))/ ln(tT(sβi ))
)λ
)

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

∑
i<j

wi

((
ln(tT(sβi

))

ln(tT(sβj
))

)λ

−
(

ln(tT(sβj
))

ln(tT(sβi
))

)λ)
+ ∑

j>i
wi

((
ln(tT(sβi

))

ln(tT(sβj
))

)λ

−
(

ln(tT(sβj
))

ln(tT(sβi
))

)λ)
n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

∑
i<j

(wi − wj)

((
ln(tT(sβi ))/ ln(tT(sβ j))

)λ −
(

ln(tT(sβ j))/ ln(tT(sβi ))
)λ
)

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

≥ 0.

It follows that

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

≥

n
∑

i=1
lnλ(tT(sβi ))

n
∑

i=1
1/ lnλ(tT(sβi ))

=

n
∑

i=1
lnλ(tT(sαi ))

n
∑

i=1
1/ lnλ(tT(sαi ))

.

which means that

f (sα1 , sα2 , · · · , sαn) ≥ s
1
t exp

{( n
∑

i=1
lnλ(tT(sαi ))

n
∑

i=1
1/ lnλ(tT(sαi ))

) 1
2λ
}.

Obviously, case (2) of Theorem 5 can be proven in a similar way. In sum, the proof of
Theorem 5 is complete.

Theorem 6. Let f be the LGOWLMA operator. For weighting vector w = (w1, w2, · · · , wn)T

and w = (w′1, w′2, · · · , w′n)T , which satisfies wi ≥ 0, w′i ≥ 0, and
n
∑

i=1
wi = 1,

n
∑

i=1
w′i = 1 for

i = 1, 2, · · · , n. If wi/wi+1 ≥ w′i/w′i+1 for i = 1, 2, · · · , n− 1, then

fw(sα1 , sα2 , · · · , sαn) ≥ fw′(sα1 , sα2 , · · · , sαn).

Proof. If wi/wi+1 ≥ w′i/w′i+1 for i = 1, 2, · · · , n− 1, we have

wi
w′i
≥ wi+1

w′i+1
, i = 1, 2, · · · , n− 1.
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Assume that wi/w′i = vi, then wi = viw′i and vi ≥ vi+1 for i = 1, 2, · · · , n− 1, which
means that vi ≥ vj for i < j. Therefore, we have

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

−

n
∑

i=1
w′i lnλ(tT(sβi ))

n
∑

i=1
w′i/ lnλ(tT(sβi ))

=

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

−

n
∑

j=1
w′j lnλ(tT(sβ j))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))−

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j lnλ(tT(sβ j))

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

n
∑

i=1

n
∑

j=1
wiw′j

((
ln(tT(sβi ))

/
ln(tT(sβ j))

)λ −
(

ln(tT(sβ j))
/

ln(tT(sβi ))
)λ
)

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

∑
i<j

wiw′j

((
ln(tT(sβi

))

ln(tT(sβj
))

)λ

−
(

ln(tT(sβj
))

ln(tT(sβi
))

)λ)
+ ∑

i>j
wiw′j

((
ln(tT(sβi

))

ln(tT(sβj
))

)λ

−
(

ln(tT(sβj
))

ln(tT(sβi
))

)λ)
n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

∑
i<j

wiw′j

((
ln(tT(sβi

))

ln(tT(sβj
))

)λ

−
(

ln(tT(sβj
))

ln(tT(sβi
))

)λ)
+ ∑

i<j
wjw′i

((
ln(tT(sβj

))

ln(tT(sβi
))

)λ

−
(

ln(tT(sβi
))

ln(tT(sβj
))

)λ)
n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

∑
i<j

(wiw′j − wjw′i)
((

ln(tT(sβi ))
/

ln(tT(sβ j))
)λ −

(
ln(tT(sβ j))

/
ln(tT(sβi ))

)λ
)

n
∑

i=1
wi/ lnλ((tT(sβi )))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

∑
i<j

(viw′iw
′
j − vjw′jw

′
i)

((
ln(tT(sβi ))

/
ln(tT(sβ j))

)λ −
(

ln(tT(sβ j))
/

ln(tT(sβi ))
)λ
)

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

=

∑
i<j

w′iw
′
j(vi − vj)

((
ln(tT(sβi ))

/
ln(tT(sβ j))

)λ −
(

ln(tT(sβ j))
/

ln(tT(sβi ))
)λ
)

n
∑

i=1
wi/ lnλ(tT(sβi ))

n
∑

j=1
w′j/ lnλ(tT(sβ j))

.

