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Abstract: This review article highlights recent developments in symmetry, combinatorics, topology,
entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such
as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and
heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, septulenes and
octulenes. We establish that the generalization of Sheehan’s modification of Pólya’s theorem to all
irreducible representations of point groups yields robust generating functions for the enumeration
of chiral, achiral, position isomers, NMR, multiple quantum NMR and ESR hyperfine patterns. We
also show distance, degree and graph entropy based topological measures combined with techniques
for distance degree vector sequences, edge and vertex partitions of nanomaterials yield robust
and powerful techniques for thermochemistry, bond energies and spectroscopic computations of
these species. We have demonstrated the existence of isentropic tessellations of kekulenes which
were further studied using combinatorial, topological and spectral techniques. The combinatorial
generating functions obtained not only enumerate the chiral and achiral isomers but also aid in the
machine construction of various spectroscopic and ESR hyperfine patterns of the nanomaterials that
were considered in this review. Combinatorial and topological tools can become an integral part of
robust machine learning techniques for rapid computation of the combinatorial library of isomers
and their properties of nanomaterials. Future applications to metal organic frameworks and fullerene
polymers are pointed out.

Keywords: combinatorics and symmetry; circumscribed-cyclopolyarenes; nanotubes; nanobands;
tessellations of kekulenes; spectroscopy; chirality; isomer enumerations

1. Introduction

Two-dimensional nanomaterials, especially those arising from different forms of
graphenes, for example, circumscribed-cyclopolyarenes, tessellations of kekulenes, sep-
tulenes and octulenes, nanobelts, and various forms of macrocycles that have pores have
received significant attention over the years [1–36]. These nanomaterials not only possess
interesting electronic properties but their pores with desirable electronic and geometrical
features have opened up a plethora of novel applications [1–36]. Related one-dimensional
nanomaterials such as carbon nanotubes and heteronanotubes and nanowires composed of
B/N, Ga/N, C/N, Ga/As have been the topic of a number of studies because these materi-
als exhibit very interesting electronic, geometrical, topological, chiral, polarizability, and
optical properties [37–59]. Heteronuclear one-dimensional nanomaterials have novel opto-
electronic properties and thus find many applications in the fabrication of nanodevices, for
example, photonics, nanoelectronics, nanochirality and so forth [37–59]. Two-dimensional
nanomaterials and mesoporous materials with cavities, for example, nanobelts compris-
ing of several kekulene/octulene moieties and tubular forms of carbons and nitrogens
are becoming increasingly important, as they exhibit optimal cavities for sequestration
and transport of both anions such as chloride ions and cations such as toxic heavy metal
ions including actinyl ions in high level nuclear wastes and other nuclear environmental
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geo/biochemical applications [60–65]. Specifically, these environmental actinide studies
have considered high coordination complexes of actinyls with mesoporous silica [61],
minerals such as carbonates [63], phosphates [64] and solvated complexes [62,65]. Our
understanding of such actinide complexes and the related laser spectroscopic studies [64] re-
quires a detailed knowledge of their symmetries, coordination spheres, electronic structure,
and symmetries of various electronic states and their geometries. For example, as shown
in [63] the plutonyl carbonates form high coordination and high symmetry complexes
which in turn govern their spectroscopic selection rules and the symmetry aspects of their
electronic states. The high coordination and symmetries exhibited by these actinide com-
plexes are in turn influenced by the symmetries of the 5f and 6d orbitals of actinides [62–65]
within the symmetry of molecular or nanosphere environment. The symmetry, combina-
torial, graph-theoretical and topological properties of polycyclic aromatics with cavities
have been studied over the years [66–113]. Such polycyclic aromatics, for example, those
made by circumscribing cyclopolyarenes are especially intriguing from the standpoint of
enumerations of isomers, their electronic and magnetic properties which have given rise to
a number of interesting concepts such ring currents, topological delocalization energies,
conjugated circuits, aromaticity and superaromaticity [66–113]. Cycloarenes are derived
from a synthesis of angular and linear annulations of benzene rings that result macro-cyclic
systems with cavities that are especially suitable for sequestration of both anions and
cations. As they exhibit intriguing magnetic as well as electronic properties, several graph-
theory-based and combinatorial methods have been developed and employed as robust
alternatives over the years to study the spectroscopic properties, electronic structures, and
energetics of polycyclic aromatics, nanotubes and fullerenes including giant fullerenes over
the decades [114–134]. Among several computational methods, topologically-based meth-
ods such as the conjugated circuit method, ring currents, topological resonance theories,
aromatic sextets, spectral and matching polynomials etc., and combinatorial enumeration
methods have been of considerable use in rapid and robust enumerations of structures and
spectra as well as estimation for their stabilities [66–134], The advent of kekulene made
of 12 fused benzene rings with a central cavity with D6h symmetry stimulated significant
interest in superaromaticity or superbenzene as a consequence of its planar cyclic conju-
gation [1–4]. A novel electronic feature of kekulene is that its π-electrons are delocalized
within benzene rings as opposed to the entire framework providing a platform to study
aromaticity in a new dimension. Moreover their structures with cavities offer intriguing
possibilities for the environmental management, organic chemistry, rational drug design
and delivery, as they possess optimal electronic and geometrical features for both trapping
of toxic ions to transportation of heavy metal ions, halide anions, drugs and so forth [1–36].

Carbon nanotubes and their heteroanalogs such as GaN, GaAs nanowires and related
decorations with metals such as gold have opened up a new vista and a new state of matter
that has culminated into significant research activities over the years [37–59]. These nan-
otubes exhibit intriguing optical properties and chirality, and thus their relative stabilities
and reactivities in different forms such as zigzag, armchair, chiral etc., have been the subject
matters of intense scrutiny over the years [34,35,39,57]. Heteronanotubes are especially
interesting because of their structures that contain intertwining helical patterns [37–59].
Moreover chirality of heteronanotubes is caused by intriguing chiral interface states that
give rise to very interesting conductivity patterns [35,39]. In particular heteronanotubes
made of Ga/N, Ga/As, C/N and B/N as well as transition metals are promising materials
as building blocks of metal organic frameworks. These nanomaterials find a variety of ap-
plications due to their unusual hyperpolarizability and conductive properties- all of which
arise because of interesting combinatorics. These materials exhibit interesting aesthetics and
thus the entire collection of nanowires, fullerenes, graphenes, giant fullerenes, nanotubes,
and their heteroanalogs have been studied over the years [37–134]. Both structures and
dynamics arising from rearrangements of pentagons on nanocones through Stone-Wales
rotations of faces, and thus face colorings of fullerenes have been of interest [130]. Com-
binatorial studies can provide enlightening topological information on the isomerization
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paths pertinent to the dynamics of pentagons on nanocones. The structures, enumeration
of isomers arising from substituents of heteroatoms, chirality, spectroscopy, and topological
indices of all these nanomaterials have been studied in recent times [120–134]. Furthermore
other related fields of biological interest such as computational toxicology, drug discovery
and design have been benefited by the techniques of combinatorial and topological origin
such as quantitative molecular similarity analysis, quantitative structure activity relations,
and targeted therapeutic approaches for computer aided drug discovery [135–143]. Quanti-
tative descriptors are derived from their structures which in turn can yield quantitative
measures from their molecular topologies, quantum chemically derived electronic param-
eters, shape, and other biological descriptors [135–143]. Combinatorial techniques not
only facilitate the constructions of large data sets or libraries of a number of chemical
compounds including nanomaterials but also aid in rapid computations of chemical prop-
erties of combinatorial libraries of molecules [106–112,120–134,143–147]. The related metal
organic frameworks have opened up an entire field of reticular chemistry and MOFs and
related COFs have enormous potentials in numerous applications including water harvest-
ing [148,149]. Furthermore symmetry-based combinatorial enumeration of electronic states
and geometries of heteronuclear clusters such as GamAsn [150,151] are critical to planning
and interpretations of computations of heteronuclear clusters, heteronuclear nanomaterials
and nanowires comprised of Ga/N, Ga/As, B/N, C/N, and so forth. Relativistic electronic
structure computations of molecules and clusters [152] are benefited by the inherent double
group symmetries when spin-orbit coupling is included. The symmetry interplay between
Jahn-Teller and spin-orbit effects is critical to our understanding of laser spectroscopic
studies of clusters containing heavy atoms such as gold [153] and so forth. Detailed un-
derstanding of clusters and heteronano materials and heteronanowires is enhanced by the
enumeration of structures, spectroscopic patterns, nuclear spin statistics and the symmetry
properties of the electronic potential energy surfaces of such heteronuclear clusters [150,151]
and molecules.

Topological entropy of a nanomaterial is an important information-theoretic concept
which appears to characterize the information content or order/disorder content of such
nanomaterials. Consequently, graph entropy has been a subject matter of some recent works
on tessellations of kekulenes and metal organic frameworks [144,154]. The relative stabili-
ties of various phases of graphenes and nanotubes, for example, the chiral form, zigzag,
armchair, and so forth, have been the topic of several studies [35,39], it is believed that
graph entropies can provide additional insights into these materials. Phase transformation
of armchair to zigzag graphene edge structures, since the synthesis of single-walled carbon
nanotubes, has been of interest, especially as such studies could provide insights into the
origin of chirality in nanotubes [39]. The relative stabilities of different phases depend on
their Gibbs free energies which in turn depend on both energetics and entropies [39–41,144].
Stimulated by such vast studies on these nanomaterials, we have undertaken the present
review of this interesting subject with focus on their combinatorial properties.

The objective of this review is to outline symmetry-based combinatorial techniques,
and in particular, Sheehan’s modification of Pólya’s theorem that the present author has
generalized to all irreducible representations as well as computational techniques based
on such enumerations including walks and sequences [134,155–159]. Group-theoretically
based combinatorial structures for all irreducible representations of the point groups
of the nanomaterials such as tessellations of cyclopolyarenes, heteronanotubes, etc., are
applied to the enumerations of chiral structures, achiral structures and position isomers
of such materials. We have also reviewed the used of topologically based techniques
such as distance degree sequence vectors for partitioning the vertices of nanomaterials for
rapid and robust computations of their thermodynamic and spectroscopic properties. We
have applied the techniques to demonstrate the rapid construction of the ESR hyperfine
patterns of nanomaterials as well as 13C NMR and proton NMR spectroscopic patterns
including multiple quantum NMR. This review brings together combinatorics, group
theory and topological techniques with applications to heteronanotubes, circumscribed-
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cyclopolyarenes, tessellations of graphene fragments with cavities such as tessellations of
kekulenes, and so forth.

