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Abstract: The main purpose of the study is to apply symmetry principles to general mathematical
modelling based on multi-criteria decision making (MCDM) approach for use in development in
conjunction with geographic weighted regression (GWR) model and optimize the artificial neural
network-cellular automaton (ANN-CA) model for forecasting the sugarcane plot burning area of
Northeast Thailand. First, to calculate the service area boundaries of sugarcane transport that
caused the burning of sugarcane with a fire radiative power (FRP) values using spatial correlation
analysis approach. Second, the analysis of the spatial factors influencing sugarcane burning. The
study uses the approach of symmetry in the design of algorithm for finding the optimal service
boundary distance (called as cut-off) in the analysis of hot-spot clustering and uses calculations
with the geographic information system (GIS) approach, and the final stage is the use of screened
independent variable factors to predict the plots of burned sugarcane in 2031. The results showed
that the positively related factors for the percentage of cane plot sintering in the sub-area units of
each sugar plant’s service were the distance to transport sugarcane plots index and percentage of
sugarcane plantations in service areas, while the negative coefficients were FRP differences and
density of sugarcane yield factors, according to the analysis with a total of seven spatial variables.
The best GWR models display local R2 values at levels of 0.902 to 0.961 in the service zones of
Khonburi and Saikaw. An influential set of independent variables can increase the accuracy of the
ANN-CA model in forecasting with kappa statistical estimates in the range of 0.81 to 0.85 The results
of the study can be applied to other regions of Thailand, including countries with similar sugarcane
harvesting industries, to formulate policies to reduce the exposure of sugarcane harvested by burning
methods and to support the transportation of sugarcane within the appropriate scope of service so
that particulate matter less than 2.5 microns (PM2.5) can be reduced.

Keywords: sugarcane burning; fire radiative power (FRP); land-use change; spatial GWR modeling;
ANN-CA; PM2.5

1. Introduction

In 2017, the Food and Agriculture Organization (FAO) of the United Nations reported
that there were 102 countries with a combined sugarcane growing area of approximately
26 million hectares (Mha). Brazil produces the world’s 1st largest sugarcane with 759 mil-
lion tons (Mt), or about 41% of the world’s total sugarcane production, while Thailand
produces the world’s 4th largest sugarcane amounting to 103 Mt, or about 6% of global
production [1]. Sugarcane is Thailand’s main industrial crop, which is mainly distributed
in the Northeastern regions, predominantly in the northern, parts of the central, and the
western and eastern regions of the Northeast, accounting for almost half of the country’s
sugarcane plantations. This region often experiences PM2.5 pollution caused by the burning
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of sugarcane plots during December to April (the harvesting period) which can significantly
reduce the cost of sugarcane production. Sugarcane is burned in clusters of nearby plots,
resulting in the spread of PM2.5 in concentrated aggregates during dry weather.

The problem of burning sugarcane is mainly due to a “labor shortage” or lack of
sugarcane cutters, such that when it comes to cutting the sugarcane, there is not enough
labor. Most migrant workers refuse to accept fresh sugarcane cuts, whether Thai laborers
or migrant workers, such as Cambodian, Burmese, and Lao laborers.

Sugarcane was produced in 2018/2019, according to the Office of Cane and Sugar
Board (OCSB) OCSB [1], the country’s main agency responsible for managing the sugarcane
industry, summarized the burning of sugarcane plots from harvesting yields and revealed
the amount of sugarcane fire (burnt cane) that has been burnt for the past 10 years. There
was not much change, with a proportion in the range of 63.42 % to 66.77% of the amount of
sugarcane transported into sugar mills in the whole country and a standard deviation of
1.16% and R2 = 0.34 [1].

The impact of burning sugarcane plots in other areas around the world affects many
types of air pollution, such as the burning of 90% of agricultural land in South Africa
during the harvest season, while, during other seasons, only 10% of agricultural plots are
burned [2].

The burning of sugarcane and stalks is another type of biomass burning (BB) [3,4]. BB
emits several types of pollutants: carbon monoxide (CO), carbon dioxide (CO2), smoke,
nitric oxide (NOX), nitrogen dioxide (NO2), carbon tetrahydride (CH4), sulfur dioxide SO2,
nitrous oxide (N2O), black carbon (BC), organic carbon (OC), ozone (O3), ammonia (NH3),
particulate matter (PM), particulate matter less than 10 microns (PM10), and PM2.5 [5–10].

Assessments of sugarcane burning pollution are reported by research in several coun-
tries, such as Brazil, according to Daniela, F. et al. [11] studied in São Paulo, Emission
rates were calculated in conjunction with remote sensing exposure to estimate pollutants
of categories CO, NOX2, CH4,8, PM2.5, PM10, and nonmethane hydrocarbons (NMHC),
respectively. Sugarcane burning research in Thailand found that Sornpoon, W. et al. [12]
created a model to test sugarcane emissions, the model was able to predict emission
rates similar to those of type CO2, CO, CH4, N2O and NOX. In addition, a study by
Kim Oanh, N.T. et al. [13] in evaluating the pollutants of sugar cane burning litter in South-
east Asia (SEA) from 2010–2015 found more than 55% burnt in open ground.

In many experiments from past research that have studied the emissions of sugarcane
burning pollution, summarized as shown in references from [11,14–23]. In almost all
studies, studies focused on studying the emissions of CO, CO2 and PM2.5 in which the
severity of the effects of PM2.5 has a wider impact than other types of pollution, since it
can spread far and when entering the body can cause damage to the lungs and vascular
system, which in this study did not focus on experimental calculations of emissions, but
hypothesized that areas with a lot of burning would result in higher PM2.5 than areas far
from burning sugarcane plots.

A study of PM2.5 pollution in spatiotemporal urban areas between January and March
found that PM2.5 was associated with CO, SO2, NO2, O3, and PM10 by means of a linear
correlation analysis and revealed a strong correlation between PM2.5 and CO, SO2, NO2,
and PM10, but a negative correlation between PM2.5 and O3 [24–31]. Many studies have
identified the reasons why the spread of PM2.5 has become more severe in urban areas
and areas around cities where farming is practiced and have found that local government
interventions are not conducive to environmental improvement.

The reduction of human activities during the COVID-19 pandemic significantly de-
creased the concentration of air pollutants and improved air quality [32]. Spatial modeling
with land-use regression (LUR) models showed that pollution was affected by temperature
factors, average air pressure, altitude, humidity, and precipitation in the non-heating season
and by precipitation, altitude, average air pressure, vegetation, and density of roads in the
heating season. Spatial distribution characteristics of PM2.5 can be identified, but it is recom-
mended that modeling suitable for the spatial analysis of PM2.5 relationships should define
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spatially independent variables alongside other auxiliary factors, such as road density and
agricultural plot density. Measuring sintering with reflections from satellite imagery makes
it possible to study the spread of PM2.5 more accurately [33].

Current assessments of burned sugarcane plot areas have used remote sensing (RS)
reflected by satellite images such as MOD14 [34,35], For example, the measurement system
of the Global Fire Emissions Database (GFED) [36], the use of remote sensing to track
wildfires such as the Global Fire Assimilation System (GFAS) [37], as well as the system of
the Fire Inventory from NCAR (FINN) [38], and many of the common uses of the Global
Inventory for Chemistry Climate studies (GICC) [39]. Satellite data used to measure fires
from burning are easily accessible. For example, fire radiative power (FRP) measurements
linked from biomass utilization rates with GFASv1.0 systems [40]. The wavelengths of the
shortwave infrared range used to estimate the FRP ranges from more than 3.9 µm and is
converted to energy discharge in megajoule per second (MJ/s). In the research, FRP values
are used to identify burned areas and screen them using sugarcane plot areas to extract the
spots found by FRP and then define them as variable data based on the spatial relationship
assessment models.

A regional-to-global-scale observation of vegetation fires (e.g., fire detection, fire
intensities, burned areas) is possible via satellite sensors, including the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on Aqua and Terra, the Advanced Very-High-
Resolution Radiometer (AVHRR) on NOAA, the Thematic Mapper/Enhance Thematic
Mapper Plus (TM/ETM+) on Landsat, and the sensors on the Geostationary Operational
Environmental Satellite (GOES) and the Himawari-8 satellite [41–44]. Among these sen-
sors, fire observations, such as fire detections and fire radiative power (FRP) data [45], are
extensively applied based on the MODIS 1 km active fire products. For example, MODIS is
used to evaluate burned farmland and air quality [46], the spread rate of wildfires [46,47],
and the influence of the frequency of wildfires on savanna ecosystems [48].

MODIS data provide FRP values that indicate the intensity of a fire [49] and estimate
smoke height assessment [50] and severity and frequency of fires [51], as well as assessing
the impact after wildfires. [52]. Most researches that calculate emission rates often use
FRP values to define emission coefficient, also known as (Ce) [45,53–55]. For instance,
Ichoku and Kaufman [56] developed a top-down approach to extract smoke droplets using
satellite-derived FRP. There have been many past studies that have used nitrogen oxide
assessments [57–59]. Recently, Fu et al. [53] have studied both smoke and nitrogen oxide
gases. Carbon monoxide and formaldehyde However, despite the widespread use of fire
observations with the MODIS system, the impact of omissions and errors of fire detection
and accuracy in FRP remains the leading cause of uncertainty [54,60].

Therefore, other satellites can also be used to aid fire studies and burned-area and
surface-heat-emission estimates [61,62].

Therefore, through the application of satellite images, studies of burned spaces can use
a wide range of satellite images, depending on the characteristics of the space, to optimize
both spatial and temporal resolutions. In this study, TERRA/AQUA data from the MODIS
satellite, which has a 1000 m spatial resolution and a daily-record time resolution, can
be downloaded from the Geo-Informatics and Space Technology Development Agency
(Public Organization) (GISTDA) website, accessible via the following link: https://fire.
gistda.or.th/download-v1.html (accessed on 17 August 2021) GISTDA recommends using
FRP values to identify burned areas and areas with FRP values greater than 10 megawatts
(Mw) [63].