Since vi ≥ vj and
(

ln(tT(sβi ))
/

ln(tT(sβ j))
)λ −

(
ln(tT(sβ j))

/
ln(tT(sβi ))

)λ ≥ 0 for
i < j, we obtain

n
∑

i=1
wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

−

n
∑

i=1
w′i lnλ(tT(sβi ))

n
∑

i=1
w′i/ lnλ(tT(sβi ))

≥ 0.
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Namely, we have

exp
{ n

∑
i=1

wi lnλ(tT(sβi ))

n
∑

i=1
wi/ lnλ(tT(sβi ))

}
≥ exp

{ n
∑

i=1
w′i lnλ(tT(sβi ))

n
∑

i=1
w′i/ lnλ(tT(sβi ))

}
.

Based on Equation (6), we can obtain

fw(sα1 , sα2 , · · · , sαn) ≥ fw′(sα1 , sα2 , · · · , sαn).

which completes the proof of Theorem 6.

4. Group Decision Making Based on Multiplicative Linguistic Aggregation Operator
and Linguistic VIKOR Method
4.1. A Chi-Square Deviation-Based Linguistic VIKOR Method for Group Decision Making under
Multiplicative Linguistic Environment

Consider a multiple attribute group decision-making problem under a linguistic set-
ting. Let X = {x1, x2, · · · , xm} be a set of m feasible alternatives, and C = {c1, c2, · · · , cn}
be a set of attributes. w = (w1, w2, · · · , wn)T is the weighting vector of attributes sat-

isfying wi ≥ 0 and
n
∑

i=1
wi = 1. Let D = {d1, d2, · · · , dl} be the set of decision makers.

V = (v1, v2, · · · , vl)
T is the completely unknown weighting vector of decision makers

satisfying vk ≥ 0 and
l

∑
k=1

vk = 1. Assume that each decision maker gives their own decision

matrix Rk =
(
r̃(k)ij
)

m×n, where r̃(k)ij is the evaluation result given by decision maker dk ∈ D
under the attribute cj ∈ C for the alternative xi ∈ X.

The linguistic decision-making algorithm is based on the linguistic VIKOR method and
the LGOWLMA operator can be summarized as the following framework (see Figure 1).

The process of this linguistic group decision-making algorithm involves the following
steps.

Step 1. Under the attribute ci ∈ C, decision maker ek measures the alternative xi ac-
cording to the multiplicative linguistic scale S = {sα|α = 1

t , · · · , 1
2 , 1, 2, · · · , t} and obtains

attribute value r̃(k)ij . Thus, the linguistic decision matrix Rk =
(
r̃(k)ij
)

m×n is constructed.

Step 2. Utilize Equation (1) and the BUM function Q(x) = x
3
2 to calculate the weight-

ing vector of decision maker V = (v1, v2, · · · , vl)
T , which satisfies vk ≥ 0 and

l
∑

k=1
vk = 1.

Step 3. Based on Definition 11, use the LGOWLM operator

r̃ij = s
1
t exp

{( l
∑

k=1
wi lnλ(tT(r̃(k)ij ))

l
∑

k=1
wi/ lnλ(tT(r̃(k)ij ))

) 1
2λ
}, i = 1, 2, · · · , m; j = 1, 2, · · · , n.

to aggregate all the decision matrices Rk into a collective decision matrix R = (r̃ij)m×n.
Step 4. Based on Definition 8, the entropy weight method [52] is adopted to obtain

the weighting vector of attributes w = (w1, w2, · · · , wn)T , where

wj =

1 + (1/ ln m)
m
∑

i=1

( T(r̃ij)
m
∑

i=1
T(r̃ij)

ln
T(r̃ij)

m
∑

i=1
T(r̃ij)

)
n
∑

j=1

(
1 + (1/ ln m)

m
∑

i=1

( T(r̃ij)
m
∑

i=1
T(r̃ij)

ln
T(r̃ij)

m
∑

i=1
T(r̃ij)

)) , (7)

and satisfies wj ≥ 0 and
n
∑

j=1
wj = 1.
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Step 5. Find positive and negative ideal solutions as follows:

(r̃+j )1×n = ( max
1≤i≤m

r̃i1, max
1≤i≤m

r̃i2, · · · , max
1≤i≤m

r̃in), (8)

(r̃−j )1×n = ( min
1≤i≤m

r̃i1, min
1≤i≤m

r̃i2, · · · , min
1≤i≤m

r̃in). (9)

Step 6. Based on the ratio of the linguistic chi-square deviation between each alterna-
tive to the positive ideal solution and the negative ideal solution, we denote

S+ = max
1≤i≤m

{ n

∑
j=1

wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2

}
, (10)

S− = min
1≤i≤m

{ n

∑
j=1

wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2

}
, (11)

R+ = max
1≤i≤m

max
1≤j≤n

{
wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2

}
, (12)

R− = min
1≤i≤m

max
1≤j≤n

{
wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2

}
. (13)

Step 7. Calculate interest ratio Q = (Qi)m×1, and arrange Qi in ascending order.

Qi =
δ

S+ − S−
( n

∑
j=1

wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2
− S−

)

+
1− δ

R+ −R−
(

max
1≤j≤n

{
wj

(
log

tT(r̃+j )

tT(r̃ij)

)λ
+
(

log
tT(r̃ij)

tT(r̃+j )

)λ − 2

(
log

tT(r̃+j )

tT(r̃−j )

)λ
+
(

log
tT(r̃−j )

tT(r̃+j )

)λ − 2

}
−R−

)
,

(14)

where δ is the decision mechanism coefficient. If δ > 0.5, it belongs to the risk preference
type; if δ = 0.5, it belongs to the risk-neutral type; if δ < 0.5, it belongs to the risk
aversion type.

Step 8. Arrange the alternative xi according to the value of Qi, and select the optimal
alternative(s).
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Figure 1. The framework of the proposed linguistic VIKOR method.

4.2. Comparison and Analysis

In the following, we discuss the application of the proposed group decision-making
method in evaluating transport logistics enterprises. Five transport logistics enterprises
{x1, x2, x3, x4, x5} are evaluated using four main evaluation indexes: equipment and
facilities(c1), management and services(c2), personnel quality(c3), informatization degree(c4).
Assume that four decision makers {d1, d2, d3, d4} evaluated five enterprises with four at-
tributes using the following multiplicative linguistic scale

S = {s1/5 = extrmely poor, s1/4 = very poor, s1/3 = poor, s1/2 = slightly poor,

s1 = f air, s2 = slightly good, s3 = good, s4 = very good, s5 = extremly good}.

4.2.1. Using the Proposed Approach to Select the Optimal Alternative

Step 1. The decision matrices given by decision makers are shown in Tables 1–4.

Table 1. Decision matrix R1 provided by decision maker d1.

c1 c2 c3 c4

x1 s1 s1/2 s3 s1/2
x2 s4 s1 s3 s1/2
x3 s1/2 s1/2 s1 s1/4
x4 s2 s2 s1 s1
x5 s5 s3 s2 s2
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Table 2. Decision matrix R2 provided by decision maker d2.

c1 c2 c3 c4

x1 s2 s1/2 s4 s1/4
x2 s3 s1 s3 s1/4
x3 s1/2 s1/4 s1 s1/2
x4 s2 s1 s2 s1
x5 s3 s2 s1 s3

Table 3. Decision matrix R3 provided by decision maker d3.

c1 c2 c3 c4

x1 s1 s1/3 s3 s1/3
x2 s3 s2 s2 s1/4
x3 s1/3 s1/2 s2 s1/2
x4 s3 s2 s3 s1
x5 s4 s4 s2 s1

Table 4. Decision matrix R4 provided by decision maker d4.

c1 c2 c3 c4

x1 s2 s1/2 s4 s1
x2 s4 s1 s2 s1/4
x3 s1/4 s1/2 s1 s1/4
x4 s3 s3 s1 s1/2
x5 s5 s2 s1 s2

Step 2. Select function Q(x) = x
3
2 , and utilize Equation (1) to calculate the weighting

vector of decision maker, and we obtain

v1 = Q
(1

4
)
−Q(0) =

(1
4
) 3

2 − 0 = 0.125,

v2 = Q
(2

4
)
−Q

(1
4
)
=
(2

4
) 3

2 −
(1

4
) 3

2 = 0.229,

v3 = Q
(3

4
)
−Q

(2
4
)
=
(3

4
) 3

2 −
(2

4
) 3

2 = 0.296,

v4 = Q(1)−Q
(3

4
)
= 1−

(3
4
) 3

2 = 0.350.