2. Combinatorial Methods: Generalized Character Cycle Indices, Sheehan’s Method,
Euler’s Totient Function and Character Based Enumerations

Pólya’s enumeration theorem [155–157] deals with the enumeration of equivalence
classes of configurations when a group acts on a set of objects. Pólya’s work was inspired
by the isomer enumeration and Burnside’s lemma which enumerates different necklaces
for a set of colored beads with different colors. In 1937 Pólya [156] developed his enu-
meration technique which became subsequently known as Pólya‘s theorem. The current
author [155] extended this method as well as the Harary-Palmer power group enumeration
theorem to all IRs of the group under action. The present author [134] also extended Shee-
han’s [157] modification of Pólya’s theorem to encompass all irreducible representations of
the acting group. Such generalized combinatorial methods have been applied to nuclear
spin statistics of rovibronic levels of molecules, multiple quantum NMR, ESR hyperfine
patterns, vibrational modes of large molecules, and the enumeration of chiral and stereo
isomers of polysubstituted molecules, nanotubes and giant fullerenes and. The present
author’s generalization of Sheehan’s modification to all IRs was recently applied to the
combinatorial enumerations that dealt with isomers and chirality of heteronanotubes [134].
Consequently, we briefly summarize this formalism which is applied to the nanotubes in a
subsequent section

There are several large systems such as nanotubes, 2D-nanosheets, tessellations of
cyclopolyarenes, and circumscribed cyclopolyarenes, etc., for which the combinatorial
enumerations become efficient if the set D of vertices of such nanomaterials is partitioned
into equivalence classes denoted by Y1, Y2, . . . Yn/2 for even n, and Y1, Y2, . . . Y(n + 1)/2 for
odd n. For instance, for a cylindrical nanotube with a cross section of m vertices, the total
number of vertices in the tube (D) is mn, and hence the equivalence classes of vertices Yi
have following orders depending on the odd/even parity of n:

|Yi|= 2m, for a nanotube of even length n, for all i, 1 ≤ i ≤ n/2. (1)

|Y1|= m, |Yi|= 2m |for a nanotube of odd length n, for all i 6= 1, 2 ≤ i ≤ (n + 1)/2. (2)

Consequently, a vertex coloring of the set of vertices in D, a map from the sets D to R,
with R as the set of colors and D further divided into Y-sets can be represented as:

D = i = 1n/2YiYi ∩Yj = ∅ f ori 6= j ∧ f orevenn ∨ D = i = 1
n + 1

2
YiYi ∩Yj = ∅ f ori 6= j ∧ f oroddn. (3)

Sheehan’s modification [157] of Pólya’s theorem [156] facilitates partitioning of col-
orings for the various equivalence classes, and thus it is more powerful than the ordinary
Pólya’s combinatorial enumeration. The current author has further generalized Sheehan’s
theorem to all characters of irreducible representations of the group of action, and thus
a direct technique has been developed to enumerate both chiral and achiral colorings.
Suppose the generalized character cycle index (GCCI) for the character χ of the irreducible
representation Γ is defined by

Pχ
G =

1
|G| ∑

gεG′
χ(g)∏

i
∏

j
s

cij(g)
ij (4)

where the sum is over all permutation representations of g ∈ G; cij(g) is the number of
j-cycles of g ∈ G contained in the set Yi upon its action on the members of the objects in the
D set which may be for example carbon centers of a nanotube. The index i varies from 1 to
n/2 or (n + 1)/2 for even and odd n, respectively. The second index j is the orbit length for
the orbit of a permutation contained within the Yi set for the action of g ∈ G.
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A number of nanostructures contain cross sections with cyclic rotational symmetries,
and hence the rotational subgroup for the cyclic part yields a cycle index provided by the
Euler totient function. Therefore such an enumeration scheme can be applied to a variety
of nanostructures such as cylindrical nanotubes, circumscribed-kekulenes, septulenes,
octulenes, tessellations of kekulenes and nanosheets and nanobelts derived from graphenes.

We can obtain multinomial generators from the GCCIs shown above for each of the
irreducible representations in the group G acting on the structure. For this purpose we
introduce [n] as an ordered partition of n into p parts given that n1 ≥ 0, n2 ≥ 0, . . . , np ≥ 0,
∑

p
i=1 ni = n. Let us assign arbitrary weights λs and n1 colors of the type λ1, n2, colors of

the type λ2 . . . np colors of the type λp. Then a multinomial generator is constructed by a
generalization of Pólya’s enumeration to all IRs using the multinomial expansion:

(
λ1 + λ2 + . . . + λp

)n
= ∑p

[n]

(
n

n1 n2 . . np

)
λ1

n1 λ2
n2 . . . . . . λp−1

np−1 λp
np (5)

(
n

n1 n2 . . np

)
are multinomials defined as

(
n

n1 n2 . . np

)
=

n!
n1!n2! . . . . . . np−1!np!

(6)

Furthermore, the coloring palette, R can be divided into sets R1, R2 . . . such that
R = ∪m/2

i=1 Ri, for an even m and R = ∪(m+1)/2
i=1 Ri for an odd m and |Ri| = pi Hence in the

most general case, the weight wij is assigned for each color rj in the set Ri. In such a set
up the multinomial generator for each IR for coloring the vertices of structures that can be
divided is obtained as follows:

GFχ
(
λ1, λ2 . . . λp

)
= Pχ

G

{
sik →

(
wk

i1 + wk
i2 + . . . + wk

i,pi−1 + wk
i,pi

)}
, (7)

The current author provided a geometrical interpretation for the above expansion.
That is, the multinomial function thus obtained for each IR different colors yield the
equivalence classes of vertex colorings that transform according to the IR with the character
χ. It can thus be seen that the number of such multinomial generators equals the number
of IRs of the acting group.

3. Applications to Polyarenes Enumeration & Spectroscopy
3.1. Enumeration of Hetero-Substituted Polyarenes and Polysubstituted Polyarenes

Circum-polyarenes are usually planar circumscribed structures comprising of macrocy-
cles that are reminiscent of donut structures (See Figure 1) with Dmh point group symmetries
and the combinatorics of these structures were considered by the author in [124]. In this
section we consider these cicum-polyarenes of considerable recent interest. A special case
of such structures are kekulenes for m = 6 for (Figure 1, Structure 1). Likewise other circum-
polyarenes are obtained with holes, for example, when m = 7 for septulenes (Figure 1,
Structure 2), m = 8 corresponds to octulenes (Figure 1, Structure 3) and so forth. Table 1
displays such a general series comprising of circum-polyarenes together with their general
formula for various values of m and n. We define m as the cyclicity and n as the number
of circumscribings around the primitive structure (n = 1). As most structures of circum-
polyarenes are considered to be planar, the combinatorics of polysubstituted isomers of
such circum-polyarenes can be constructed within the rotational subgroup or the Dm group.
The GCCIs of such structures depend on the point groups as well as the set D (carbon
nuclei or protons) and also if the cardinality of the set D is odd or even. Let D be the set
of carbon nuclei of polyarenes (structures are displayed in Figures 1 and 2). When carbon
vertices are colored in effect, we would be enumerating the hetero-polyarenes for example,
aza-polyarenes. For circumscribed m-cyclic polyarenes let n be the order of circumscribing
(for example, for Structure 8 in Figure 2, n = 2). In the case of regular kekulene (Structure 1;
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Figure 1), it can be seen that n = 1 and m = 6 and for circumscribed kekulene (Structure 8;
Figure 2), n = 2 and m = 6 while the corresponding values for circumscribed septulenes are
n = 2 and m = 7 For the sake of self-completeness and illustrations, we have used the same
notations and reproduced the equations from Ref. [124].
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Table 1. m-Cyclopolyarenes Series with circumscribings of order n. Reprinted with permission
from [124] copyright (2018) American Chemical Society.

n M Name Formulae

1 6 Kekulene C48H24
1 7 Septulene C56H28
1 8 Octulene C64H32
1 9 Nonulene C72H36
2 6 2-Kekulene C90H30
2 7 2-Septulene C105H35
2 8 2-Octulene C120H40
2 9 2-Nonulene C135H45

. . . . . . . . . . . .
n N ncir-m-cycloarene Cm(n

2
+4n+3)Hm(n+3)
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For doubly-circumscribed septulene, etc. Hence different cases of polysubstituted
circumscribed Cyclopolyarenes can be encumbered by the general formalism outlined in
Section 2. For any n-circumscribed m-cyclopolyarene one obtains the GCCI for even m as:

Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n2+4n+3)
d

d +
m
2

s(2n+2)
1 sk

2 +
m
2

s
m(n2+4n+3)

2
2

}
if m is even, (8)

where k = m(n2 + 4n + 3)/2 − (n + 1) and n is even, sum is over all divisors d of m, and
ϕ(d) is the Euler totient function defined in the previous section.

The GCCI for odd m is given by

Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n2+4n+3)
d

d + ms(n+1)
1 sk

2 if m is odd (9)

and
k = [m(n2 + 4n + 3) − (n + 1)]/2 (10)

The above GCCIs can be applied to any circum-polyarenes, for example, kekulene
(Figure 1, Structure 1) which corresponds to case m = 6 and n = 1. In this case, the GCCI for
the totally symmetric representation is obtained by (11):

PD6 =
1

12

[
s48

1 + 2s8
6 + 2s16

3 + 4s24
2 + 3s4

1s22
2

]
(11)

The GCCI when applied to 2-circumscribed-kekulene (structure 8 in Figure 2) or n = 2
and m = 6 we arrive at:

PD6 =
1

12

[
s90

1 + 2s15
6 + 2s30

3 + 4s45
2 + 3s6

1s42
2

]
(12)

For septulene (structure 2 in Figure 1) which corresponds to m = 7 and n = 1 the
GCCI becomes:

PD7 =
1
14

[
s56

1 + 6s8
7 + 7s2

1s27
2

]
(13)

The 2-circumscribed septulene corresponds to circumscribing Structure 2 in Figure 1
or m = 7 and n = 2, that is, C105H35. By substituting m = 7 and n = 2 in the general equation
we obtain:

PD7 =
1
14

[
s105

1 + 6s15
7 + 7s3

1s51
2

]
(14)

For octulene we substitute m = 8 and n = 1in the general expression to obtain:

PD8 =
1

16

[
s64

1 + 4s8
8 + 2s8

4 + 5s32
2 + 4s4

1s30
2

]
(15)

Likewise for a 2-circumscribed octulene, C120H40, we compute the GCCI by substitut-
ing m = 8 and n = 2 in Equation (8) resulting in Equation (16):

PD8 =
1

16

[
s120

1 + 4s15
8 + 2s30

4 + 5s60
2 + 4s4

1s58
2

]
(16)

Next we take up polysubstitution of circum-polyarenes that is, replacing some or
all of the protons of circum-polyarenes with other atoms such as F, Cl, Br, I, etc. For this
scenario we construct the GCCIs, with the object set D defined as the set of protons of the
circum-polyarenes. We obtain the following cases for circum-polyarenes depending on the
parities of m and n, where m is the cyclicity and n is the circumscribing order. First case: m
even and n are both odd we have:

Case (1): m even, n odd, D: protons:
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Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n+3)
d

d +
m
2

s4
1sp

2 +
m
2

s
m(n+3)

2
2

}
, p = {m(n + 3)/2− 2} (17)

Case (2): m even, n even, D: protons:

Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n+3)
d

d +
m
2

(
s2

1| |s
q
2

)
+

m
2

s
m(n+3)

2
2

}
, q = {m(n + 3)/2− 1} (18)

Case (3): m odd, n odd, D: protons:

Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n+3)
d

d + ms2
1sr

2

}
, r = {m(n + 3)/2− 1} (19)

Case (4): m odd, n even, D: protons:

Pχ
Dm

=
1

2m ∑gεDm
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

2m

{
∑d/m χ(g)ϕ(d)s

m(n+3)
d

d + ms1st
2

}
, t = {m(n + 3)− 1}/2 (20)

For kekulene with m = 6 and n = 1 we obtain

PD6 =
1

12

[
s24

1 + 2s4
6 + 2s8

3 + 4s12
2 + 3s4

1s10
2

]
(21)

For a 2-circumscribed kekulene (Str 8, Figure 2), m = 6, n = 2 we obtain Equation (22):

PD6 =
1

12

[
s30

1 + 2s5
6 + 2s10

3 + 4s15
2 + 3s2

1s14
2

]
(22)

The cycle index of septulene, m = 7, n = 1, we obtain,

PD6 =
1
14

[
s28

1 + 2s4
7 + 7s2

1s13
2

]
(23)

For a 2-circumscribed septulene, m = 7, n = 2 the GCCI is given by

PD6 =
1
14

[
s35

1 + 2s5
7 + 7s1s17

2

]
(24)

For an octulene, m = 8, n = 1 we obtain

PD8 =
1

16

[
s32

1 + 4s4
8 + 2s8

4 + 5s16
2 + 4s4

1s14
2

]
(25)

Thus for a 2-circumscribed octulene, m = 8, n = 2,

PD8 =
1

16

[
s40

1 + 4s5
8 + 2s10

4 + 5s20
2 + 4s2

1s18
2

]
(26)

All structures in Figure 2 exhibit D6h symmetry and they arise from circumcising the
graphene structure with holes of various sizes. In particular, the kekulene series belong to
the CpHq series with p = 6(n2 + 4n + 3) and q = 6(n + 3). Likewise structures 7,10,14 (Figure 2)
correspond to the series CpHq where p = 6(n2 + 6n + 5) and q = 6(n + 5) and structures
9,13 correspond to CpHq where p = 6(n2 + 8n + 7) and q = 6(n + 7), and the subsequent
members of the series are given by CpHq, p = 6(n2 + 10n + 9) and q = 6(n + 9). Therefore
all coronoids with D6h symmetry form the series CpHq with p = 6(n2 + 2n(m + 1)+ 2m + 1)
and q = 6(n + 2m + 1) for positive integers m and n. The GCCIs that are derived for the
circumscribed kekulenes (D6h groups) can also be employed for all other circumscribed
coronoids that exhibit D6h point groups. For instance, the GCCI for carbon nuclei of Str 11,
Figure 2, with m = 6 and n = 3 is displayed in Equation (27):
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PD6 =
1

12

[
s144

1 + 2s24
6 + 2s48

3 + 4s72
2 + 3s8

1s68
2

]
(27)

The corresponding cycle index for the protons of Str 11 (m = 6 and n = 3: Figure 2)
with 36 protons is:

PD6 =
1

12

[
s36

1 + 2s6
6 + 2s12

3 + 4s18
2 + 3s4

1s16
2

]
(28)

Structure 13 (Figure 2) corresponds to C162H54 and thus the GCCI for the carbons is
given by (29):

PD6 =
1

12

[
s162

1 + 2s27
6 + 2s54

3 + 4s81
2 + 3s6

1s78
2

]
(29)

The number of polysubstituted isomers is enumerated from the GCCI by Pólya’s
substitution, that is, substituting for every sk by (w1

k + w2
k + w3

k + w4
k) in the GCCI. To

illustrate we obtain the expression (30) for kekulenes by such a substitution:

GFD6 =
1
12

[(w1 + w2 + w3 + w4)
48 + 2

(
w6

1 + w6
2 + w6

3 + w6
4
)8

+ 2
(
w3

1 + w3
2 + w3

3 + w3
4
)16

+4
(
w2

1 + w2
2 + w2

3 + w2
4
)24

+ 3(w1 + w2 + w3 + w4)
4(w2

1 + w2
2 + w2

3 + w2
4
)22

]

(30)

The coefficient of w1
b1w2

b2 w3
b3 w4

b4 in (30) generates the number of heterosubsti-
tuted kekulenes or colorings of carbon vertices by b1 substituents of first kind, b2 sub-
stituents of second kind, b3 substituent of third kind, and b4 substituents of fourth kind.
Table 2 shows some of the terms thus obtained for 3 colors (w1, w2, w3). As seen from Table 2
five monosubstituted compounds are enumerated. There are 109 isomers for disubstitution
and so on. In accord with a binomial distribution, the maximum distribution of isomers
is reached for substitution of carbons by 16 substituents of the first kind, 16 substituents
of the second kind and 16 substituents of the third kind, etc., which can be inferred from
Table 2 as 112,945,455,375,981,823,980. Table 2 displays the unique terms in the multinomial
expansion as partition vectors. Total number of isomers when there are 3 substituents is
obtained as

I =
1

12

[
348 + 2x38 + 2x316 + 4x324 + 3x34x322

]
(31)

There exists no chirality as kekulene is a planar macrocycle.
Table 3 displays the isomers of C48HxFyClz which correspond to tri-substituted keku-

lenes or. In order to enumerate these isomers, we invoke the proton cycle index for kekulene
derived from the general equation, that is, Equation (19). In order to enumerate the isomers
of C48HxFyClz we substitute every sk by (w1

k + w2
k + w3

k) in Equation (19). The coeffi-
cients for various terms w1

xw2
yw3

z are shown in Table 3 yield the isomers of C48HxFyClz.
As can be seen from Table 3, There are 3 isomers for (23,1,0) or 3 isomers for C48H23F (see,
Table 3). Likewise, the number of isomers for C48H12F12 is 226,150 and 788,825,460 iso-
mers are enumerated for C48H8F8Cl8. The results displayed in Table 3 required such an
elegant combinatorial technique and the computer codes that we have developed for up to
10 substituents.

Both kekulene and septulene have the same number of monosubstituted isomers for
the substitution carbon centers. There are 124 isomers for disubtituted hetero-septulenes
that contain two N atoms. The maximum is reached at 536,056,343,620,384,863,061,500 for
(19,19,18) for carbon colorings for septulenes. The combinatorics for the protons implies
3 isomers for monosubstituion of septulene with say Cl. Likewise we obtain 34 isomers for
a dichloro-septulenes; the maximum is reached at 45,574,776,390 for (10,9,9). The results for
octulenes can also be obtained in an analogous manner and they can be found in ref. [124].
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Table 2. Enumeration of 3-colorings of Carbon Vertices of Kekulene. Reprinted with permission
from [124] copyright (2018) American Chemical Society.

Coefficient Vector Coefficient Vector Coefficient

1 48 0 0 103561517895 37 9 2 88851068896152860 29 10 9
5 47 1 0 383177575979 36 10 2 234243726928693460 28 11 9
109 46 2 0 1254034278774 35 11 2 546568695999885020 27 12 9
1467 45 3 0 11184050659015080 29 14 5 1135181137598290860 26 13 9
16398 44 4 0 21622497914498712 28 15 5 2108193541021176180 25 14 9
142945 43 5 0 37839371323512066 27 16 5 3513655901417556180 24 15 9
1024059 42 6 0 60097825014257646 26 17 5 5270483851893361530 23 16 9
6137527 41 7 0 86807969439172982 25 18 5 7130654622923896350 22 17 9
31453488 40 8 0 114221012397502010 24 19 5 8715244538987104690 21 18 9
139767835 39 9 0 137065214861482908 23 20 5 9632638700903207990 20 19 9
545091767 38 10 0 150119044840161540 22 21 5 257668099806453820 28 10 10
1882967013 37 11 0 5364479296722 36 6 6 655882435174711976 27 11 10
5805816362 36 12 0 27588742194948 35 7 6 1475735479246515564 26 12 10
16077455055 35 13 0 120700745906895 34 8 6 2951470957321010124 25 13 10
40193661777 34 14 0 455980568919225 33 9 6 5270483852702315676 24 14 10
91105252497 33 15 0 1504735876402143 32 10 6 8432774162750027376 23 15 10
187904675706 32 16 0 4377413392313808 31 11 6 12122112859683551010 22 16 10
353702280690 31 17 0 11308317935237736 30 12 6 15687440169664356522 21 17 10
609154167250 30 18 0 26096118180492360 29 13 6 18302013532416736122 20 18 10
961821475230 29 19 0 54056244829095960 28 14 6 19265277401095105380 19 19 10
1394641595644 28 20 0 100904990136381816 27 15 6 1609893249573173544 26 11 11
1859521084850 27 21 0 170277170927824422 26 16 6 3488102040361648164 25 12 11
2282140209534 26 22 0 260423908201122666 25 17 6 6707888538605476404 24 13 11
2579809646726 25 23 0 361699872642264870 24 18 6 11499237494286660144 23 14 11
2687302591938 24 24 0 456884049357215480 23 19 6 17632164157359925680 22 15 11
191 46 1 1 525416656969664460 22 20 6 24244225715985790086 21 16 11
4349 45 2 1 550436497519708228 21 21 6 29948749413533412462 20 17 11
64927 44 3 1 137943703250100 34 7 7 33276388237117085060 19 18 11
713757 43 4 1 586260729113235 33 8 7 7266879251045544564 24 12 12
6136471 42 5 1 2149622651528715 32 9 7 13415777076559133640 23 13 12
42952525 41 6 1 6878792458628112 31 10 7 22040205198015185064 22 14 12
251570847 40 7 1 19385687790199632 30 11 7 32325634287639864600 21 15 12
1257841915 39 8 1 48464219421777720 29 12 7 42427395004047433380 20 16 12
5450620065 38 9 1 108112489398538680 28 13 7 49914582355035448050 19 17 12
20712315283 37 10 1 216224978713510800 27 14 7 52687614710209402350 18 18 12
69668620785 36 11 1 389204961579264336 26 15 7 23735605596070004280 22 13 13
209005757019 35 12 1 632458062469307646 25 16 7 37298808793141434264 21 14 13
562707643953 34 13 1 930085385883855630 24 17 7 52218332309646863976 20 15 13
1366575493563 33 14 1 1240113847767543320 23 18 7 65272915386631793610 19 16 13
3006465804441 32 15 1 1501190447237652600 22 19 7 72952081902429966390 18 17 13
6012931267794 31 16 1 1651309491932965436 21 20 7 55948213191205903656 20 14 14
10964756631510 30 17 1 2418325503348480 32 8 8 74597617584478171920 19 15 14
18274593959490 29 18 1 8598490570300620 31 9 8 88584670884029471910 18 16 14
27892800895190 28 19 1 26655320766887340 30 10 8 93795533874004088610 17 17 14
39049920855330 27 20 1 72696329114759460 29 11 8 94490315606290645536 18 15 15
50207040787046 26 21 1 175682795387902440 28 12 8 106301605056802235190 17 16 15
59335593422274 25 22 1 378393712685968980 27 13 8 112945455375981823980 16 16 16
64495210129142 24 23 1 729759303148399260 26 14 8
97657 44 2 2 1264916124783420252 25 15 8
1427470 43 3 2 1976431445242048080 24 16 8
15343647 42 4 2 2790256157185981770 23 17 8
128856651 41 5 2 3565327312427067330 22 18 8
880512171 40 6 2 4128273729405627230 21 19 8
5031358420 39 7 2 4334687416503640196 20 20 8
24527846695 38 8 2 29617022995256180 30 9 9
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Table 3. Enumeration of isomers of tri-substituted kekulenes or C48HxFyClz (Reprinted with permis-
sion from [124] copyright (2018) American Chemical Society).