The acquisition of FRP values can enable the identification of burned areas that must
be analyzed in conjunction with space-related factors and of relationships according to sub-
spatial units. Spatial linear regression models have been used to study spatial relationships
between predictor variables.

Recently, a study on the use of geographic-weighted regression (GWR) has been
conducted to analyze traffic outages. Zheng et al. examined the spatial variation of factors
that pay tribute to the dangers of collisions and accidents using the GWR in southeastern
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Virginia [64]. The coefficient map with GWR provides detailed insights into which some
factors are associated with higher collision hazards. In another study, Soroori et al. used
Poisson weighted geographic graphics and negative binomial regression (GWPR and
GWNBR) to simulate the relationship between crash injury frequency and transport macro-
level variables such as transport infrastructure, traffic characteristics, socioeconomic factors
of drivers, and land use characteristics [65]. The results showed that the proposed method
was stronger than the GWR by capturing the differences in spatial variables more accurately.
Zhibin’s study also showed that GWPR is useful in capturing spatial non-stop relationships
between predictive variables at the county level [66]. Similarly, Li et al. compared the
performance of statistical models calibrated GWR with other models calibrated using
ordinary least squares techniques (OLS) to predict traffic jams on 245 intersections in
Chicago [67].

GWR has also been used to test the spatial relationship of traffic hot spots and other
spatial factors [68], improving geographically weighted regression by directional, nonsta-
tionary, ground-level PM2.5 estimation [69]. The application of the GWR model requires
the creation of data variables within the scope of the appropriate sub-area units, resulting
in lower tolerances and higher decision coefficients [70,71]. The implementation of GWR
results should have stand residual and Moran’s I index values for the relevant models to be
used in the most efficient forecasts [70,72–76].

In this study, in addition to focusing on the analysis of independent variable factors
influencing changes in land use, spatial models were also applied to predict sugarcane
areas and sugarcane burning areas in future years.

Simulation of land-use/land-cover (LULC) changes provided the baseline scenario
for the prediction of future scenarios and patterns in future development. Simulation of
LULC changes can indicate anthropogenic impacts, identify land-use problems, such as
degradation and deforestation, and be used in land-use planning [77].

The study of land-use change in the Asian region has been undertaken for many
years. For instance, in China, a land-use-change model was developed using geographic
information systems (GISs) to monitor and predict changes in the land [78–81]. Furthermore,
LULC change was monitored and detected by remote sensing and GISs in Indonesia [82].

The study from [83] have developed a framework for combining classification and
regression methods with machine learning techniques to enable climate prediction opti-
mization in Malaysia’s east coast peninsula using statistical downsizing techniques. The
classification method is designed by Supporting Vector Classification (SVC) and together by
regression methods based on regression vector support (SVR), Artificial Neural Networks
(ANNs) and Relevance Vector Machines (RVMs).

It also applies the ANN model to predict environmental problems such as landslides,
land use forecasts, as well as computational time-reducing issues such as heuristics prob-
lems. Most of the findings from a group of researchers from [84–89] found that the ANN
model can provide accurate predictive results when it can enable the model to learn a group
of datasets that are likely to be predicted. But in this study, it has a different application
because it is a large spatial analysis and wants to create a method for screening the factors
of an independent set of variables to be introduced into the artificial-neural-network-based
cellular automaton (ANN-CA) model, so the GWR model is needed to help select a set of
factors that are correlated with the burning of sugarcane plots so that the ANN-CA model
can accurately predict future burnt sugarcane plots.

The cellular automaton/automata (CA) is a common model for simulating LULC-
change spatial evolution by estimating the state of pixels according to their initial states, sur-
rounding neighborhood effects, and transition rules. A CA model can generate rich patterns
and effectively represent nonlinear, spatially stochastic LULC-change processes [79,90]. In
this study, independent variable factors were used to predict LULC in future years on the
basis of a CA model that could increase independent factors and use the weight-learning
of each coefficient through the neural network method through the machine-learning
process—this collaborative approach being called an ANN-CA. Meanwhile, other models
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have used machine learning to process changes based on historical events and factors
that provide inputs related to change. One of the models was an ANN-CA, which was
developed to simulate multiple land-use changes and complex land-use systems [77]. This
approach can be used to determine LULC changes by considering the possible factors that
may influence changes. Therefore, ANN-CA was utilized in this study.

In recent years, Thailand has experienced a spread of PM2.5 dust mainly due to the
burning of sugarcane plots and the burning of farmland, and, coupled with meteorological
factors that reduce ventilation, PM2.5 problems have become severe. Government policy
regulating the burning of sugarcane in the sugarcane harvesting process has been imple-
mented for only a few years, but it has not been carried through; sugar mills must be
required to reduce the number of sugarcane pick-ups harvested from plots to be burned,
but many subsequent problems have led to the OCSB needing to find measures to deter-
mine the potential of sugar mills to import sugarcane in service areas for transportation
to areas that are not too far away, setting quotas based on the distance transported in line
with costs and profits. The guidelines for determining the scope of sugarcane acceptance
quota areas relative to spatial factors need to be considered, since sugar mills are located in
crowded, close-packed areas, resulting in the snatching of sugarcane import quotas into the
plants themselves. In this study, we focused on analyzing the relationships between spatial
variables by modeling mathematical relationships determined on the basis of observations
of the behavior of cane plot sintering and the transportation of sugarcane in real areas, with
supporting data from the OCSB that enabled the identification of spatial data related to
the promotion of the sintering of sugarcane plots, including distance of sugarcane trans-
portation, population density, sugarcane growing area, density of sugarcane plantation
area, and similarity of sugarcane plantations. These variables were used to determine
coefficient relationships with the GWR model, which is very suitable for determining the
spatial weighting values for these factors associated with the burning of sugarcane plots.

2. Materials and Methods
2.1. Study Area

The northeastern part of Thailand consists of 20 provinces, with 16 sugar mills, with
the increase in factories in 2011 and 2021 increasing to 22, as shown in Figure 1a. Figure 1a
shows the spatial relationships within the sugar mill group in the current year, mainly
located in the central and upper provinces of the region (9 out of the 22 factories), with
4 located in the lower regions. The sugar mill locations in the northwestern provinces, such
as Loei and Nongbualampoo provinces, are rapidly expanding and often have problems
affected by PM2.5 dust due to the high mountainous topography surrounding them, with
heights of more than 1000 m or more, as shown by the tri-irregular network (TIN) data for
the heights of the areas. The other sugar mills are located at altitudes ranging from 75 to
265 m and are distributed in the middle and lower parts of the region.

The cohesion of the sugar mills in the central and upper parts of the region is due to
the land being well suited to sugarcane growth, and, when other agricultural areas are
observed, a clear distribution of areas of agricultural land use can be found in comparison
with other areas with lower agricultural land use. The increase in agricultural land has
changed from 2011 to 2021, as shown in Figure 1b,c. The agricultural land in most parts of
the region accounted for 68.9 percent of the total area, comprising forest land, miscellaneous
areas, urban and built-up land, and water bodies in 2011, but the size decreased slightly
in 2021 due to increasing urban expansion; thus, agricultural areas changed to sugarcane
plots and water sources changed to miscellaneous areas and urban areas, as shown in the
number of changes between Figure 2a for 2011 and Figure 2b for 2021.

The proportion of sugarcane plantations increased from 3.81% to 9.79%, and the size of
sugarcane plantations increased from 4381.5 sq.km to 11,262.65 sq.km, which demonstrates
that the sugarcane industry expanded dramatically, while the number of sugar mills
increased by four.
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2.2. The Expansion of Sugarcane Plots and Sugar Mills

The increase in the number of sugar mills has resulted in a large number of changes
to sugarcane plots, which has changed the development of the number and location of
sugar mills in 2011 and 2022. The current locations of the 22 sugar mills are shown in
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Figures 3 and 4a–c [2]. A dense cluster of sugarcane plantations is located in Loei Udon-
thani Khonkaen Province. The mid-region includes the Khonkaen, Chaiyaphum, and
Kalasin provinces, reaching the upper provinces of Loei, Nongbualumphu, and Udonthani.

The provinces with the most sugarcane plantations include Udonthani, Khonkaen,
and Kalasin provinces, but these provinces have a road network that allows the transport
of sugarcane. However, the road network is not very relevant to the size of the sugarcane
plantations, perhaps because the provincial areas can be delineated by the extents of the
road networks, as shown by the total lengths of the road networks for each province and
the number of sugar mills located in each area, represented in Figure 3. The expansion of
sugarcane plantations is shown in Figure 4d–f. During the sugarcane harvesting season,
hundreds of sugarcane shipments are transported across each province, resulting in high
levels of traffic congestion, which is one of the spatial causes of sugarcane burning, allowing
sugarcane to be treated for longer during transportation across the province.
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The study analyzed the relationships between sugarcane sintering areas and other
related spatial indices. In this study, the divisions of sub-area units along provincial bound-
aries were not used because using them would have made the actual relationships between
the burning of sugarcane and the transportation of sugarcane inconsistent. According
to the policy of Thailand’s government [2], sugarcane should not be transported more
than 100 km, but in reality sales of sugarcane transported from remote areas have been
determined to be higher than sales of sugarcane from areas near sugar plants. Accord-
ing to the OCSB study [2], the longest distance that sugarcane was transported was to
a plant at a distance of about 120 km; thus, in this study, we aimed to create a sub-area
unit scope based on possible distances for transporting sugarcane of up to 120 km from
each sugar plant. Scoping sub-area units or spatial units in GWR models, called spatial
units, can affect model accuracy and tolerances, and index extraction of variables based on
independent variables is important. In this study, geographic information systems (GISs)
and manipulation methods were used in the implementation of complex procedures.

2.3. Evaluating Emission Factors (EFs)

The research on pollution emissions in Thailand in this study was based on the
experiment of Junpen. et al. [20]. In many studies, the FEC values have been calculated
before other factors so that they can be used to further estimate the spatial value of different
types of pollutants such as the EFs (CO2, CO, PM2.5, PM10, and OC), as well as other types
of pollutants other than carbon groups and small dusts such as EFs of CH4, NH3, and SO2,
according to Daniela, F. et al. [91] and Zhou, Y. et al. [92].