That is, v = (0.125, 0.229, 0.296, 0.350).
Step 3. Let λ = 1. Based on Definition 11, the LGOWLMA operator is utilized to

aggregate all the decision matrices Rk(k = 1, 2, 3, 4) into a collective decision matrix R,
as shown in Table 5.

Table 5. Group linguistic decision matrix R.

c1 c2 c3 c4

x1 s1.24 s0.42 s3.31 s0.33
x2 s3.31 s1.08 s2.29 s0.26
x3 s0.32 s0.34 s1.08 s0.29
x4 s2.29 s1.59 s1.29 s0.75
x5 s3.88 s2.36 s1.24 s1.59
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Step 4. By Definition 8, utilize the entropy weight method to obtain the weighting
vector of attributes

w1 =

1 + (1/ ln 5)
5
∑

i=1

( T(r̃i1)
5
∑

i=1
T(r̃i1)

ln T(r̃i1)
5
∑

i=1
T(r̃i1)

)
4
∑

j=1

(
1 + (1/ ln 5)

5
∑

i=1

( T(r̃i1)
5
∑

i=1
T(r̃i1)

ln T(r̃i1)
5
∑

i=1
T(r̃i1)

)) ≈ 0.260,

w2 =

1 + (1/ ln 5)
5
∑

i=1

( T(r̃i2)
5
∑

i=1
T(r̃i2)

ln T(r̃i2)
5
∑

i=1
T(r̃i2)

)
4
∑

j=1

(
1 + (1/ ln 5)

5
∑

i=1

( T(r̃i2)
5
∑

i=1
T(r̃i2)

ln T(r̃i2)
5
∑

i=1
T(r̃i2)

)) ≈ 0.275,

w3 =

1 + (1/ ln 5)
5
∑

i=1

( T(r̃i3)
5
∑

i=1
T(r̃i3)

ln T(r̃i3)
5
∑

i=1
T(r̃i3)

)
4
∑

j=1

(
1 + (1/ ln 5)

5
∑

i=1

( T(r̃i3)
5
∑

i=1
T(r̃i3)

ln T(r̃i3)
5
∑

i=1
T(r̃i3)

)) ≈ 0.128,

w4 =

1 + (1/ ln 5)
5
∑

i=1

( T(r̃i4)
5
∑

i=1
T(r̃i4)

ln T(r̃i4)
5
∑

i=1
T(r̃i4)

)
4
∑

j=1

(
1 + (1/ ln 5)

5
∑

i=1

( T(r̃i4)
5
∑

i=1
T(r̃i4)

ln T(r̃i4)
5
∑

i=1
T(r̃i4)

)) ≈ 0.337.

That is,
(w1, w2, w3, w4) = (0.260, 0.275, 0.128, 0.337).

Step 5. According to Equations (8) and (9), we find positive and negative ideal
solutions as follows:

(r̃+i )1×4 = (s3.88, s2.36, s3.31, s1.59),

(r̃−i )1×4 = (s0.32, s0.34, s1.08, s0.26).

Step 6. Based on the ratio of the linguistic chi-square deviation between each alterna-
tive to the positive ideal solution and the negative ideal solution:

S+ = 0.8731,S− = 0.0909,R+ = 0.3370,R− = 0.0820.

Step 7. Calculate interest ratio Q = (Qi)m×1, and arrange Qi in ascending order.

(Q1,Q2,Q3,Q4,Q5)
T = (0.2811, 0.6725, 0.8784, 0.0049, 0.0175)T .

Therefore, interest ratios Q1,Q2,Q3,Q4,Q5 are arranged in ascending order

Q4 ≺ Q5 ≺ Q1 ≺ Q2 ≺ Q3.

Step 8. Arrange the alternative xi according to the value of Qi, and we obtain a
descending order of xi:

x4 � x5 � x1 � x2 � x3.

Therefore, we obtain x4 as the best alternative.
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4.2.2. Using Xu’s Approach to Select the Optimal Alternative

In order to better understand the difference between our proposed approach and the
existing approach, we adopted Xu’s approach [25] to solve the above problems.