Coefficient Vector (x, y, z) Coefficient Vector (x, y, z)

1 24 0 0 4292790 16 4 4
3 23 1 0 13731492 15 5 4
31 22 2 0 34329060 14 6 4
181 21 3 0 68650260 13 7 4
934 20 4 0 111559140 12 8 4
3597 19 5 0 148738030 11 9 4
11395 18 6 0 163616810 10 10 4
29007 17 7 0 41190876 14 5 5
61698 16 8 0 96108684 13 6 5
109298 15 9 0 178483956 12 7 5
164110 14 10 0 267723414 11 8 5
208474 13 11 0 327216106 10 9 5
226150 12 12 0 208237164 12 6 6
49 22 1 1 356962872 11 7 6
519 21 2 1 490830354 10 8 6
3573 20 3 1 545356070 9 9 6
17785 19 4 1 560936856 10 7 7
67443 18 5 1 701168970 9 8 7
202149 17 6 1 788825460 8 8 8

Combinatorial identities for all n-circum-m-polyarenes that contain u substituents for
carbon centers are obtained as:

Case (1): m even

I(C) =
1

2m

{
∑ d

m
χ(g) ϕ(d)u

m(k)
d +

m
2
(u

mk
2

(
1 + un +1

)}
, k =

{
n2 + 4n + 3

}
(32)

Case (2): m odd

I(C) =
1

2m

{
∑ d

m
χ(g) ϕ(d)u

m(k)
d + mu

mk+n +1
2

}}
, k =

{
n2 + 4n + 3

}
(33)

The combinatorial identities for proton substituents are given:

Case (1): m even, n odd, protons:

I(H) =
1

2m

{
∑d/m χ(g) ϕ(d)u

m(n +3)
d +

m
2

u
m(n+3)

2

(
u2 + 1

)}
, (34)

Case (2): m even, n even, protons:

I(H) =
1

2m

{
∑d/m χ(g) ϕ(d)u

m(n +3)
d +

m
2

u
m(n+3)

2 (u + 1)
}

(35)

Case (3): m odd, n odd, protons:

I(H) =
1

2m

{
∑d/m χ(g) ϕ(d)u

m(n +3)
d +mu

m(n+3)
2 +1

}
(36)

Case (4): m odd, n even, protons:

I(H) =
1

2m

{
∑d/m χ(g) ϕ(d)u

m(n +3)
d +mu

m(n+3)+1
2

}
(37)
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3.2. Applications to 13C, Proton NMR and Multiple Quantum NMR of Polyarenes

Combinatorial techniques discussed in the previous sections can be applied to 13C
NMR, proton NMR and multiple-quantum NMR patterns. The number of 13C NMR signals
or the number of equivalence classes of carbons for the cycloarenes is the number of
isomers for the monosubstitution; the coefficient of (n − 1, 1) where n is the number of
carbons enumerates the NMR signals. There are 5 monosubstituted isomers for carbon
replacements of kekulene (see Table 2) suggesting that there are 5 13C NMR signals for
kekulenes. Analogously there are five 13C NMR signals for septulene and the same for
octulene. By using the general combinatorial identities derived for isomer counts, we prove
below that for all cycloarenes with Dmh groups, there are 5 13C NMR signals:

PDm =
1

2m

{
∑d/m χ(g) ϕ(d)s

8m
d

d +
m
2

s4
1sk

2 +
m
2

s4m
2

}
if m is even. (38)

Consequently, the coefficient of w1
8m−1w2 in (41) can be seen to be

1
2m

[(
8m
1

)
+

m
2
(4)
]
=

1
2m

[8m + 2m] = 5 (39)

A similar simplification can be carried out to gather the coefficient for m even and n =
1, and it can be shown to be 5. It can be shown that for any n-circumscribed cyclopolyarene,
the number enumerated for monosubstitution is given by Equation (40):

Pχ
Dm

=
1

2m

{ (
m
(

n2 + 4n + 3
1

))
+

m
2
(2n + 2)

}
=

1
2m

{
m
(
n2 + 4n + 3

)
+

m
2
(2n + 2)

}
=

1
2
(
n2 + 5n + 4

) (40)

As can be seen from the above expression, the number of 13C NMR signal enumeration
for all circumscribed polyarenes is only dependent on n, the order of circumscribing and
not on the cyclicity or m.

The combinatorial methods can be applied to enumerate the proton NMR signals for
any order n of circumscribing and the result is shown below:

(n + 5)/2 if n is odd,
(n + 4)/2 if n is even.

(41)

For example, as seen from the above expression for n = 3, that is, for the triply
circumscribed polyarenes, the number of proton NMR signals is 4.

Two-quantum or n-2 quantum NMR spectra bear direct relation to structurally de-
pendent dipolar couplings compared to ordinary 1-quantum NMR spectra. Likewise
enumeration of triangular interactions contain information on 3-quantum and so on. That
is, from a graph-theoretical standpoint 2-quantum spectra depend on various equivalence
classes of edges in the graph while n-1 quantum NMR depends only the vertex automor-
phisms. The GCCI polynomials can be applied for both bosons and fermions. For multiple
quantum NMR of protons or 13C (fermions) the two possible spin orientations can be
represented by α or β. Thus the combinatorial generators for multiple quantum NMR of
circumscribed-cyclopolyarenes for 13C nuclei are given as follows for even and odd m:

GFχ
Dm

=
1

2m
{∑d/m χ(g)ϕ(d)

(
αd + βd

) m(n2+4n+3)
d

+
m
2
(α + β)(2n+2)

(
α2 + β2

)k
+

m
2

(
α2 + β2

) m(n2+4n+3)
2 } if m is even, (42)

where k = m(n2 + 4n + 3)/2 − (n + 1), sum is over all divisors d of m, and ϕ(d) is the Euler
totient function.
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GFχ
Dm

=
1

2m
{∑ d

m
χ(g)ϕ(d)

(
αd + βd

)m(n2+4n+3)
d

+ m(α + β)(n+1)
(

α2 + β2
)k
} if m is odd

and

k = [m(n2 + 4n + 3) − (n + 1)]/2 (43)

As a special case, for 13C multiple quantum NMR of kekulene and circumscribed
kekulene the generating function for the totally symmetric representation is given by
Equation (44).

GF(kekulene-multiple-quantum 13C NMR) =

α48 + 5α47β + 109α46β2 + 1467α45β3 + 16398α44β4 +142945α43β5 +1024059α42β6 +6137527α41β7 + 31453488α40β8 +

139767835α39β9 + 545091767α38β10 + 1882967013α37β11 + 5805816362α36β12 +16077455055α35β13 +

40193661777α34β14 + 91105252497α33β15 + 187904675706α32β16 + 353702280690α31β17 + 609154167250α30β18 +

961821475230α29β19 + 1394641595644α28β20 + 1859521084850α27β21 + 2282140209534α26β22 +

2579809646726α25β23 + 2687302591938α24β24 + . . .

(44)

The terms that are not shown can be generated by an interchange of α with β which is
attributed to the symmetry of binomial distribution, and it also arises from color symme-
try of spin-1/2 fermions. Although both kekulene and septulene have the same second
coefficient of 5, the third term has a coefficient of 124 for septulene and 109 for kekulene
suggesting that n-2-quantum NMR spectra of the two structures are different. The cor-
responding proton multiple-quantum NMR yield four different expressions depending
on the odd/even parties of m and n. In particular, the generating function for multiple
quantum proton NMR of kekulene is computed by Equation (45):

GF(kekulene-m-quantum proton NMR) =

α24 + 3α23β + 31α22β2 + 181α21β3 + 934α20β4 + 3597α19β5 + 11395α18β6 + 29007α17β7+ 61698α16β8 +

109298α15β9 + 164110α14β10 + 208474α13β11 + 226150α12β12 + . . .

(45)

The coefficient of the third term for the expression for septulene is 34 which is different
from kekulene; the first 2 terms are the same implying that n-2 quantum spectra yield
structural contrasts of these species because these spectra include dipolar couplings.