Preharvest sugarcane emissions are calculated using the flowing Equation (1).

Ei = FBxEFix10−3 (1)
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where Ei is the list of air emissions of species i from burning sugarcane before harvest (t),
FB is burnt fuel (t), EFi is the emission factor of species i (g/kg). The main parameter of FB
in Equation (1) are evaluated using Equations (2)–(4).

FB = (BAxFLxCC) (2)

BA = (BS/Y) (3)

BS = (BxP) (4)

where FL is fuel load or the density of preharvest biomass residues which include sugarcane
tops and leaves (t/ha), CC is combustion integrity (unitless), BA is the harvested area of
burnt sugarcane (ha), BS is burned sugarcane (t), Y is yield or yield of sugarcane per harvest
area (t/ha), B is the percentage of sugarcane burned per burned total sugarcane (%), P is
the total sugarcane production (t).

This study is based on reports of OCSB [2] and Junpen. et al. [20] as shown in Figure 5.
Figure 5a shows emissions of PM2.5 in each region in Thailand. Seeing from this figure,
burning sugarcane in the central region emits the most greenhouse gases PM2.5, followed
by the northeast and the north. Considering the trend of greenhouse gas emissions, PM2.5
greenhouse gas emissions were found to be PM2.5. It tends to increase in a linear manner
in the central and northeastern regions. On the contrary, it has been relatively stable in
the north, especially since the 2014/15 production season onwards. Based on this data, it
can be seen that greenhouse gas emissions PM2.5 Overall, this increases due to the largest
percentage of emissions occurring in the central and northeastern regions of Thailand.

A comparison of the results of Junpen. et al. [20] with that of Kim Oanh, N.T. et al. [11],
which estimated air emissions from agricultural biomass burned in Southeast Asia during
2010–2015, is shown in Figure 5b. Regional emissions assessments are usually higher than
at the local level because large quantitative computational factors are used, resulting in a
higher value.
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Figure 5. The results of: (a) Comparison of PM2.5 emissions by region of Thailand adapted from
Junpen. et al. [20] and updated using data from OCSB [2] (b) A comparative study of PM2.5 emissions
between (Junpen. et al., 2020) and that in (Kim Oanh, N.T. et al., 2018).

2.4. Fire Radiative Power (FRP) Distribution

The dependent variable (Y) is based on TERRA/AQUA data from the MODIS satellite
collected from GISTDA [63], and the period during which data were processed and modeled
was the same season as the sugarcane harvest from January to May between 2019 and 2021,
as shown in Figure 6a,b. The FRP thermal discharge values were selected only for index
values over 10 megawatts (Mw) or more because GISTDA [64] and OCSB data [55,56,60,76]
were tested for a range of heat reflections close to the areas where sugarcane is burned. An
increase in the number of FRP points was very common in the central and upper regions,
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these being concentrated around the sugarcane plantation areas. The increase in the number
of FRPs increased significantly from 2011 because the number of sugar mills in the Loei
and Nongbualumphu provinces were responsible for a large group of FRP values greater
than 30 Mw or more. FRP data of more than 30 Mw were superimposed on the sugarcane
plot areas by identity overlay and calculated as percentages of incineration in spatial units
divided by a distance of 120 km, which is explained in detail in the description of the GWR
modeling process.
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The data acquisition for a service area layer of the cane delivery quota not exceeding
120 km is shown as a red boundary in Figure 6. Road network data in the form (.shp)
were changed to a network dataset (.nd), and we built an impedance of polylines data
layer with distances in units (kilometers). The service area (SA) function of the ArcGIS
pro 2.9 program was used to determine the distance limit and set to a cut-off distance of
120 km. The size of each sugar plant’s service area has different boundaries, and due to the
interconnections of the road grids, some of which are very large, they look similar to the
cut-off size, but some areas are smaller than the boundary sizes and should be obtained
from the analysis, since trims were defined to connect the road lines so that service area
data layers could be created and required that there were no overlapping areas in the
service areas. The 22 service area boundaries were extracted for area extents, perimeters,
population densities, a heat map of FRP data, as well as calculations of various indices
selected to test spatial relationships with GWR models.

2.5. Geographically Weighted Regression (GWR) Model Assessing Influential Environmental
Factors in the Burning of Sugarcane Plantations

Geographic weighted regression [62,70] was used to combine data at each point
of observation into a regression model using a set of weights related to distance. The
relationship between the percentage of FRP and the spatial characteristics within the
service area of allocating sugarcane quotas for a particular point is given a higher weight
than the scores farther away from that point. In the GWR regression model, the percentage
of sugarcane burned in the harvesting season area (Yj) was set as a dependent variable (Fj);
the means of prediction for Northeast Thailand is shown in Equation (5).

Fj(uivi) = β0(uivi) + β1X1(uivi) + β2X2(uivi) + β3X3(uivi)+
β4X4(uivi) + β5X5(uivi) + β6X6(uivi) + β7X7(uivi) + εi

(5)

where β0 is the intercept term; β1 to β7 are spatially varying coefficients of the X1 to X7
attributes, respectively; and εi is an error at point (longitude, latitude/X-meters, Y-meters)
i, (uiv)i representing the coordinates of the ith point in study scope [72].
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For the estimation of GWR model parameters, the weighted least squares (WLS)
method was used, which gave a different weighting for each observation. The estimation
of model parameters involved Equation (6), written as follows:

β̂(ui,vi) =
(

XTW(ui,vi)X
)−1

XTW(ui,vi)y (6)

The weighting functions used to estimate the parameters in the GWR model were the
Gaussian kernel functions [72], which can be written as Equation (7), below. The GWR
model’s weighted calculation for this was for an area within the subunit boundary in the
analysis of a service area of 120 km in relation to the transport distance for the sugarcane
delivered to each plant.

wj(ui,vi) = exp
[(
−1

2

)(
dij/hi

)2
]

(7)

where dij denotes the distance between location (ui,vi) and location
(
uj,vj

)
, and hi is a

nonnegative parameter, usually called a smoothing parameter (bandwidth), for the location
(ui,vi) and is known. So: W(ui,vi) = diag(w1(ui,vi), w2(ui,vi), L, wn(ui,vi). One method
that is used to select the optimum bandwidth is the cross-validation (CV) method, which is
defined by Equation (8):

CV(hi) = ∑n
i=1
(
yi − ŷ 6=i(hi)

)2 (8)

The research developed a way of creating spatial unit (sub-area unit) datasets to make
GWR modeling more efficient in terms of accurate predictions that further define the
boundaries of the appropriate spatial units; creating more accurate series of independent
variables can generate relationship trends.

2.6. Spatial Unit Design Approach for Sugarcane Burning GWR Modeling

Regarding the algorithm for selecting a proper cut-off distance for spatial unit extent
extraction, the operating procedure is described below and shown in Figure 7. The im-
portance of the process of designing optimal service area boundaries used for finding this
group of heat islands is the first and important step, since both the GWR and ANN-CA
models are analysis and correlations, and machine learning is constructed within this
subspace unit boundary (spatial unit), where the symmetry principles used as the MCDM
approach are analyzed by bringing factors to the intersection of the relationship between
space boundaries and spatial autocorrelations, as the algorithms are described as follows:

1. Obtaining a new road network data layer
(
SLij

)
that configures the impedance of

a road with a slope value, so that the time taken to transport the cane is calculated
accurately, where SLij = LijSij; SLij is the slope length of the road network linking
any i to j; Lij is the length of the road network linking any i to j within the boundary
area; and Sij is the slope (degree) of the road network linking any i to j.

2. Determine the entry point for analyzing the service area with the location of the
sugar factory.

3. Calculate the size of the service area by setting initial search distances of 70 km,
100 km, 120 km, 130 km, and 140 km.

4. The service area for the extraction of FRP values for 2021 falls within the boundaries
of each sugar plant according to the scope of transportation from the OCSB.

5. Calculate the results for service area size (Sq.km) and spatial correlation (−1 to 1) to
select the appropriate cut-off distance for the sub-area data layer.

6. Service area cut-off selection must be made in parallel with the introduction of FRP
values to the spatial autocorrelation index value. The process brings together the
ASij and Mj indices to consider the relationship of FRP boundaries and cohesions,
where ASij is the area size (sq.km) of any sugarcane plot i within the boundary area
and ASij+1 is used to set the next cut-off; Mj is the spatial autocorrelation of the FRP
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concentration within any j-rated cane quota area calculated using Moran’s I index
and Mj+1 for the next service area cut-off.

As the two values become higher and higher, this indicates an even greater correlation
between area size and the burning of sugarcane plots. However, when one relationship
begins to deteriorate, the cut-off phase is carried out two more times to ensure that the
relationship is clearly opposite, thereby stopping the process.

The results of the analysis determined the search distances (called the cut-offs) for the
appropriate service areas to make it possible to extract the adhesion of the incineration
points on the sugarcane plot, using FRP as a representative of this value, as shown in
Figure 8. Starting with the 70 km cut-off designation, a route by which the convertible
sugarcane from each plot could be transported to the locations of the 22 sugar mills was
determined. Search results with a cut-off distance of 70 km, 100 km, 120 km, 130 km, and
140 km, respectively, showed the following average areas of service for all 22 locations:
6273.83 sq.km, 11,198.94 sq.km, 15,445.44 sq.km, 18,022.71 sq.km, and 20,406.28 sq.km,
which were comparable to the spatial autocorrelation values; then the values started to
decrease, according to the cut-off designation of 120 km. As shown for the Moran’s I index,
these were as follows: 0.121, 0.172, 0.207, 0.19, and 0.096, respectively. When the effect of
the relationship between service area boundaries began to decrease and intersect at the
search distance of 130 km, this indicated that the incineration behavior of sugarcane plots
was uncoordinated; the greater the area size, the lower the spatial autocorrelation index
value. The size of the service area generated from the 120 km search range was used as a
spatial unit in the GWR modeling. This appropriate service-area search approach can be
applied to other areas with similar spatial characteristics, only a starting distance for the
service area function is needed to be able to start the process.