Step 1. The decision matrices given by decision makers are shown in Tables 1–4.
Step 2. Select function Q(x) = x

3
2 , and utilize Equations (1) to calculate the weighting

vector of decision maker, and we obtain v = (0.125, 0.229, 0.296, 0.350).
Step 3. Based on Definition 5, the LOWG operator is utilized to aggregate all the

decision matrices Rk(k = 1, 2, 3, 4) into a collective decision matrix R̂ = (r̂ij)5×4, as shown
in Table 6.

Table 6. Group linguistic decision matrix R̂.

c1 c2 c3 c4

x1 s1.28 s0.43 s3.32 s0.38
x2 s3.32 s1.09 s2.31 s0.27
x3 s0.35 s0.39 s1.09 s0.32
x4 s2.31 s1.65 s1.34 s0.78
x5 s3.91 s2.39 s1.28 s1.65

Step 4. Based on Definition 3, the LG operator is utilized to aggregate the ith row of
the matrix R̂. That is,

li = LG(r̂i1, r̂i2, r̂i3, r̂i4),

and then we obtain the global preference values as the following:

l1 = s0.9129, l2 = s1.2257, l3 = s0.4671, l4 = s1.4128, l5 = s2.1077.

Thus, we have l5 > l4 > l2 > l1 > l3.
Step 5. Arrange the alternative xi according to the value of li, and we obtain a

descending order of xi:
x5 � x4 � x2 � x1 � x3.

Therefore, we obtain x5 as the best alternative.
The comparison results of our proposed approach and Xu’s approach are shown in

Figure 2.

Figure 2. The ranking of alternatives obtained by the two approaches.
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From the final ranking of alternatives, it can be seen that there are obvious differences
between the two methods. In this paper, the VIKOR method can fully consider maximizing
group benefits and minimizing individual losses. The final result is a compromise solution
in which all attributes of the alternative give in to each other. Xu’s approach does not take
into account the deviation of each attribute, so it cannot give the order of each alternative
more reasonably. In addition, this paper uses the entropy weight method to determine
the weight of attributes, which can fully consider the importance of different attributes.
However, the characteristics of attributes are not considered by the linguistic geometric
average operator. Therefore, the ranking result derived by the proposed approach can more
effectively and flexibly reflect the real level of each alternative.

5. Conclusions

In this paper, a new multi-attribute group decision-making method is developed under
a multiplicative linguistic environment, since, in some cases, it is more reasonable to use a
multiplicative linguistic term set to provide its evaluation value. The main innovations and
advantages of this study are as follows.

(1) A novel linguistic chi-square deviation formula is proposed to better express the
deviation between multiplicative linguistic values.

(2) Two new linguistic deviation-based tools for multiplicative information aggrega-
tion are proposed: the linguistic generalized weighted logarithmic multiple averaging
(LGWLMA) operator and the linguistic generalized ordered weighted logarithmic multiple
averaging (LGOWLMA) operator.

(3) The proposed method considers the non-uniform linguistic scale and is more
suitable for representing the decision information of multiplicative linguistic structure.

The above theoretical analysis and numerical calculation results show that the pro-
posed method is simple, intuitive and has no information loss. The multiplicative linguistic
VIKOR method can be applied to economic forecasting, asset evaluation, environmental
governance, intelligent decision making and other fields. We will continue working on the
extension of the proposed method to a complex decision-making information environment.
In particular, we will focus on the group decision-making problems with heterogeneous
linguistic information.
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20. Faizi, S.; Sałabun, W.; Nawaz, S.; ur Rehman, A.; Wątróbski, J. Best-Worst method and Hamacher aggregation operations for
intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [CrossRef]

21. Dong, Y.; Zhang, G.; Hong, W.C.; Yu, S. Linguistic computational model based on 2-tuples and intervals. IEEE Trans. Fuzzy Syst.
2013, 21, 1006–1018. [CrossRef]

22. Wang, J.Q.; Wang, D.D.; Zhang, H.Y.; Chen, X.H. Multi-criteria group decision making method based on interval 2-tuple linguistic
information and Choquet integral aggregation operators. Soft Comput. 2015, 19, 389–405. [CrossRef]

23. Ju, Y.B. A new method for multiple criteria group decision making with incomplete weight information under linguistic
environment. Appl. Math. Model. 2014, 38, 5256–5268. [CrossRef]