4. Applications to Nanotubes: Enumerations & Chirality

In this section we consider the applications of the GCCI combinatorial methods for the
enumeration of chiral and achiral isomers of nanotubes of any cross section and length. For
example, a cylindrical nanotube with a square cross section is shown in Figure 3 and hence
the symmetry group is D4h (m = 4). In the general case of a cylindrical nanotube with a
cross-section composed of m vertices, the GCCI for such a cylindrical nanotube length n
are obtained with four expressions depending on the parities of m and n:

m odd; n odd; σh plane passes through the central layer; each of m C2 axes passes
through a vertex of the central layer; σv/σd planes pass through n vertices:

Pχ
Dmh

=
1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

4m

{
∑d/m χ(g) ϕ(d)s

mn
d

d + ms1s(mn−1)/2
2

+sm
1 sm(n−1)/2

2 +∑d/m χ(g) ϕ(d)s
m
d

d s
m(n−1)

2d
2d +msm

1 sm(n−1)/2
2

} (46)

m odd; n even; σh plane does not pass through any vertex of the tube; each of m C2 axes
passes through the centers of edges; σv/σd planes pass through n vertices:

Pχ
Dmh

=
1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

4m

{
∑d/m χ(g) ϕ(d)s

mn
d

d + msmn/2
2

+smn/2
2 +∑d/m χ(g) ϕ(d)s

mn
2d

2d +msm
1 sm(n−1)/2

2

} (47)
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m even; n odd;; each of m/2 C2 axes passes through the centers of edges; each of m/2 C2
axes passes through two vertices; m2 σv planes pass through 2n vertices; m/2 σd planes
pass through the centers of the edges:

Pχ
Dmh

=
1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

4m

{
∑d/m χ(g) ϕ(d)s

mn
d

d +
m
2

s2
1s(mn−2)/2

2 +
m
2

smn/2
2

+smn/2
2 +∑ d

m ;d even χ(g) ϕ(d)s
mn
d

d + ∑ d
m ;d odd χ(g) ϕ(d)s

m
d

d s
m(n−1)

2d
2d +

m
2

s2n
1 sn(m−2)/2

2 +
m
2

smn/2
2

} (48)

m even; n even; each of m C2 axes passes through the centers of the edges; m/2 σv planes
pass through 2n vertices; m/2 σd planes pass through the centers of the edges:

Pχ
Dmh

=
1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . .sbn

n =
1

4m

{
∑d/m χ(g) ϕ(d)s

mn
d

d + msmn/2
2

+smn/2
2 +∑ d

m ;d even χ(g) ϕ(d)s
mn
d

d + ∑ d
m ;d odd χ(g) ϕ(d)s

mn
2d

2d +
m
2

s2n
1 sn(m−2)/2

2 +
m
2

smn/2
2

} (49)

In the above expressions, the sum is over divisors d of m, ϕ(d) is the Euler totient
function defined as follows:

ϕ(d) = d ∏p/d

(
1− 1

p

)
. (50)

The above product is computed over all prime numbers p that divide d. The Euler
totient function is expressible in terms of the Möbius as shown in Equation (51):

ϕ(d) = d ∑p/d
µ(p)

p
, (51)

where the sum is computed over all prime divisors of d and µ(d) is the Möbius function.
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Figure 3. A TUC4[4,m]-Tubular nanotube of cross section C4 of length m. Reprinted with permission 
from [129] copyright (2021) Taylor & Francis. 
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from [129] copyright (2021) Taylor & Francis.
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The GCCIs can de exemplified by considering a cylindrical nanotube with a cross
section of 10-beaded necklace. For such a tube, the character table of the D10h point group
with 16 conjugacy classes and 16 IRs needs to be considered. We note that character values
g and g−1 which are golden ratio and its inverse, respectively; an accidental degeneracy of
the GCCIs arises, resulting in several GCCIs of two dimensional IRs to become identical.
Moreover even though the golden ratio is irrational, the sum g + g−1 and g − g−1 is an
integer resulting in integral GCCIs for all IRs of the group Dmh. Note that the GCCIs of
the A1g and A1u IRs are of special interest, as these GCCIs enumerate the achiral, chiral
as well as all stereo-position isomers for the colorings of the nanotubes for various vertex
colorings. Furthermore, the GCCIs enumerate both heteronanotubes of different kinds and
polysubstituted nanotubes including fluorochloro nanotubes and hydrogenated nanotubes,
etc. Balasubramanian et al. [129] have applied these techniques to a variety of nanotube
enumerations and we shall consider some of their salient findings.

Figures 4 and 5 show nanotubes of cross section C6 of even length m (20) and odd m
(21), respectively with a D6h symmetry while the a tube with C4 cross section is considered
in Figure 3. Application of the formulae derived earlier, for example, for the simplest case
of a tube with 3 layers (n = 3) and C6 (m = 6) and odd length (Figure 5) gives the cycle
indices for the A1g and A1u IRs of the D6h group as

PA1g
D6h =

1
24

{
s18

1 + 2s3
6 + 2s6

3 + s9
2 + 3s2

1s8
2 + 3s9

2 + s9
2 + 2s2

3s2
6 + 2s3

6 + s6
1s6

2 + 3s6
1s6

2 + 3s9
2

}
(52)

PA1u
D6h =

1
24

{
s18

1 + 2s3
6 + 2s6

3 + s9
2 + 3s2

1s8
2 + 3s9

2 − s9
2 − 2s2

3s2
6 − 2s3

6 − s6
1s6

2 − 3s6
1s6

2 − 3s9
2

}
(53)
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Likewise for a tube of C4 cross section (Figure 3) of length 99, the cycle indices are
given by:

PA1g
D4h =

1
16

{
s396

1 + 2s99
4 + s198

2 + 2s2
1s197

2 + 2s198
2 + s198

2 + 2s99
4 + s4

1s196
2 + 2s198

1 s99
2 + 2s198

2

}
(54)

PA1u
D4h =

1
16

{
s396

1 + 2s99
4 + s198

2 + 2s2
1s197

2 + 2s198
2 − s198

2 − 2s99
4 − s4

1s196
2 − 2s198

1 s99
2 − 2s198

2

}
(55)

The cycle indices thus obtained in the above illustration is for the entire set D of all mn
vertices of the nanotube. To illustrate the Sheehan’s modification, the explicit partitions of
equivalence classes of the vertices are considered. For the example under consideration,
we use the case of a tube with C6 cross section and length of 3. For this case, we obtain
two equivalences classes Y1 and Y2 where the first class is for the central layer and hence
contains 6 vertices. The set Y2 for this case consists of the top and bottom equivalent layers
and thus 12 vertices. The GCCIs thus obtained for the D6h symmetry nanotubes are show
below with explicit partitions of the vertices so that Sheehan’s modification can be applied:

PA1g
D6h =

1
24

{
s6

11s12
21 + 2s16s2

26 + 2s2
13s4

23 + s3
12s6

22 + 3s2
11s8

22 + 3s3
12s6

22 + s3
12s6

22 + 2s2
13s2

26 + 2s16s2
26 + s6

11s6
22 + 3s6

11s6
22 + 3s3

12s6
22

}
(56)

PA1u
D6h =

1
24

{
s6

11s12
21 + 2s16s2

26 + 2s2
13s4

23 + s3
12s6

22 + 3s2
11s8

22 + 3s3
12s6

22 − s3
12s6

22 − 2s2
13s2

26 − 2s16s2
26 − s6

11s6
22 − 3s6

11s6
22 − 3s3

12s6
22

}
(57)

As the vertices are partitioned, the Sheehan technique facilitates the assignment of
different coloring palettes for the distinct equivalence classes. Consider a hexagonal cylin-
der with 3 layers wherein the color weights 1, a, b, c are assigned for the central layer, and
color weights 1, d, e for the top and bottom layers. In this setup the Sheehan’s modification
yields the following generating functions for the A1g and A1u IRs of the D6h group:
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GFA1g
D6h =

1
24

{
(1 + a + b + c)6(1 + d + e)12 + 2

(
1 + a6 + b6 + c6)(1 + d6 + e6)2

+2
(
1 + a3 + b3 + c3)2(1 + d3 + e3)4

+
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

+3(1 + a + b + c)2(1 + d2 + e2)6
+ 3
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

+
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

+ 2
(
1 + a3 + b3 + c3)2(1 + d6 + e6)2

+2
(
1 + a6 + b6 + c6)(1 + d6 + e6)2

+ (1 + a + b + c)6(1 + d2 + e2)6

+3(1 + a + b + c)6(1 + d2 + e2)6
+ 3
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

}
(58)

GFA1u
D6h =

1
24

{
(1 + a + b + c)6(1 + d + e)12 + 2

(
1 + a6 + b6 + c6)(1 + d6 + e6)2

+2
(
1 + a3 + b3 + c3)2(1 + d3 + e3)4

+
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

+3(1 + a + b + c)2(1 + d2 + e2)6
+ 3
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

−
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6 − 2

(
1 + a3 + b3 + c3)2(1 + d6 + e6)2

−2
(
1 + a6 + b6 + c6)(1 + d6 + e6)2 − (1 + a + b + c)6(1 + d2 + e2)6

−3(1 + a + b + c)6(1 + d2 + e2)6 − 3
(
1 + a2 + b2 + c2)3(1 + d2 + e2)6

}
(59)

We shall demonstrate the flexibility of the above GFs in that different scenarios with
given restrictions can be considered in coloring palettes as a result of partitioning of vertices
of the central layers and vertices of the top/bottom layers. Consequently, we obtain the
results shown below:

(a) all vertices of the top/bottom layers are colored with a single color (white) while the
vertices of the central layers are colored with different colors;

(b) all vertices of the central layers are colored with a single color (white) while the
vertices of the top/bottom layers are colored with different colors;

(c) all vertices of the central layers and vertices of the top/bottom layers are colored with
different colors chosen from a single set of colors without making any distinction
between vertices of the central layers and vertices of the top/bottom layers.

(d) all vertices of the central layers are colored with colors chosen from one set while all
vertices of the top/bottom layers are colored with colors chosen from a different set of
colors thus making a distinction between vertices of the central layers and vertices of
the top/bottom layers.

The GF(A1g) for the case (a) is computed by setting d and e to 0 in Equation (58):

GFA1g
D6h =

1
24

{
(1 + a + b + c)6 + 2

(
1 + a6 + b6 + c6)+ 2

(
1 + a3 + b3 + c3)2

+
(
1 + a2 + b2 + c2)3

+3(1 + a + b + c)2 + 3
(
1 + a2 + b2 + c2)3

+
(
1 + a2 + b2 + c2)3

+ 2
(
1 + a3 + b3 + c3)2

+2
(
1 + a6 + b6 + c6)+ (1 + a + b + c)6 + 3(1 + a + b + c)6 + 3

(
1 + a2 + b2 + c2)3

} (60)

The GF thus obtained for A1g can likewise be computed for other IRs and the coefficient
obtained for each term enumerates the colorings of the vertices of the central layer with
the corresponding color palette that transform according to the IR. That is, for instance,
the partition [2 2 1 1] is enumerated by the term 12a2bc or the number of ways to color the
central vertices with 2 white, 2 blue, 1 green and 1 red, such that only the central vertices
are colored keeping the top/bottom layers constant.

The GF for the A1u IR for case (b) generated by setting a, b and c to 0 in Equation (59),
yielding:

GFA1u
D6h =

1
24

{
(1 + d + e)12 + 2

(
1 + d6 + e6)2

+ 2
(
1 + d3 + e3)4

+
(
1 + d2 + e2)6

+ 3
(
1 + d2 + e2)6

+3
(
1 + d2 + e2)6 −

(
1 + d2 + e2)6 − 2

(
1 + d6 + e6)2 − 2

(
1 + d6 + e6)2 −

(
1 + d2 + e2)6

−3
(
1 + d2 + e2)6 − 3

(
1 + d2 + e2)6

} (61)
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The GF(A1u) shown above generates the number of chiral pairs for vertex-colorings
for the top/bottom layers with 3 different colors (blue, red, purple) and retaining all central
vertices of the tube in white colors.