The GWR model was modeled using the ArcGIS pro 2.9 software package, this al-
lows a variety of calibration techniques to be used to identify regression weights and
optimize bandwidth parameters. [70,71] In this study, a fixed defined kernel with two
square functions (in which bandwidth is determined by reducing the Akaike information
criteria (AIC)) [72,73] was used. The reason for this is that the points in the units of spatial
analysis used are regular and equal size. The Monte Carlo test [66,74,75] was also carried
out to determine the importance of spatial variability in estimating local parameters. The
independent variable weight value is an indication that the independent variable will
affect the burnt cane. The coefficients of independent variables have both positive and
negative correlation vessels that affect changes in the heat map. A set of pre-tested inde-
pendent variables yields satisfactory results in terms of statistical index values, which are
defined as independent variables using the percentage of sugarcane burn predictions in
each spatial unit.

Maps showing FRP in Mw units may not reflect the intensity of the spatial units of
each service area, so additional models are needed to describe the sensitivity of Yj, which is
used as the primary input in the GWR model, and expressed as a probability in the range
between 0 and 100 in the following Equation (9).

Many of the previous hot spot areas served as indicators of frequency and heat points
in those areas. Historical FRP data was interpreted from satellite imagery by GISTDA.
FRP data derived from the period 2019–2021 were able to be used to establish a Yj index
as follows:

Yj =
∑n

i=1 FRPij

∑n
i=1 FRPi

x100 (9)

where Yj is the percentage of sugarcane burning in the harvesting season within the scope
of receiving a sugarcane transport quota from a distance not exceeding 120 km from any
of the 22 sugar mills; FRPij is the FRP value of a heat point higher than 10 Mw at any i
point, which is superimposed within a radius of 500 m of any sugarcane plots j; and FRPi
is an FRP value of more than 10 Mw at any point i in the boundary area receiving a cane
transport quota not exceeding 120 km from the sugar mills.
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2.7. Independent Variable Modeling from Spatial Relationship Impact to Sugarcane Burning Area

The independent variable factor analysis was performed because the factors influ-
encing the burning of sugarcane plots in the Northeast are primarily due to the absence
of sugarcane harvesters from neighboring countries, which is an uncontrollable reason
for the appropriateness of the number of sugar mills and the inconsistent numbers for
sugarcane yields.

A preliminary analysis of the sugar factories’ daily outputs and production capacity
cycles revealed that the number of mills was disproportionate to the amount of sugarcane
to be sent into the factories, causing problems in relation to the quotas of sugar mills,
sugarcane outputs, and price interference due to competitors smuggling crops from the
sugarcane plots of farmers supplying rival factories in order to make it possible to buy
sugarcane at a lower price.

The remoteness factors of sugarcane plots that require transportation of their crops
to sugar mills have allowed the burning and preservation of sugarcane for delivery to
distant factories; although sugar quality has decreased, the price of sugarcane has not
dropped much compared to shipping costs. The government plans to expand the number
of sugar mills in the long run to reduce the distances that sugarcane is transported, but as
the number of factories increases, the likelihood of a change in land use from other types
of agriculture to the growing of sugarcane will also increase, which will directly affect the
burning of sugarcane.

Independent variable factors constructed from the spatial correlations for the number
of sugarcane plots, the size of the plantation areas, and the yields of the plots, as well as
the road network, when indexed in the form of independent variables, made it possible
to recognize that the sub-units show different behaviors with respect to the burning of
cane plots. Knowing the factors influencing different incinerations based on sub-area units
makes it possible to define optimal sugar plant positions in terms of plant density per
sugarcane growing area and design quotas based on appropriate service distances. The
implementation of state policy has gradually reduced the practice of burning sugarcane.
The independent variable factor analysis approach is therefore important in order to
determine the influence of burning different sugarcane plots according to the scopes of the
service areas and plan the organization of sugar mills so as to reduce emissions of PM2.5.

Following the GWR model application guidelines provides better-weighted calculation
results than other spatial statistical models and represents a new approach to independent-
variable-factor dataset creation by studying the behavior of sugarcane harvesting prepa-
rations, the road network characteristics used to transport sugarcane compared to the
density of sugarcane plots, and the timely transportation of sugarcane, which is the catalyst
that causes sugarcane burning to reduce harvesting time. Correlating factors with these
factors using mathematical models is considered a new approach in the computational
analysis of spatial statistics, in which each factor is created and calculated appropriately
based on location patterns and spatial distributions. The difficulty and complexity of the
development of mathematical models is related to the testing of the prototype for X1 to X7
in order to determine whether they are really consistent with the data on the burning of
sugarcane plots collected from farmers and sugar mill owners. The model’s prototype of
an independent variable has been tested for being associated with the increased likelihood
of sugarcane burning.

All independent variable factors were calculated within the quota area for each sugar
plant not exceeding 120 km. The data used to create the spatial relationship analysis models
for sugarcane burning include FRP data for 2011 and 2021, data on sugarcane plots and
sugarcane yields per plot for 2011 and 2021, as well as road network data. All the data
were used to simulate relationships with mathematical models and spatial statistics, and
the indices are described below.
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2.7.1. Transport Distances for Sugarcane Plots Index (X1,j)

The cumulative distance index of sugarcane transportation from each plot to the sugar
mill in each service area affects the burning of sugarcane plots because the long-distance
sugarcane transport behavior is mostly for burned sugarcane. Farmers do not have to worry
about the percentage of sugar, since they are compensated for the long transit distance, and
the sugar plant will increase the unit price for sugarcane transported long distances, as
shown in Equation (10).

X1,j = ∑n
i=1∑m

j=1

[
Cij

YEij
x1000

]
(10)

where X1,j is the cost distance (km/tons) to transport sugarcane from every plot i within a
radius of 120 km of any sugar mill quota j; Cij is the cost of transporting sugarcane (km)
from any plot i to the sugar mill at j; YEij is the yield of sugarcane (tons) transported from
any plot i to the sugar mill at j.

2.7.2. Percentage of Sugarcane Plantations in Service Areas
(
X2,j

)
The density of sugarcane plantations is high. Large sugarcane plantation areas that

are adjacent to each other when the harvest period is reached require a lot of labor and
have high costs. Reducing cost is possible by burning; thus, farmers are easily tempted to
burn sugarcane plots, as shown with the creation of an index based on Equation (11).

X2, j =
∑n

i=1 ASij

ASj
x100 (11)

where X2, j is the percentage of sugarcane area (sq. km) in the harvesting season, within
the scope of receiving the sugarcane transport quota not exceeding 120 km from any of the
22 sugar mills; ASij is the area size (sq.km) of any sugarcane plot i within the boundary
area receiving a cane transport quota not exceeding 120 km from a sugar plant j; and ASj is
the area boundary (sq.km) for receipt of a cane transport quota not exceeding 120 km from
any sugar mill j.

2.7.3. FRP Differences (X3,j)

Absolute variances were used in relation to FRP values that occurred in the last 3 years
to test the severity of heat radiation values and so determine whether the burned area is
still the same or whether it has changed, as shown in Equation (12).

X3,j =
∣∣∣FRPi(2021) − FRPi(2011)

∣∣∣ (12)

where X3,j is the absolute FRP difference between 2021 and 2011; FRPi(2021) is the FRP
value of a heat point higher than 10 Mw at any point i in 2021; and FRPi(2011) is the FRP
value of a heat point higher than 10 Mw at any point i in 2011.

2.7.4. Density of Sugarcane Yield (X4,j)

The density of sugarcane yields in many areas does not always have a linear rela-
tionship with the size of the area, because in each area the sugarcane planting areas are
different. Areas with larger plots may yield less sugarcane than those with smaller plots, so
high-yield sugarcane plots are more likely to be converted into harvest yields; thus, this
variable must be considered to test the relationship with FRP using an index based on
Equation (13).

X4,j =
∑n

i=1 YEij

ASj
x100 (13)

where X4,j is the percentage of cane yield per quota area size, in which j is any part of YEij,
and ASij is as described for the equation above.
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2.7.5. Spatial Autocorrelation of Population Density (X5,j)

The adhesion characteristics of population density can be analyzed according to the
characteristics of the labor shortages in the service areas of sugar mills. The densities of
large and close populations are mainly distributed in clusters, while, when the density is
unevenly distributed in all areas, it is randomly dispersed; otherwise, it is displayed as
dispersed. An index showing the adhesion of population density may be related to the
burning of sugarcane plots or may be irrelevant, but this index was tested for correlation
values before being used in the GWR model, as shown in Equations (14) and (15).

X5,j = Function
(

Mj(Pi)
)

(14)

Pi = (Pi, 2021) (15)

where X5,j is the spatial autocorrelation of the population density (persons/1 km2) living
within any j-rated sugarcane quota area; Mj(Pi) is the spatial correlation of the popu-
lation density (persons/1 km2) living within any j-rated cane quota area calculated on
the basis of Moran’s I index; Pi, 2021 is the population density in 2021 in any grid i; and
Pi, 2011 is the population density in 2011 in any grid i. Moran’s I index is calculated using
Equation (16) [76,77].

Mj =
n
So

∑n
i=1 ∑n

j=1 ZiZjWij

∑n
i=1 Z2

i
(16)

In Equation (17), zi is the standard deviation of feature i from the mean (xi- x) of the
location of the two features i and j; n is the total number of features; and S0 is the sum of
the weights of the features, as follows:

So = ∑n
i=1∑n

j=1wij (17)

The z-score can be calculated according to Equation (18). V[I] is the variance.

zi =
I + 1

n−1√
V[I]

(18)

2.7.6. Spatial Autocorrelation of Sugarcane Area (X6,j)

The adhesion characteristics of sugarcane plots were determined to test whether the
similarity of sugarcane plantations had a positive or negative effect on the index, but if this
index is tested in relation to correlation with FRP, it will not be used to create GWR models
in combination with other variables, as shown in Equations (19) and (20).