24. Wu, Z.B.; Xu, J.P. Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference
relations. Omega 2016, 65, 28–40. [CrossRef]

25. Xu, Z.S. EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations. Fuzziness
Knowl.-Based Syst. 2004, 12, 791–810. [CrossRef]

26. Xu, Z.S. A practical procedure for group decision making under incomplete multiplicative linguistic preference relations. Group
Decis. Negot. 2006, 15, 581–591. [CrossRef]

27. Meng, F.; Chen, S.M.; Fu, L. Group decision making based on consistency and consensus analysis of dual multiplicative linguistic
preference relations. Inf. Sci. 2021, 572, 590–610. [CrossRef]

28. Xie, W.; Xu, Z.; Ren, Z.; Herrera-Viedma, E. Expanding grey relational analysis with the comparable degree for dual probabilistic
multiplicative linguistic term sets and its application on the cloud enterprise. IEEE Access 2019, 7, 75041–75057. [CrossRef]

29. Xia, M.; Xu, Z. An approach to multiplicative linguistic group decision making based on possibility degrees. Int. Trans. Oper. Res.
2018, 25, 1611–1634. [CrossRef]

30. Tang, J.; Meng, F.Y.; Li, C.L.; Li, C.H. A consistency-based approach to group decision making with uncertain multiplicative
linguistic fuzzy preference relations. J. Intell. Fuzzy Syst. 2018, 35, 1037–1054. [CrossRef]

31. Xu, Z.S. An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with
uncertain multiplicative linguistic preference relations. Decis. Support Syst. 2004, 41, 488–499. [CrossRef]

32. Lin, J.; Chen, R. A novel group decision making method under uncertain multiplicative linguistic environment for information
system selection. IEEE Access 2019, 7, 19848–19855. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2018.04.022
http://dx.doi.org/10.1109/TFUZZ.2019.2914008
http://dx.doi.org/10.1016/j.cie.2017.11.025
http://dx.doi.org/10.1016/j.jclepro.2018.05.275
http://dx.doi.org/10.3233/JIFS-191443
http://dx.doi.org/10.1016/j.jclepro.2016.11.067
http://dx.doi.org/10.1007/s40815-020-00885-y
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/j.ins.2014.07.034
http://dx.doi.org/10.1016/j.knosys.2011.03.003
http://dx.doi.org/10.1016/j.asoc.2014.08.035
http://dx.doi.org/10.1016/j.eswa.2009.11.016
http://dx.doi.org/10.1016/j.ins.2003.10.006
http://dx.doi.org/10.1016/j.ins.2004.02.003
http://dx.doi.org/10.1016/j.eswa.2021.115088
http://dx.doi.org/10.1109/TFUZZ.2013.2239650
http://dx.doi.org/10.1007/s00500-014-1259-z
http://dx.doi.org/10.1016/j.apm.2014.04.022
http://dx.doi.org/10.1016/j.omega.2015.12.005
http://dx.doi.org/10.1142/S0218488504003211
http://dx.doi.org/10.1007/s10726-006-9034-x
http://dx.doi.org/10.1016/j.ins.2021.05.056
http://dx.doi.org/10.1109/ACCESS.2019.2919505
http://dx.doi.org/10.1111/itor.12222
http://dx.doi.org/10.3233/JIFS-17365
http://dx.doi.org/10.1016/j.dss.2004.08.011
http://dx.doi.org/10.1109/ACCESS.2019.2892239


Symmetry 2022, 14, 136 20 of 20

33. Zhang, H.M.; Xu, Z.S. Uncertain linguistic information based C-OWA and C-OWG operators and their application. J. Pla Univ.
Sci. Technol. 2005, 6, 604–608.

34. Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM
techniques. Mater. Today Proc. 2021. [CrossRef]

35. Dhara, A.; Kaur, G.; Kishan, P.M.; Majumder, A.; Yadav, R. An efficient decision support system for selecting very light business
jet using CRITIC-TOPSIS method. Aircr. Eng. Aerosp. Technol. 2021. [CrossRef]

36. Chundi, V.; Raju, S.; Waim, A.R.; Swain, S.S. Priority ranking of road pavements for maintenance using analytical hierarchy
process and VIKOR method. Innov. Infrastruct. Solut. 2022, 28, 1–17. [CrossRef]
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