The case (c) is the most common single-set-coloring scheme, as it involves coloring
of all vertices of the nanotube with colors chosen from a single set of colors. Here no
distinction is made between the central vertices and the vertices of the top/bottom layers,
and thus all vertices are placed in one D set. Here the GF for each IR is obtained by replacing
wij = wj for all i and colors are selected from a single color set R. For four-coloring of the
vertices, the GF (A1g) is shown below for the tube with C6 cross section and 3 layers:

GFA1g
D6h =

1
24

{
(1 + a + b + c)18 + 2

(
1 + a6 + b6 + c6)3

+ 2
(
1 + a3 + b3 + c3)6

+
(
1 + a2 + b2 + c2)9

+3(1 + a + b + c)2(1 + a2 + b2 + c2)8
+ 3
(
1 + a2 + b2 + c2)9

+
(
1 + a2 + b2 + c2)9

+2
(
1 + a3 + b3 + c3)2(1 + a6 + b6 + c6)2

+ 2
(
1 + a6 + b6 + c6)3

+(1 + a + b + c)6(1 + a2 + b2 + c2)6
+ 3(1 + a + b + c)6(1 + a2 + b2 + c2)6

+3
(
1 + a2 + b2 + c2)9

}
(62)

Tables 4 and 5 display the combinatorial results for the C6-tubes shown in Figures 4 and 5,
respectively. Tables 4 and 5 were generated from the corresponding GFs obtained from
their GCCIs for the binomial colorings of these tubes which are shown below:

C6 tube of length 20:

GFA1g
D6h =

1
24

{
(a + b)120 + 2(a6 + b6)

20
+ 2(a3 + b3)

40
+
(
a2 + b2)60

+ 3
(
a2 + b2)60

+ 3
(
a2 + b2)60

+
(
a2 + b2)60

+ 2
(
a6 + b6)20

+ 2
(
a6 + b6)20

+
(
a2 + b2)60

+ 3(a + b)40(a2 + b2)40

+3
(
a2 + b2)60

} (63)

GFA1u
D6h =

1
24

{
(a + b)120 + 2(a6 + b6)

20
+ 2(a3 + b3)

40
+
(
a2 + b2)60

+ 3
(
a2 + b2)60

+ 3
(
a2 + b2)60

−
(
a2 + b2)60 − 2

(
a6 + b6)20 − 2

(
a6 + b6)20 −

(
a2 + b2)60 − 3(a + b)40(a2 + b2)40

−3
(
a2 + b2)60

} (64)

C6 tube of length 21:

GFA1g
D6h =

1
24

{
(a + b)126 + 2(a6 + b6)

21
+ 2(a3 + b3)

42
+
(
a2 + b2)63

+ 3(a + b)2(a2 + b2)62

+3
(
a2 + b2)63

+
(
a2 + b2)63

+ 2
(
a6 + b6)21

+ 2(a3 + b3)
2(a6 + b6)20

+
(
a2 + b2)63

+3(a + b)42(a2 + b2)42
+ 3
(
a2 + b2)63

} (65)

GFA1u
D6h =

1
24

{
(a + b)126 + 2(a6 + b6)

21
+ 2(a3 + b3)

42
+
(
a2 + b2)63

+ 3(a + b)2(a2 + b2)62

+3
(
a2 + b2)63 −

(
a2 + b2)63 − 2

(
a6 + b6)21 − 2(a3 + b3)

2(a6 + b6)20 −
(
a2 + b2)63

−3(a + b)42(a2 + b2)42 − 3
(
a2 + b2)63

} (66)

Table 4. Combinatorics of binomial colorings of C6 tube of even length (20). Reprinted with
permission from [129] copyright (2021) Taylor & Francis.

[λ] A1g A1u

120 0 1 0
119 1 10 0
118 2 430 200
117 3 13140 10270
116 4 358580 327000
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Table 4. Cont.

[λ] A1g A1u

115 5 8076302 7805200
114 6 153228940 151186610
113 7 2485281890 2472015520
112 8 35049847010 34972263360
111 9 435895574270 435487149890
110 10 4837163423172 4835187982608
109 11 48366143812740 48357338386240
108 12 439304123944130 439267535249120
107 13 3649522483044260 3649380289048000
106 14 27892495987962020 27891975424030480
105 15 197106031753154350 197104231299671570
104 16 1293505382317706270 1293499470458272960
103 17 7913200546609255430 7913182073007147040
102 18 45281066731050988200 45281011600933676850
101 19 243087762638665331530 243087605202533277680
100 20 1227593019502352645116 1227592588139680180808
99 21 5845680586016149192080 5845679450165058565230
98 22 26305561521626686809770 26305558641388642521880
97 23 112084563868390564619870 112084556825344707148480
96 24 453008439719843093324185 453008423084819935550720
95 25 1739552395580465510782712 1739552357586305907062080
94 26 6356056802607579048149000 6356056718581715136103840
93 27 22128493997304209628417280 22128493817196173268087480
92 28 73498212093520559324283920 73498211718937259300046560
91 29 233166741598000966442884040 233166740841488289311513600
90 30 707272449109079345066275200 707272447624069094082039400
89 31 2053371625707638595138215800 2053371622872379689408576320
88 32 5710939832691184420347395710 5710939827422078705100951680
87 33 15229172884919521763241151730 15229172875382280514199523400
86 34 38968765907621805546447563950 38968765890797737924153754120
85 35 95751824795384727236237065030 95751824766445595988072443312
84 36 226080697423665918179837712780 226080697375100662367959790680
83 37 513264286027563834692713658510 513264285948013123131287760080
82 38 1121077256300109181440804823910 1121077256172862735028690940680
81 39 2357136795263310515884594697290 2357136795064474082599295897160
80 40 4773202010358707257612086114170 4773202010055058999556359513408
79 41 9313564898191311432444888679940 9313564897737983810337193741600
78 42 17518372070312058850710272631220 17518372069650191620702994780120
77 43 31777512127415150509871599803740 31777512126469853524471252843840
76 44 55610646222809929010711390106200 55610646221488836306052022553040
75 45 93920202509422472913833055244500 93920202507615427898786969026968
74 46 153130764960751689179624148240700 153130764958331858395428437922800
73 47 241099502278311827209649491672420 241099502275138843239010973758880
72 48 366672159714557209135122371215500 366672159710482373202785259933120
71 49 538783581620959439539367888026550 538783581615833385238761111253600
70 50 765072685901281807653064962794306 765072685894964033815883701208344
69 51 1050099764962022784801615163283710 1050099764954393034471851047572500
68 52 1393401611199060099344586013233020 1393401611190030163150578065198920
67 53 1787760557764276241571586760097890 1787760557753801778758977126918480
66 54 2218147358706984761747143844517710 2218147358695075055554709343916900
65 55 2661776830447873212340258083935022 2661776830434598506818581481178240
64 56 3089562392483687387382849613409250 3089562392469181632858390724145920
63 57 3468982335419907262008024739287820 3468982335404366657697752965321340
62 58 3768032536748931605487595238564080 3768032536732607374058506770897600
61 59 3959627411498706582271887678528880 3959627411481893631161976216665600
60 60 4025621201690294701317661934726204 4025621201673315584661128579342944



Symmetry 2022, 14, 34 21 of 39

Table 5. Combinatorics of binomial colorings of C6 tube of odd length (21). Reprinted with permission
from [129] copyright (2021) Taylor & Francis.

[λ] A1g A1u

126 0 1 0
125 1 11 0
124 2 473 220
123 3 15253 11910
122 4 436673 398560
121 5 10348033 10004800
120 6 206573169 203879874
119 7 3527122728 3508834432
118 8 52385696704 52274232236
117 9 686407979303 685795703012
116 10 8028934612915 8025849284552
115 11 84659644031796 84645309793480
114 12 811283921490655 811221894648266
113 13 7114189337715709 7113938271431488
112 14 57421136296522190 57420179480527816
111 15 428742633734011054 428739188570867700
110 16 2974395957907605578 2974384184884777864
109 17 19246072541004160475 19246034252371767360
108 18 116545605020781110873 116545486120454041778
107 19 662469593565669880140 662469240221433288120
106 20 3544211884087688220237 3544210876693600321224
105 21 17889830252498885495425 17889827492074590075716
104 22 85383277805294190143784 85383270521181826240644
103 23 386080901136593900270904 386080882599144920683392
102 24 1656930517051376784683269 1656930471481634923631114
101 25 6760276470775467874719927 6760276362433949041317696
100 26 26261073896914647611843439 26261073647477690543603952
99 27 97263236471662895274416233 97263235914956931417312702
98 28 343895014286357966923112919 343895013080626398572379156
97 29 1162127978543417947038420093 1162127976007021782564392832
96 30 3757547129116693561369533113 3757547123929752463745097544
95 31 11636274977618676741474605088 11636274967299175559427516672
94 32 34545191334481858494269819958 34545191314493091129392663952
93 33 98401454094672584680155613591 98401454056952557263117170000
92 34 269156918536182307562667604533 269156918466792562463927930652
91 35 707498185837591596996314883276 707498185713084020804419188984
90 36 1788398191930007116460908717629 1788398191711979048251416225608
89 37 4350157764075290579543044835397 4350157763702510856253493800128
88 38 10188527394682682072242746308316 10188527394060064806948032860284
87 39 22989497710884551633808458024272 22989497709868307190203644545008
86 40 50002157520879567765636859278504 50002157519257903388142469358316
85 41 104882574311653493200042912232931 104882574309122653904387904539904
84 42 212262352772955598204815146300663 212262352769091372968466328442032
83 43 414652037974188760093034977579044 414652037968414603187921841451176
82 44 782184526177360507348845920120703 782184526168914032231473122983532
81 45 1425314025477099466617348186776881 1425314025465000766616408261522640
80 46 2509792088337944983451863878699918 2509792088320970669250957680677753
79 47 4271986533338402240952986091515568 4271986533315071146968456514703232
78 48 7030977836115966289850178437041004 7030977836084542036709394169335632
77 49 11192168800343594818507662954115382 11192168800302112216589382096345792
76 50 17235939952524034981288300451784128 17235939952470353920645281657293988
75 51 25684930125323990978539590227007264 25684930125255882540509198550606740
74 52 37045572296133623677675596842206368 37045572296048886307617780234533304
73 53 51724006602141374421656431169602456 51724006602037978956693506504856184
72 54 69923194110294214696088434473985680 69923194110170466866523001472260968
71 55 91535817744376799116378300971826720 91535817744231511058933713108728176
70 56 116054340354469299983499331537508704 116054340354301950607134075303190832
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Table 5. Cont.