X6,j = Function
(

Mj
(

ASij
))

(19)

ASij =
∑n

i=1 ASij

ASj
(20)

where X6,j = Mj
(

ASij
)

is the spatial autocorrelation of the proportion of sugarcane area
(sq. km) in the harvesting season, within the scope of the received sugarcane transport
quota not exceeding 120 km from any of the 22 sugar mills per the area boundary (sq.km),
obtaining a cane transport quota not exceeding 120 km from any sugar mill j. The ASij and
ASj index values are described in Equation (11), above.
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2.7.7. Prevalence of Road Networks (X7,j)

The index used to calculate road ranges is even more valuable, making it easier to
assess the transportation of sugarcane when it is transported over long distances in the
service areas, the index values being as described in Equation (21).

X7,j = ∑n
i=1Li

[
Nl

ASj
xPj

]
(21)

where X7,j is the prevalence and the length index of roads in the sugarcane quota area of
any sugar plant j; Li is the length of any link i in the sugarcane quota area of any sugar
plant j; Nl is the number of all road links in the sugarcane quota area of any sugar plant j;
and Pj is the perimeter of the quota area of any sugar plant j.

2.8. The Heat Map Simulation of Burned Sugarcane Plots in 2031 Using the Artificial-Neural-
Network-Based Cellular Automaton (ANN-CA)

After determining the relationships between FRP and independent variable factors
that influence the burning of sugarcane plots from the GWR model, the effects of the
relationships were further developed in the simulation of changes in the FRP area in
2031. The preparation of the 2011 and 2021 sugarcane plot area data overlaid incineration
information with an FRP data layer to produce a joint FRP and land-use/land-cover (FRP-
LULC) data layer for 2011 and 2021 to be imported into the (ANN-CA) models for the
simulation of cane plot burning areas in 2031.

The simulations for FRP-LULC change and prediction were conducted using the ANN-
CA model. The ANN was used to determine the transition probability of LULC using
multiple output neurons for the simulation of multiple LULC changes within the structure
of the ANN-CA presented in Figure 9. The CA was used to model the LULC changes by
applying the transition probabilities from the ANN learning process. The overall analytic
procedure is described in the following steps (shown in Figure 9). QGIS (version 2.18.15)
and its MOLUSE module were utilized for the ANN-CA modeling [93].

Step 1: The first step is to define the inputs to the neural network for the simulation.
The simulation is cell-based (pixel-based), and each cell has a set of n attributes (spatial
variables) as the inputs to the neural network. The spatial variables can be represented by
Equation (22).

X = [x1, x2, x3, . . . xn]
T (22)

where xi is the i-th attribute and T is the transposition.
The initial (2011) and final (2021) FRP-LULC maps, as well as the four criteria from

the eight exploratory maps, are loaded as input data. The four criteria from the exploratory
maps (the transport distances for sugarcane plots index (X1,j) and the percentage of sug-
arcane plantations in service areas (X2,j), along with the negative coefficients of FRP dif-
ferences (X3,j) and density of sugarcane yield (X4,j)), for each cell, it is used for cell-by-cell
modeling and simulation of FRP-LULC changes, along with independent variable datasets
selected from GWR (30 s arc) in raster form.

Step 2: The correlation between each spatial variable is evaluated by comparing two-
way raster, selecting the first raster from one variable and the second raster from another,
and repeating it with every factor pair. Then the LULC space and changes for each category
are calculated between the initial period (2011) and the final (2021).

Step 3: At this stage, the probability of change is simulated by an ANN. The neural
network structure consists of three layers: input layer, hide, and output. Each spatial
variable involves neurons in the input layer after scaling within the range of [0, 1], so that all
seven neurons corresponding to the seven characteristics (agricultural land, miscellaneous
areas, forest land, urban and built-up land, water bodies, sugarcane, and burned sugarcane
plots) are used in the input layer.
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In the hidden layer, the signals received from the j-th neuron, netj (k, t), from the input
layer for the k-th cell at time t, were calculated using Equation (23).

netj(k, t) = ∑iwi,kx′i(k, t) (23)

where wi,k is the weight between the input and the hidden layers, and x′t(k, t) is the i-th
scaled attribute associated with the i-th neuron in the input layer relative to the k-th cells at t
time n terms of the number of neurons in the hidden layer, it is recommended to use 2n + 1
to guarantee the perfect fit of any continuous operation, and a reduction in the number of
neurons can lead to reduced accuracy. However, based on Wang [91], 2n/3 hidden neurons
can generate results of almost similar accuracy while requiring much less time to train.
Therefore, we used 5 hidden neurons in this study.

The loopback neural network based on the back-propagation learning algorithms was
designed to simulate land use in this study. In each iteration, each neuron in the output
layer creates a probability of transitioning from an existing type to another type of land use.
In this simulation, the LULC change is determined by comparing the probability values
of the change so that the LULC converts from an existing category to the category with
the highest value of the transition probability. If the same type of LULC has the highest
probability of change, the status of the respective cells remains unchanged [90].

Step 4: Once the probability of change is obtained, the modeling of the LULC change
is carried out by the CA simulation. The CA consists of a normal spatial mesh frame of a
cell, in which each cell can have one state, represented by a number [94]. CA considers the
composition of cell relationships around a single cell [95].

CA simulations usually involve multiple iterations to decide whether a cell has
changed. Predefined threshold values should be used to control the rate of change so
that land-use conversions take place step by step.

Step 5: A validation of the LULC simulation using values of the kappa coefficient to
evaluate and compare the real (reference) and predicted (simulated) LULC maps for 2021
is described in Figure 10 and Table 1.

The kappa coefficient is widely used in LULC assessments for accuracy [96] to measure
the true agreement between the observed agreement and chance agreement [97]. The kappa
coefficient is calculated using Equations (24)–(26).

Kappa =
Po − Pe

1− Pe
(24)

where Po is the proportion of observed agreements and Pe is the proportion of agreements
expected by chance.

Po = ∑c
i=1Pij (25)

Pe = ∑c
i=1PiTpTj (26)

where Pij is the i-th and the j-th cell of the contingency table, piT is the sum of all cells in the
i-th row, pTj is the sum of all cells in j-th column, and c is the count of the raster category.

Step 6: After the validation, the simulation for the burned sugarcane plot map for 2031
is computed, assuming the continuation of the current trends and dynamics in the LULC
changes. The same weight values are utilized for the neural network in the simulation of
future LULC changes.
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3. Results and Discussion

The results of the study show the relationships between the dependent variable (Yj)
and the X1 to X7 variables with respect to the data in the map data format, which were
used as attributes to generate indices for display in relation to the service area scopes of
the sugar mills, which were defined as the spatial unit scopes for the GWR model and the
simulations of burned plots along with predictions generated by the ANN-CA model.

3.1. Spatial Distribution of FRP

FRP was estimated by the heat map interpolation method, giving continuous values
close to the spread of smoke generated by the burning of sugarcane plots, as shown in
Figure 11a,b. The areas with FRP values higher than 10 Mw and ranges greater than 10 Mw
are displayed as dense groups in red and yellow, while gray represents FRP values below
10 Mw. The sugarcane plots of the Rayong, Ruamkaset, and Mitrphuwiang sugar mills are
clustered together. Such a distribution of sugarcane plots has expanded to other sugar mill
service areas, as shown in Figure 11b. Dense clusters in central areas are more concentrated
than in 2011. However, FRP values are found in areas outside the service zones of sugar
mills, such as in the lower part of the region, where there are no sugarcane plots in the area
but where it is assumed that there may be cases of burning of other types of agricultural
plots, such as rice fields, and forest burning during droughts or forest fires.
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Figure 11. The heat maps for FRP (Mw) within the service areas of the sugar mills: (a) heat map for
2011; (b) heat map for 2021.

The Y variant has a high value (shown in green in Figure 12a). There is an area that
shows a higher percentage 70–96.75% of burned sugarcane plots than other colored areas
which includes the region’s central and upper sugar mills and some lower parts of the
Khonburi sugar plant. The X1 variant has a high value (shown in green in Figure 12b).
There is an area that shows higher transportation costs than other colored areas in the
Saikaw sugar mill zone, with costs ranging from 194.55 to 316.56 Km/tons. This scope is an
area where sugar mills are located within the boundaries of the same sugarcane industry,
resulting in transportation routes that go beyond the other sugar plantations.
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The X2 variable has a high value (shown in green in Figure 10c), marking an area that
shows a significant proportion of sugarcane plantations relative to the size of the service
area. The index ranged from 22.04 to 65.81. It is mainly the central sugar mill group area
for the region that is shown in the figure, and there is a spatial consistency in terms of both
the planting density and the FRP index value [61]. The X3 variable has a high value (shown
in in green in Figure 12d), marking an area characterized by a very large difference in FRP
values between 2011 and 2021. However, in areas with low index values, this does not
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mean that there is no FRP intensity, but rather that in the areas where the burning patterns
are very different between the two years, there is no difference in the index values [2]. The
X4 variable has a high value (shown in green in e), which is consistent with the X2 index,
because although the size of the area may not be linearly related to the yield of sugarcane
conversion, it is undeniable that sugarcane plots of larger sizes are likely to have higher
outputs than smaller sugarcane plots. The X5 variable has a high value (shown in green in
Figure 12f). High-population-density areas were found around the Saikaw and Kasetphol
sugar mills, these locations being densely populated, but sugarcane plots were also burned
where FRP values were found at severe levels. The X6 variable has a high value (shown
in green in Figure 12g). The areas with the highest sugarcane plots were found around
the Rayong and Khumpawaphee sugar mills, which are located in very suitable areas
for growing sugarcane. The X7 variable is very high in areas where there are not many
sugarcane plots. It is also displayed in the graphs, as shown in Figure 12h. However, the
relationship must be tested to determine the positive or negative relation, and the indices
for all variables are summarized in Figure 13.

FRP values were found to be very high in the areas around the sugar mills; for more
than 11 out of the 22 factories, the FRP percentage was greater than 90 (90.01769–98.75459),
as with Rayong, Konburi, Wangkanai, Khonkaen, Mitrphuwiang, Ruamkaset, Namtarn,
Mitrkalasin, Arawan, Thaiudon, and Kumpawaphee. The medium value range for FRP,
which was approximately 57.30337–87.39701, was found to be associated with five factories,
and there were six factories associated with low FRP ranges from 10.65995 to 36.22341. The
closer the FRP value to 100, the greater the chance of encountering heat release caused by
the burning of sugarcane plots in the radius surrounding the sugar mill, while the lower
the FRP value, the greater the area. Regarding the transport distances for the sugarcane
plots index (X1,j), the X1 index was found to have very high values in the service areas of
the Saikaw, Mitr Amnatcharoen, and Surin sites, with values of 316.5616, 194.3354, and
150.1763, respectively. With respect to the medium range (values greater than 50 and
less than 100), there were 9 factories, and for the index value range below 50, there were
10 factories, for which convertible sugarcane output transported to plants can be analyzed
as an index calculated on the basis of convertible sugarcane output and the distance of the
cane transport to the sugar mills within a radius of 120 km. Observation of low X1 index
values where the burning of sugarcane plots occurs indicates an increased risk of pollution
spreading in a clustered distribution. With observations of X2 indices above 20.95014, it
was recognized that there were four sites with higher numbers of sugarcane plots relative
to other kinds of agricultural land use compared with other service areas. With indices
for X3 under 35, there were four sites with similar FRP differences, indicating burning in
the original neighborhood, while an index greater than 1418.2 was observed for more than
four sites, indicating an increase in sugarcane plots and the burning of sugarcane plots.
Regarding the X4 index, it was found that index values associated with the burning of
sugarcane plots were in the range of 0.02321 to 1.0. The X5–X7 indices revealed similar
trends. Note that the greater the index, the greater the likelihood of increased burning
of sugarcane plots in the service radius, with all three indices being used to describe
the adhesion characteristics of sugarcane plots relative to the densities of road networks.
Sugarcane plots with large clusters are adjacent to each other, and plots such as these are
mostly located near the road networks.
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3.2. Spatial Relationship of Dependent Variables to FRP

Single-variable relational testing imports GWR models one by one. Test results are
shown in Figure 13: (a) Yj with X1; (b) Yj with X1; (c) Yj with X2; (d) Yj with X3; (e) Yj
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with X4; (f) Yj with X5; (g) Yj with X6; and (h) Yj with X7. X1 has a local R2 value from
0.123 to 0.278. The service zone area of most sugar mills has a moderate and significant
FRP compliance value. Single-variable tolerance in relation to FRP showed that more than
10 sugar mill areas had the smallest tolerances at the stand residual (SR) −0.5 to 0.5 level.
X2 had a local R2 value from 0.246 to 0.402. The service zone areas of most sugar mills had
relatively high and significant conformity to FRP. Single-variable tolerance in relation to
FRP showed that more than eight sugar mill areas had the smallest tolerances at the SR
−0.5 to 0.5 level. X3 had a local R2 value from 0.688 to 0.799. The service zone areas of most
sugar mills had very high levels of FRP compliance and this had significant implications
for relationships. Single-variable tolerance in relation to FRP found that more than 10 sugar
mill areas had the smallest tolerances at the SR −0.5 to 0.5 level. X4 had a local R2 value
from 0.245 to 0.401. The service zone areas of most sugar mills had medium-to-high FRP
compliance values and significant correlations. Single-variable tolerance in relation to FRP
showed that more than seven sugar plant areas had the smallest tolerances at the SR −0.5
to 0.5 level. However, testing the GWR model with the X5 to X7 variables showed that
the R2 value was not equal to the test with the X1 to X4 variables. In this study, it was
required that the import of the X1 to X4 independent variable sets be a factor influencing
the percentage of cane plots burned.

3.3. Results of an Optimal GWR Model with Spatial Relationship Variables Associated with
Sugarcane Plot Burning

The best GWR models displayed local R2 values at levels of 0.902 to 0.961 for the
service zones of Khonburi and Saikaw, respectively, as detailed in Figures 14 and 15a,b.
The coefficients of X1 affecting model accuracy ranged from 0.153 to 0.333. The coefficient
of X2 with a greater value of 51.601 to 79.889 was found to be associated with six factories
that showed a greater chance of burning sugarcane plots than other areas. The coefficient
of X3 with a value in the range of −0.02957 to −0.026 contributed to a higher R2 value than
other areas, but it had a significance level that was not much different. The coefficient of
X4, which was very far away from the value 0, affected the accuracy of the GWR model, as
shown from the index values in the range of −0.814 to −1.166. The accuracy of the GWR
model was considered in parallel with SR values, and it was found that the local R2 values
that showed the accuracy of the best models out of all 22 ranged from 0.917 to 0.961, but, in
conjunction with the low SR values that indicated low model tolerances, it was found that
the best models could be screened based on observations of SR (−0.214 to 0.247), which
were made for Thai Uttasahakham, Rayong, Ruamkaset, and Mitrkalasin.
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The GWR model achieved weighted results for all four spatial factors. The weighted
values of the X1 and X2 variables were correlated with a positive percentage for FRP. When
analyzing the actual causes, we found the scopes of the service areas of the sugar plants.
Saikaw had an X1 value that was significantly higher than those for other areas, with
a value of 316.5616 km/tons. Due to the harvesting of sugarcane yields relative to the
length of the road network in the service area, sugarcane was transported from plantations
across distances of more than 100 km to sugar mills. In the cases of Saikaw and Khonburi,
the plants issued rules on sugarcane purchases that benefited farmers who transported
sugarcane long distances, and the linkage factors in the road network in both areas can
be linked to many provinces. As well as the conformity in the effect of the X2 coefficient
on the positive relationship with FRP values, the greater the size of a sugarcane plot area,
the greater the chance of the sugarcane plot being burned. Sugar mills that should have
intensive surveillance include Khonkaen, Ruamkaset, Namtarn, and Mitrphuwiang, with
index values for X2 that are clearly higher than those for other areas: 22.04991, 21.54608,
20.95014, and 17.60033, respectively.

On the other hand, the higher the X3 and X4 variables, the higher the index values and
the lower the chance of burning sugarcane plots. The X3 variable coefficient confirms that
the smaller the index value, the higher the chance of burning and FRP, meaning that most
of the areas that were burned in 2011 and 2021 were areas that had been repeatedly burned.
The lower the yield, the higher the number of sugarcane plots burned for harvest, which
is in line with a report by the OCSB [2], which stated that the zones of service areas for
farmers holding fewer sugarcane plots are often burned by factories farther away at higher
unit prices. The way to reduce the burning of sugarcane plots during the harvest season,
based on the results of the GWR model, is to encourage sugarcane cultivation in areas not
solely devoted to sugarcane. An extension of the time it takes to deliver sugarcane to the
plant could reduce congestion and the rush to transport.
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In addition to the guidelines for managing the problem of sugarcane burning, this
research adds to the discussion of the effects of FRP, which result in PM2.5 spreading in the
service area of each sugar plant, so these spatial factors with coefficients associated with
FRP values can also be used for the analysis of PM2.5 dust situations.

3.4. Results for Sugarcane Plot Predictions of the ANN-CA

A study of the LULC simulation for 2021 led to the results of the simulations of cane ar-
eas burned, along with predictions from the ANN-CA model, taking independent variable
factors into variables that influence the expansion of sugarcane areas, for 2031. Comparing
LULC results, which are the actual burned sugarcane converter and the converter for 2021
from the overlay with a heat map processed with a kernel density function from the FRP
data, as shown in the forecasts in Table 1 and Figure 16a for sugarcane plot predictions
generated by the ANN-CA for 2031 and Figure 16b sugarcane plot predictions for 2031
based on existing plots in 2021, the implementation of the independent factor (the transport
distances for sugarcane plots index (X1,j)) found a kappa statistic of 0.81 and a percentage
of correctness value of 87.64, and when the independent factors were used to predict LULC,
analysis of all four factors (including the percentage of sugarcane plantations in service
areas (X2,j), the FRP differences (X3,j), and the densities of sugarcane yields (X4,j)) on
the basis of which the spatial relationship was tested with the GWR model revealed that
the kappa value was 0.85 and that the percentage of correctness value was 89.61, which
confirmed that it could enhance the LULC simulation with specific land-use types, such as
sugarcane planting areas and burned sugarcane plots. The X3,j and X4,j factors can add
accuracy to the ANN-CA model for better prediction of sugarcane growing areas in areas
of dense sugarcane cultivation with large planting area sizes that yield more sugarcane
than smaller areas, which correspond to the factors. X3,j, which revealed FRP differences in
past years (2011/2021) affected the prediction of the emergence of sugarcane burning in
areas in close proximity to burned areas in future years (2031).

Table 1. Simulation results in terms of the percentages of correctness and kappa coefficients for
explanatory data validation with different combinations of criteria.

No Criteria/Combination Percentage of Correctness Kappa

1 Transport distance for sugarcane plots index (X1,j) 87.64 0.81

2 Transport distance for sugarcane plots index (X1,j) and
percentages of sugarcane plantations in service areas (X2,j)

87.75 0.82

3
Transport distance for sugarcane plots index (X1,j),

percentages of sugarcane plantations in service areas (X2,j),
and FRP differences (X3,j)

88.85 0.84

4
Transport distance for sugarcane plots index (X1,j),

percentages of sugarcane plantations in service areas (X2,j),
FRP differences (X3,j), and density of sugarcane yield (X4,j)

89.61 0.85

An analysis of the likelihood of changes in the land-use type levels is shown as a
transition matrix in Table 2. It was found that the land-use type Agricultural Land (A) was
the most likely to change to Sugar Cane (Sg), with a chance of 0.036, and also a 0.02 chance
of becoming a burned sugarcane area (burned sugarcane plot), indicating that the burning
of sugarcane plots was still practiced in the vicinities of areas in which it had occurred in
the past. In addition, Agricultural Land (A) areas could be changed to other types of land
use based on the relevant probabilities: for Forest Land (F), Miscellaneous Areas (M), Urban
and Built-Up Land (U), and Water Bodies (W), the probabilities were 0.001, 0.015, 0.025, and
0.002, respectively. The likelihood that a sugarcane plantation area (Sg) would become a
sugarcane burning area (Sb) was 0.238, which indicates that there is a likelihood of burning
in an area which is in close proximity to a hot-spot area according to the FRP assessment
for 2011 and which extends along the western part of the northeastern and upper central
areas where the hot spots identified by the FRP assessment for 2021 are located.
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The percentage land-use/land-cover changes between 2011, 2021, and 2031 shown
in Table 3 revealed a percentage increase in sugarcane plantations (Sg) from 2011 to 2021
of 1.19, and the 2031 sugarcane plantation forecasts, compared with the figures for 2021
and 2011, showed percentage increases of 1.608 and 1.742. Burned sugarcane plots (Sb)
have also increased due to the increase in sugarcane plantations (Sg). There is a spatial
similarity that is easily linked along the road network that is accessible from the main road,
with most of the sugarcane burning areas located in sugarcane plantation areas with larger
plot yield sizes. In 2031, lands classed as miscellaneous (M) are likely to be transformed
into sugarcane plantations and burned areas, according to the probability values presented
in Table 2, as confirmed by an increase in the percentage of areas that came second after
(Sg) sugarcane plantation areas.