[λ] A1g A1u

69 57 142522874119515507211110040589336016 142522874119326379203129178324865584
68 58 169553074383553918092169927083932224 169553074383344188394338933483678944
67 59 195417102679343529229105477101092448 195417102679115305059831028491385312
66 60 218215764658594707645979394768009504 218215764658350990916595981027726176
65 61 236102302745360626194077729265514496 236102302745105211277102095497067808
64 62 247526607716907796799690373591361056 247526607716645097621485771818723552
63 63 251455601490191198999846211143625568 251455601489926026768523441574344800

In order to generate a chiral coloring, at least 2 black colors are needed, as seen from
Tables 4 and 5, and these numbers are 200 and 220, respectively for the number of chiral pairs.
The chiral colorings explode combinatorially as a function of k culminating into every coloring
becoming chiral. For example, there are 4,025,621,201,673,315,584,661,128,579,342,944 chiral
pairs of colorings for 60 black and 60 white colors for the tube shown in Figure 4. Figures 6
and 7 show one such achiral and chiral coloring for the partition [100 20] for a tube with
length 20; helical patterns of colorings can be seen in these figures. Such chiral helical
patterns have received considerable interest in recent years in nanomaterials, as such
chiral patterns exhibit interesting optoelectronic properties. Figures 8 and 9 show achiral
and chiral isomers for the case of 21 blue colors (nitrogen) and remaining carbons for
the case of C6 tube with length 21. Figure 9 shows one of chiral isomers enumerated
(Table 5) out of 17,889,827,492,074,590,075,716 chiral pairs for the partition [105 21] whereas
the corresponding achiral isomer is depicted in Figure 8. Figures 10 and 11 illustrate
achiral colorings for equal number of grey and blue colors for the C6 tubular nanotube
of and even and odd lengths containing alternating arrangement of carbon and nitrogen
atoms, respectively.
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5. Applications to Tessellations of Kekulenes, Nanobands, C60 Polymers, Spectroscopy
& Topology

Tessellations of polyarenes such as kekulenes and octulenes are of considerable interest
because they are excellent candidates for sequestering both anions such as Cl− (Figure 12
Left). Moreover heterosubstituted tessellations of these structures, for example, crown
ether analogs and porphyrin analogs can be candidates for sequestration of toxic heavy
metal ions such as Cd2+ (Figure 12 Right) as well as actinyl ions in high level nuclear
wastes such as UO2

2+ and PuO2
2+. Another variation to the heavy metal ion trap made

possible by polyphenolic kekulene us shown in Figure 12 (bottom) and thus one could make
tessellations of these structures possessing multiple cavities for efficient trapping of heavy
metal ions. Consequently, such derivatives of graphenes with cavities have been proposed
as molecular belts for the sequestration and transport of both anions and cations [25,32,35].
Furthermore phase transformations among various topological configurations such as the
square, armchair and zigzag structures have been considered in previous studies [39–41]
for both carbon nanotubes and various structures arising from graphene sheets. Further-
more enthalpies of formation and Gibbs free energies of such large systems are extremely
challenging to compute from the ab initio techniques for example, Gaussian-3 theories. Our
understanding of the phase transformations among various tessellations needs the Gibbs
free energies of these systems which depend not only the enthalpies but also the entropies
of different phases. As there are a large number of vibrational modes for tessellations
of kekulenes, computations of thermodynamic properties by ab initio theory would be a
mammoth task. Hence robust topological techniques [144] based on graph theory have
been developed for large tessellations of kekulenes for the characterization of the structures
and spectra using machine learning/artificial intelligence methods. Machine learning that
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can integrate topology with ab initio techniques through by partitions into equivalence
classes can be extremely valuable. Topological methods dissect such large tessellations into
edge partitions of tessellations of cyclopolyarenes, which can then be harnessed for rapid
and robust computations of enthalpies of formations through bond partitions. Analytical
expressions for graph-theoretically based information theoretic entropies of such large
tessellations have been derived [144]. In this process two different structures that exhibit
the same graph entropies were discovered, and they are shown in Figure 13. The existence
of isentropic tessellations for kekulenes is quite interesting as it appears to be previously
unknown. Hence these structures were taken up for further studies [144] including com-
puting measures of contrasts in their electronic and other spectra that we discus in the
ensuing paragraphs.
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tom) A polyphenolic compound derived from septulene as a marcocycle crown for toxic heavy metal ions. Figure shows 
a proposed complex with Cd(II) and also intramolecular hydrogen bonds exhibited by the complex. Reprinted with per-
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Figure 12. (Left) A Tessellation of kekulene providing cavities to trap F− ions; Octulenes have
been proposed to have suitable pore size to transport Cl−. Reprinted with permission from [144]
copyright (2021) American Chemical Society. (Right) Porphyrin-analogs of Kekulene tessellations
as complexation traps for metal ions such as Cd2+, Hg+2, and U(VI) ions. Figure shows a complex
of Cd2+ with porphyrin-analog of kekulene; the distance between Cd and N is roughly 2.75
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◦

providing an optimal cavity trap Cd2+. Reprinted with permission from [160] copyright (2021)
Springer Nature. (Bottom) A polyphenolic compound derived from septulene as a marcocycle crown
for toxic heavy metal ions. Figure shows a proposed complex with Cd(II) and also intramolecular
hydrogen bonds exhibited by the complex. Reprinted with permission from [160] copyright (2021)
Springer Nature.
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Figure 13. Two topological tessellations of kekulenes that exhibit the same graph entropies: (Left; (a)) AHK(2) (Right; (b)) 
RK(3,3). Reprinted with permission from [144] copyright (2021) American Chemical Society. 
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bility of a triple bond at the edges for the armchair structure. The binding energy/atom 
and the state density at the edge seems to compete resulting in an enhanced stability of 
about 15% for the armchair relative to the zigzag structure. 

The stabilities of various phases are determined by the Gibbs free energies and thus 
bond enthalpies and entropies compete in the determination of their free energies. Con-
sequently, the relative entropies of different phases can provide important insights into 
the relative stabilities of various tessellations or phases. Hence the topological entropies 
imply that the zigzag structure is more stable than the armchair but an opposite energetic 
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based topological indices such as the Padmakar-Ivan, Zagreb-1, Zagreb-2, ABC, and 
Randić indices are identical for the two isentropic kekulene tessellations (Table 6). On the 
other hand, the distance-dependent topological distances such as the Wiener, hyper Wie-
ner, Mostar, Szeged, Gutman, Harary and Balaban, indices differ for the two isentropic 
kekulene tessellations. The graph spectra and their spectral degeneracies were computed 
for the two tessellations (see Table 6). The two tessellations in Figure 13 yield different 
spectral patterns, as AHK(2) belongs to the nonabelian D6h group and thus contains two-
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Figure 13. Two topological tessellations of kekulenes that exhibit the same graph entropies: (Left;
(a)) AHK(2) (Right; (b)) RK(3,3). Reprinted with permission from [144] copyright (2021) American
Chemical Society.

There exists greater variations in entropies among the various possible tessellations
for relatively smaller tessellations whereas for larger tessellations, different configurations
converge to the entropies of the 2D graphitic sheet with holes. Among the smaller tessella-
tions, the zigzag tessellation exhibits the largest entropy whereas the armchair tessellation
exhibits the lowest entropy. Liu et al. [39] have investigated the energy changes from the
armchair to zigzag graphene structures when studying nanotube chirality selection and
chemical control. Thess et al. [37] and Okada [41] have both independently shown that the
armchair structure is more stable than the zigzag structure because of the possibility of a
triple bond at the edges for the armchair structure. The binding energy/atom and the state
density at the edge seems to compete resulting in an enhanced stability of about 15% for
the armchair relative to the zigzag structure.

The stabilities of various phases are determined by the Gibbs free energies and thus
bond enthalpies and entropies compete in the determination of their free energies. Con-
sequently, the relative entropies of different phases can provide important insights into
the relative stabilities of various tessellations or phases. Hence the topological entropies
imply that the zigzag structure is more stable than the armchair but an opposite energetic
trend is seen for the two structures. The two tessellations of kekulenes shown in Figure 13
contain the same number of vertices (360) and C−C edges (468), and identical topolog-
ical edge partitions (Figure 13). Table 6 displays the various topological indices, graph
spectra and energetics for the two isentropic kekulene structures. Note that the vertex
degree based topological indices such as the Padmakar-Ivan, Zagreb-1, Zagreb-2, ABC,
and Randić indices are identical for the two isentropic kekulene tessellations (Table 6). On
the other hand, the distance-dependent topological distances such as the Wiener, hyper
Wiener, Mostar, Szeged, Gutman, Harary and Balaban, indices differ for the two isentropic
kekulene tessellations. The graph spectra and their spectral degeneracies were computed
for the two tessellations (see Table 6). The two tessellations in Figure 13 yield different
spectral patterns, as AHK(2) belongs to the nonabelian D6h group and thus contains two-
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dimensional irreducible representations whereas the RK(3,3) structure with a D2h abelian
symmetry contains only uni-dimensional irreducible representations. Thus the spectral
difference index and the root mean square of the spectral difference for the two isentropic
structures were computed to measure their contrasts. These spectral difference measures
are defined as follows:

δ =
1
n

{
∑n

i=1

∣∣∣λI
i − λI I

i

}
, (67)

RMS =

√
1
n
(
λI

i − λI I
i
)2 (68)

Table 6. Comparison of various topological indices for the two isentropic structures: AHK(2) and
RK(3,3). Reprinted with permission from [144] copyright (2021) American Chemical Society.

TI AHK(2) RK(3,3)

Zagreb-1 2520 2520
Zagreb-2 3366 3366
Randić 177.8786 177.8786

Atom-bond connectivity 322.9188 322.9188
Padmakar Ivan 168,480 168,480

Wiener 1,140,348 1,185,720
Hyper-Wiener 12,876,702 14,183,508

Schultz 589,684 6,134,528
Gutman 7,622,832 7,934,112
Harary 5635.002 5565.1216
Balaban 0.3237 0.3120
Mostar 80,256 79,920
Szeged 10,338,816 10,325,272

Harmonic Szeged 66,834.8034 67,043.7870
Edge Partitions (22)18(23)252(33)198 (22)18(23)252(33)198

Vertex Partitions 641228 24488

Spectral Pattern

1 2 2 1 1 1 2 2 2 1 2 1 2 1 2 1 2 1 1 2

112421154.154211124

2 2 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 2 2 1
1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 1 2 2 1 1
2 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 1 1 2 2
2 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1
2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 1 2 1 2
2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 2 1 2 2 1
2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 2 2
2 1 1 1 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1
1 2 2 1 2 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1
2 2 1 2 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 2
1 1 2 1 2 1 2 1 2 1 2 2 2 1 1 1 2 2 1

Spectral Difference 0.009612
RMS Spectral Difference 0.013128

HOMO-LUMO 0.755β a 0.744β
Eπ 524.4053β 524.4139β

13C-NMR 32 signals 92 signals

Proton NMR 14 signals
1:1:1:1:2:2:2:2:2:2:2:2:2:2

38 signals
1:1:1:1:2:2:2:2:2:2:2:2:2:2:

2:2:2:2:2:2:2:2:2:2:
2:2:2:2:2:2:2:2:2:2:

a The HOMO-LUMO gap obtained by Dias and coworkers [75], for kekulene is 0.8744β is reproduced by the spectra
computed here; the HOMO-LUMO gap of kekulene at 631G* = 3.58 eV, 6-311g(d) = 3.55 eV and 6-311g(2d) = 3.54 eV.
Table reprinted with permission from [144] copyright (2021) American Chemical Society.