A map of the heating point and distribution of the cane burning area in 2031 is shown
in Figure 17, in which yellow coloring (dense) shows that the heating of the area due to
burning is higher than in the orange and red (sparse) boundary areas. The raster image
was created by translating the projected burned sugarcane plots from the ANN-CA model
into density per unit areas of 1 Sq.km. To create a heat map, the continuity of the PM2.5
distribution can be analyzed according to the spread characteristics of the heat island group
that spreads in the central region. The upper and western parts of the Northeast are no
more than 50 km from the sugar factory locations, the heating area due to the burning is
denser than the distant and sparse area over 120 km away, and the predictions of future
cane burning areas are better analyzed with respect to the in-depth causes of the burning
that causes PM2.5.
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Table 2. Transition matrix of the LULC classification from 2011 to 2021 showing the changes in LULC
for each classification. The values in the table vary from 0 to 1, with higher values indicating larger
changes, except for the diagonal cells with high values, which depict no changes, remaining in the
same category. The ANN-CA model added a forecast of burned sugarcane areas to the table to reveal
changes with respect to other classes.

Classification

2021 Sum

Agricultural
Land (A)

Forest
Land
(F)

Miscella-
neous
Areas (M)

Urban and
Built-Up
Land (U)

Water
Bodies
(W)

Sugar
Cane Plots
(Sg)

Sugarcane
Plots
Burned
(Sb)

Agricultural land
(A) 0.901 0.001 0.015 0.025 0.002 0.036 0.02 1
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Table 2. Cont.

Classification

2021 Sum

Agricultural
Land (A)

Forest
Land
(F)

Miscella-
neous
Areas (M)

Urban and
Built-Up
Land (U)

Water
Bodies
(W)

Sugar
Cane Plots
(Sg)

Sugarcane
Plots
Burned
(Sb)

2011

Forest land
(F) 0.051 0.903 0.005 0 0 0.018 0.023 1

Miscellaneous areas (M) 0.002 0.001 0.812 0.122 0.041 0.015 0.007 1
Urban and built-up land (U) 0 0 0.007 0.995 0.002 0 0 1
Water bodies (W) 0.085 0.002 0.034 0.042 0.824 0.005 0.008 1
Sugarcane plots (Sg) 0.005 0.001 0.002 0.001 0.001 0.752 0.238 1
Sugarcane plots burned (Sb) 0.015 0.001 0.001 0 0 0.135 0.848 1

Sum 1.058 0.908 0.875 1.185 0.870 0.961 1.143 7.0

Table 3. Percentages for land-use/land-cover changes. A positive value indicates an increase in the
classification, whereas negative values indicate decreases in corresponding classifications.

Classifications LULC Changes (%)

2031–2021 2031–2011 2021–2011

Agricultural land (A) −2.564 −3.458 −1.512
Forest land (F) −0.972 −1.268 −1.112
Miscellaneous areas (M) 0.835 1.535 1.428
Urban and built-up land (U) 0.813 1.452 0.325
Water bodies (W) −0.876 −0.945 −0.683
Sugarcane plots (Sg) 1.608 1.742 1.190
Sugarcane plots burned (Sb) 1.156 0.942 0.364

3.5. Sugarcane Burning Causes High FRP and PM2.5 Levels

The FRP index contributes to higher PM2.5 consistency [95,97]. Statistical mathemat-
ical modeling guidelines can contribute to the management of PM2.5 dust derived from
sugarcane plots. The future application of the GWR and ANN-CA model to future PM2.5
values in the service areas of sugar mills could enable the determination of cane transport
quotas according to the spatial characteristics of independent variables for use in tracking
FRP and PM2.5 values. Hot spots created by the burning of sugarcane that occur in adjacent
plots of land might be a result of the same team of farmers operating on plots that receive
a specific quota from a sugar factory. The cultivation pattern is similar in these areas, as
burning the fields is cheaper than machine harvesting, even though it reduces the sugar’s
quality. Farmers who burn their farms in this way grow a large amount of sugarcane in
many plots. The harvesting is also carried out around the same time, so the hot spots occur
for more than eight to ten days in a month. Analyzing the spatial relationships between
hot spots created by the burning of sugarcane farms and the intensities of FRP related to
PM2.5 concentration at the air-quality monitoring station in Khon Kaen’s Muang District
shows that eight hot spots with above-standard AQI levels occurred in March 2019 [98].
This was matched with sugarcane farm location information to calculate the sugarcane
burning areas against the levels of FRP and PM2.5.

The larger the area of sugarcane burning, the more intense the PM2.5 concentrations
become. This relationship can vary depending on the distance between sugarcane farms
and the location of the air-quality monitoring station. It can be said that other factors
influence the flow of dust particles to urban and rural areas and that the extent of the
spread cannot be clearly determined from the information provided by satellite images and
field studies.

However, there is enough information to identify a clear tendency of a rising intensity
of FRP and PM2.5 concentrations around the Saikaw and Kasetphol sugar mills, even
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though there are no air-quality monitoring stations in the areas that can provide precise air
quality results.

The intensity of PM2.5 concentrations caused by sugarcane burning can have public
health effects in areas within 80–100 km from the burning [99–101], depending on the
strength, speed, and direction of wind. When dust particles are carried away from the
source area, their concentration dissipates. However, when sugarcane farms that practice
burning are located close to one another and in clusters, dust particle concentrations will be
intensified. Air pollution crises last longer in the Northeast than in other areas of Thailand
where sugarcane is cultivated due to the higher number of farms, the geological structures,
and the proximity of neighboring countries that also practice agricultural burning.

3.6. How to Respond to Air Pollution Caused by the Sugarcane Industry in the Northeast

In order to monitor and evaluate the concentration of PM2.5 dust in areas where
there are no air-quality monitoring stations according to the standards of the department
of pollution control, such as for the Saikaw sugar mill and nearby areas where there are
sources of air pollution [19,102], it might be possible to use mathematical models to calculate
amounts of PM2.5 from amounts of PM10 [103] or use satellite-generated photographic and
meteorological models to calculate PM2.5 levels.

In order to assess the levels of PM2.5 air pollution in areas that have no air-quality
monitoring stations, such as Nong Bua Lamphue or other nearby provinces, it is possible
to use mathematical models to calculate PM2.5 levels from PM10 measurement results from
mobile monitoring stations [84]. Satellite images and meteorological images can also be
used to calculate PM2.5 levels. The areas where PM2.5 levels can be calculated should base
their air quality warnings on these data.

In 2019, the Department of Pollution Control began using PM2.5 results to calculate
AQI levels, these being important indicators of air quality. Countries worldwide use the
system to inform the public of the current air quality and also predict the development of
changes in air quality [80].

Some examples of measures that could be taken include the issuing of a bill to regulate
agricultural burning, monitoring of sugarcane farms using geomatics data, the creation of a
tracking system for farmers and sugarcane quotas using information technology systems,
and the limiting of sugar cane transportation to 120 km distances.

Control policies might not be totally effective when implemented in an area, but they
represent a first step in making farmers and stakeholders realize the severity and danger of
PM2.5 dust particles—the same crisis occurring every year when sugar cane is supplied to
the factories.

Farmers who burn their crops might not realize the dangers and the effects that do not
directly affect them at the time, but the spread of dust particles creates problems for people
further afield. As long as no initiatives for change are implemented by stakeholders in all
sectors, the crisis will continue.

4. Conclusions

The symmetry principle used in the standardization of independent variable data can
screen for independent variable factors and enable GWR modeling to actually select a set
of variables that are associated with cane burning. The study has confirmed that the GWR
model can analyze independent spatial invariables associated with sugarcane burning.
When observing local R2 and standard residual (SR) index values, the area where the model
represents these index values corresponds to the actual data of the OCSB [2]. The hallmark
of the GWR model is that the analysis results create relationship models for all spatial units
so that they can be used to analyze relationships more flexibly than other models. However,
the main principle in using the GWR model to analyze the spatial relationship of cane plot
sintering is that there should not be excessively autonomous variables, as this will affect
weighted estimates and unnecessary model tolerances from variables that are hypothesized
to be associated with cane plot sintering. Selecting a proper factor in the area plays an
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important role in increasing the accuracy of the model, but in reality, details of the causes of
sugarcane burning are rarely given, as this may affect the registration of farmers with sugar
mills. The approach to the application of the GWR model in conjunction with the ANN-CA
symmetric predictive modeling approach makes it possible to predict the cane burning
area in future years with the probability of seeing the trend of area fragmentation, and
when comparing the results of the forecast with historical land use data, it can be confirmed
that the ANN-CA model, if used with the GWR model, selects factors that correlate to
the variables accordingly, increases predictive accuracy. However, the application of the
model of a set of independent variables in other areas is essential to know the patterns of
sugarcane harvesting of a particular area in order to be able to select the factors that can
be applied in all areas, namely distance to transport sugarcane plots index, Percentage of
sugarcane plantations in service areas, FRP differences and density of sugarcane yield, and
researchers can standardize them with this approach of symmetry.