The above-defined spectral indices of these two structures reveal that the isentropic
structures are energetically quite close but they are certainly not degenerate (Table 6).
Moreover the HOMO-LUMO energy gaps are different for the two structures, in that the
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armchair structure’s HOMO-LUMO gap is greater, although by only ~1.5% compared
to the square structure; the armchair structure is kinetically more stable than the square
tessellation. The total π-electronic energies imply that the rectangular tessellation is roughly
a kcal/mol more stable than the armchair structure. The square tessellation exhibits a less
symmetric D2h group compared to the armchair (D6h) and thus the greater stability of the
square tessellation is analogous to the energy stabilization induced by symmetry-breaking
in E⊗e Jahn-Teller distortion [144]. This is a consequence of doubly-degenerate HOMO
and LUMO of the armchair tessellation both of which transform as the two-dimensional E
representations of the D6h group. In contrast, the HOMO and LUMO of the rectangular
structures are one dimensional. Consequently, the metamorphosis from the armchair to the
rectangular tessellation leads to symmetry and hence stabilizing the rectangular structure.

Both 13C and proton NMR spectral patterns can be generated for the two isentropic
tessellations by combinatorial generation of their vertex partitions. The same technique can
be employed to generate the ESR hyperfine structures and multiple quantum NMR spectra
of these structures. In order to accomplish this, we invoke the distance degree sequence
vectors (DDSV) of graphs introduced by Bloom et al. [158]. In general for any vertex v in a
graph G can be assigned an integer sequence that corresponds to the number of vertices
at distances 0, 1, 2, . . . , ev, where ev is defined as the eccentricity of v in G. Hence we can
assign a p-tuple vector (Di0, Di1, Di2, . . . , Dij, . . . Dip) for each vertex vi in the graph where
Dij is defined as the number of vertices at distance j from vi. This can be carried out by the
use of the graph distance matrix generator. The DDSV is can be computed by the computer
code developed by the author [159]. As the two tessellations shown in Figure 13 contain
360 vertices there are 360 such DDSV tuples of variable lengths. It can be seen that two
equivalent vertices under the graph automorphism would have the same DDSV although
the converse is not true for all graphs. For tessellations of kekulene structures, the DDSV
offers a viable alternative to the graph vertex partitioning problem, which is in general a
O(n!) problem as there are n! ways to label a graph of n vertices in the most general case.
The DDSV vectors of variable lengths are concatenated in order to generate an integral
label. As these integral labels rapidly grow, the labels are represented as real numbers in
quadruple precision. In this setup the algorithm to generate vertex partitions simplifies to
O(n2) where n is the number of vertices.

The vertex partitions for both carbon and hydrogen atoms were computed using
the DDSV algorithm for the two kekulene tessellations in Figure 13 with the objective
of generating their ESR hyperfine and NMR patterns. Through the application of the
DDSV computational technique, the vertices of RK(3,3) are partitioned into 24488 partition
of 360 vertices whereas the vertices of AHK(2) are partitioned into the 641228 partition.
Consequently, there are 92 equivalence classes of vertices for RK(3,3) whereas there are
32 equivalence classes for AHK(2). Hence these carbon vertex partitions yield the numbers
of 13C NMR signal signals for the two tessellations shown in Figure 13. In an analogous
manner, the number of proton NMR signals for the AHK(2) tessellation is obtained as
14. That is, 144 protons are divided 14 classes with the partition 641210 for AHK(2). On
the other hand, for the RK(3,3) structure the DDSV technique partitions the protons into
38 classes with the partition 24434 for the RK(3,3) (Figure 13), as shown in Table 6 for the
two structures.

The machine generation of the ESR hyperfine patterns of the two tessellations can be
made possible by combinatorial generating functions analogous to the ones obtained in the
previous sections. For example, for the AHK(2) structure, the ESR GF can be constructed
from the equivalence class partitions assuming that all 13C nuclei are coupled equally to
the unpaired electron. Such radicals can be generated by a single deprotonation of the
kekulene tessellation. Suppose we include only the 13C nuclear-electron coupling in order
to devise techniques for the machine learning of the ESR hyperfine pattern. As there are 4
equivalence classes of 13C nuclei with each class containing 6 members, and 28 classes with
12 nuclei in each class, the net ESR generating function for the hyperfine structure arising
from 13C-e coupling is given by Equation (69):
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GF(ESR :13 C; AHK(2)) = ∏4
i=1(αi + βi)

6 ∏28
j=1

(
αj + β j

)12 (69)

In an analogous manner we obtain the combinatorial ESR for the RK(3,3) as:

GF(ESR :13 C; RK(3, 3)) = ∏4
i=1(αi + βi)

2 ∏88
j=1

(
αj + β j

)4 (70)

When the above GFs are binomially expanded for the 13C nuclei-electron couplings we
arrive at too many lines for graphical representation of the hyperfine pattern. Furthermore
the 13C−e- hyperfine coupling constant depends on the Euclidian distance between the
unpaired electron density and the geometrical position of the nuclei. Hence one can reduce
the combinatorial complexity by considering only equivalence class of nuclei that are
nearest to the unpaired electron of the radical. Thus if the radical is generated at the inner
periphery of the kekulene ring via deprotonating one of the six protons, we obtain a more
amenable ESR hyperfine structure. In this event we generate the equivalence class partition
for the AHK(2) as 62123 whereas for RK(3,3) it is 22411 yielding the ESR GFs shown below
as Equations (71) and (72) for the two tessellations of kekulenes, respectively (Figure 13):

GF(ESR :13 C; AHK(2)) = ∏2
i=1(αi + βi)

6 ∏3
j=1

(
αj + β j

)12 (71)

GF(ESR :13 C; RK(3, 3)) = ∏2
i=1(αi + βi)

2 ∏11
j=1

(
αj + β j

)4 (72)

These combinatorial GFs for the two tessellations generate 72133 lines for the AHK(2)
structure and 32511 lines for the RK(3,3) structure, respectively. The computed ESR hyper-
fine patterns for the two kekulene tessellations are displayed in Figure 14a,b, respectively.
One can also obtain the proton ESR hyperfine structures for the two tessellations as well as
the multiple quantum NMR patterns in a manner analogous to the techniques demonstrated
in the previous sections.

The other set of structures for which Euler totient based combinatorial techniques
would apply are nanobands or a necklace-choker composed of hexagons as displayed in
Figure 15. The structures can be tailored to various pore sizes so that they serve as seques-
tering agents for the complexation of metal anions or halide ions. These materials also offer
optimal sites for functionalization or substitutions of carbon sites with heteroatoms such
as nitrogen atoms in order to synthesize nanobands that could complex with metal ions
analogous to porphyrins.
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In a recent study Sabirov et al. [161] have considered various arrangements arising
from (C60)n polymers such as the zigzag and linear configurations of C60 polymers. These
authors have studied the topological indices such as the Wiener indices, roundness and
graph entropies of these structures such as the ones in Figure 16. Combinatorial tools
developed herein can be applied for the enumeration of heteronuclear fullerene polymers
arising from different configurations shown in Figure 16. Analogous to the spectroscopic
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studies that were outlined for the tessellations of kekulenes, future research should be
devoted for the machine generation of the spectra of fullerene polymers (Figure 16). By
extending the linkers between the two fullerenes with small alkane chains, one can obtain
longer polymers. The longer linkers would then provide sufficient flexibility to generate
necklaces of fullerenes where each bead would be a C60 cage. For such structures, the
techniques outlined here on the basis of Euler’s totient functions can become extremely
useful and applicable.
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Figure 16. (Top) Zigzag versus (Bottom) Linear Arrangements of (C60)n, Reproduced under creative
commons License from Ref. [161].

6. Conclusions, Helical Structures, Fullerene Polymers and Other Structural
Derivatives & Future Perspectives

This review considered combinatorics and topology of circum-polycycloarenes, hetero-
nanotubes and tessellations of cyclopolyarenes such as kekulenes in different configurations,
for example, armchair, zigzag and square, etc. We showed the power of Sheehan’s modifica-
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tion of Pólya’s theorem when generalized to all the characters of the point symmetry groups
of nanostructures. Topologically-derived edge partition techniques revealed the existence
of isentropic kekulene tessellations, that is, the existence of two kekulene tessellations with
the same graph entropies. These structures were also shown to be quite close in their energy
separations. Consequently, their spectral differences, ESR hyperfine patterns and NMR
signal patterns were combinatorially constructed using the DDSV techniques followed by
the generating function methods. While these combinatorial techniques were shown to be
very powerful in their applications to novel nanomaterials that were considered here, there
are several emerging structures comprising of fullerenes.

The emerging field of reticular metal organic frameworks, mesoporous cages, zeolites,
sodalite materials, other nanomaterials such nanobelts 2D-nanosheets and other nanomate-
rials [25,32,35,60,61,144–150] could all be benefited by such robust graph-theoretical and
combinatorial tools for the rapid computations of their properties and creation of combina-
torial libraries of these structures. Consequently, the advent of these novel materials has
rekindled our research interest in such interesting applications of combinatorics, group
theory, graph theory and topological indices. Such techniques would offer robust and rapid
computational tools for the computations of their thermodynamic, optoelectric, spectro-
scopic, phase transformation and chiral properties. We envisage several nanowires and
2D-sheets of such molecules [25,32,35,47–49,59–61,144–150] to be synthesized in the future,
which would also provide a platform for the combinatorics of big data pertinent to these
structures. Finally we believe that combinatorial and graph-theoretical techniques would
be of considerable value for the enumeration and computation of electronic properties of
materials such as gallium arsenide, GaN nanowires, topological characterization of 2D
materials, zeolites, their helical structures made from kekulenes, and the emerging novel
expanded kekulenes, and so forth [9,17,23,36–59]. There are a number of combinatorial
techniques and applications of variants of Pólya’s theorem and related applications to
graphs and chemical enumerations, and readers are referred to references [162–171].
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