In future research, real cane plot sintering areas will be examined in some accessible
areas in order to analyze the correlation of actual local FRP values to those obtained from
satellites and to what level of consistency, as well as a spatial correlation analysis of values.
The application guidelines for models in SR low-value service areas will allow them to
know the weight value of each factor affecting the acceleration of sugarcane burning, and
related agencies such as OCSB will be able to determine the sugarcane harvesting calendar.
Designing the sequence of road networks that need to transport sugarcane. Determination
of the right of transportation and compensation for agriculture harvested without burning
sugarcane in further advanced research, spatial monitoring of cane conversion burning
should be increased compared to satellite imagery data, but monitoring the concentration
of PM2.5 when comparing the percentage of sugarcane plot burning in service zones is also
a difficult approach to monitoring.

Author Contributions: Conceptualization, P.L. and T.U.; Formal analysis, P.L. and B.P.; Investigation,
P.L.; Methodology, P.L.; Project administration, P.L. and T.U.; Writing—original draft preparation,
P.L., T.U. and B.P.; Writing—review and editing, P.L., T.U. and B.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research project was financially supported by Mahasarakham University funding
number: 6308045; the Geoinformatics Research Unit for Spatial Management, Faculty of Informatics,
Mahasarakham University; the Digital Innovation Research Cluster for Integrated Disaster Manage-
ment in the Watershed, Mahasarakham University; and the Research Unit of the Geo-Informatics
for Local Development and Climate Changes, Mitigation and Adaptation Research Unit (CMARE),
Mahasarakham University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Molusce plugin in QGIS is freeware. The data are available upon
request. The copyright of ArcGIS pro 2.9 is Subscription ID: 6875220XXX, Customer number: 389XXX,
Customer Name: Mahasarakham University.

Acknowledgments: Thanks to the anonymous reviewers for their valuable feedback on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Food and Agriculture Organization (FAO). FAOSTAT Agricultural Database-Crops, 2020. Available online: https://www.fao.org/

faostat/en/#data/RL (accessed on 1 September 2021).
2. Office of Cane and Sugar Board (OCSB). Report of the Comparison of Sugarcane and Sugar Production Efficiency of Sugar

Factories in Thailand in the Production Year 2018/19. 2020. Available online: http://www.sugarzone.in.th/ (accessed on 12
January 2022).

3. South African Sugarcane Research Institute. Guidelines for Burning Sugarcane. 2013. Available online: https://sasri.org.za/wp-
content/uploads/Information_Sheets/IS_4.8-Guidelines-for-burning-sugarcane.pdf (accessed on 15 August 2022).

https://www.fao.org/faostat/en/#data/RL
https://www.fao.org/faostat/en/#data/RL
http://www.sugarzone.in.th/
https://sasri.org.za/wp-content/uploads/Information_Sheets/IS_4.8-Guidelines-for-burning-sugarcane.pdf
https://sasri.org.za/wp-content/uploads/Information_Sheets/IS_4.8-Guidelines-for-burning-sugarcane.pdf


Symmetry 2022, 14, 1989 34 of 37

4. Artaxo, P.; Oyola, P.; Martinez, R. Aerosol Composition and Source Apportionment in Santiago de Chile. Nucl. Instruments
Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 150, 409–416. [CrossRef]

5. Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles.
Science 1990, 250, 1669–1678. [CrossRef] [PubMed]

6. Andreae, M.O.; Artaxo, P.; Fischer, H.; Freitas, S.R.; Grégoire, J.M.; Hansel, A.; Hoor, P.; Kormann, R.; Krejci, R.; Lange, L.; et al.
Transport of Biomass Burning Smoke to the Upper Troposphere by Deep Convection in the Equatorial Region. Geophys. Res. Lett.
2001, 28, 951–954. [CrossRef]

7. Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A Technology-Based Global Inventory of Black and
Organic Carbon Emissions from Combustion. J. Geophys. Res. Atmos. 2004, 109, 1–43. [CrossRef]

8. Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of Global Terrestrial Isoprene Emissions Using
MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [CrossRef]

9. Sudo, K.; Akimoto, H. Global Source Attribution of Tropospheric Ozone: Long-Range Transport from Various Source Regions. J.
Geophys. Res. Atmos. 2007, 112, 1–21. [CrossRef]

10. Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. ScholarWorks at
University of Montana Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem.
Phys. 2011, 11, 4039–4072. [CrossRef]

11. França, D.; Longo, K.; Rudorff, B.; Aguiar, D.; Freitas, S.; Stockler, R.; Pereira, G. Pre-Harvest Sugarcane Burning Emission
Inventories Based on Remote Sensing Data in the State of São Paulo, Brazil. Atmos. Environ. 2014, 99, 446–456. [CrossRef]

12. Sornpoon, W.; Bonnet, S.; Kasemsap, P.; Prasertsak, P.; Garivait, S. Estimation of Emissions from Sugarcane Field Burning in
Thailand Using Bottom-up Country-Specific Activity Data. Atmosphere 2014, 5, 669–685. [CrossRef]

13. Kim Oanh, N.T.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual Emissions of Air Toxics Emitted from
Crop Residue Open Burning in Southeast Asia over the Period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [CrossRef]

14. Kanabkaew, T.; Kim Oanh, N.T. Development of Spatial and Temporal Emission Inventory for Crop Residue Field Burning.
Environ. Model. Assess. 2011, 16, 453–464. [CrossRef]

15. Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M. Emission Inventory of Carbonaceous Pollutants from Biomass
Burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [CrossRef]

16. Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A Comprehensive Biomass Burning Emission Inventory
with High Spatial and Temporal Resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [CrossRef]

17. Zhang, X.; Lu, Y.; Wang, Q.; Qian, X. A High-Resolution Inventory of Air Pollutant Emissions from Crop Residue Burning in
China. Atmos. Environ. 2019, 213, 207–214. [CrossRef]

18. Yokelson, R.J.; Christian, T.J.; Karl, T.G.; Guenther, A. The Tropical Forest and Fire Emissions Experiment: Laboratory Fire
Measurements and Synthesis of Campaign Data. Atmos. Chem. Phys. 2008, 8, 3509–3527. [CrossRef]

19. UNCC. COP 27-UN Climate Change Conference: 2022. Available online: https://unfoundation.org/blog/post/intergovernmental-
panel-climate-change-30-years-informing-global-climate-action/?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0tbEnQGUmOYXG0
pfT10doW_0UfJfL5LTY8fB4s3tcU5Nhhv5JWTYwaAjwTEALw_wcB (accessed on 18 August 2022).

20. Junpen, A.; Pansuk, J.; Garivait, S. Estimation of Reduced Air Emissions as a Result of the Implementation of the Measure to
Reduce Burned Sugarcane in Thailand. Atmosphere 2020, 11, 366. [CrossRef]

21. Kaleri, A.H.; Dai, H.F.; Song, X.Q.; Mehmood, A.; Nawaz, S.A.; Kaleri, G.S.; Nizamani, M.M.; Khokhar, A.A.; Bhatti, M.A.; Kaleri,
A.R. In-Depth Chemical Analysis of Particulate Matter Emitted by Agarwood: Study of Environmental Impact. Polish J. Environ.
Stud. 2022, 31, 111–119. [CrossRef]

22. Xie, Z.; Li, Y.; Zhao, R. What Causes PM2.5 Pollution in China? An Empirical Study from the Perspective of Social and Economic
Factors. Polish J. Environ. Stud. 2022, 31, 357–365. [CrossRef]

23. Wang, M.; Cao, J.; Gui, C.; Xu, Z.; Song, D. The Characteristics of Spatiotemporal Distribution of PM2.5 in Henan Province, China.
Pol. J. Environ. Stud. 2017, 26, 2785–2791. [CrossRef]

24. Zhang, X.; Fan, Y.; Wei, S.; Wang, H.; Zhang, J. Spatiotemporal Distribution of PM2.5 and Its Correlation with Other Air Pollutants
in Winter During 2016~2018 in Xi’an, China. Pol. J. Environ. Stud. 2021, 30, 1457–1464. [CrossRef]

25. Tabibzadeh, S.A.; Hosseini, S.A.; Mohammadi, P. Quantification of Mortality Associated with Particulate Matter Using Air Q
Model in Ambient Air in Shiraz, Iran. Pol. J. Environ. Stud. 2022, 31, 551–559. [CrossRef]

26. Hao, S.; Fu, Y.; Zhang, J.; Zou, Y.; Wei, J.; Zheng, H. Modeling and Evaluating Spatial Variation of Pollution Characteristics in the
Nyang River. Pol. J. Environ. Stud. 2022, 31, 75–83. [CrossRef]

27. Han, Y.; Kou, P.; Jiao, Y. How Does Public Participation in Environmental Protection Affect Air Pollution in China? A Perspective
of Local Government Intervention. Pol. J. Environ. Stud. 2022, 31, 1095–1107. [CrossRef]

28. Han, F.; Li, J. Environmental Protection Tax Effect on Reducing PM2.5 Pollution in China and Its Influencing Factors. Pol. J.
Environ. Stud. 2021, 30, 119–130. [CrossRef]

29. Ni, P.; Zhang, Z.; Xu, H.; Zhang, X. Emission Characteristics of Formaldehyde and Particulate Matter in Side-Stream Smoke
Emitted from Cigarettes in an Environmental Chamber. Pol. J. Environ. Stud. 2022, 31, 1247–1256. [CrossRef]

30. Lin, S.; Wang, J. Driving Factors of Carbon Emissions in China’ s Logistics Industry. Pol. J. Environ. Stud. 2022, 31, 163–177.
[CrossRef]

http://doi.org/10.1016/S0168-583X(98)01078-7
http://doi.org/10.1126/science.250.4988.1669
http://www.ncbi.nlm.nih.gov/pubmed/17734705
http://doi.org/10.1029/2000GL012391
http://doi.org/10.1029/2003JD003697
http://doi.org/10.5194/acp-6-3181-2006
http://doi.org/10.1029/2006JD007992
http://doi.org/10.5194/acp-11-4039-2011
http://doi.org/10.1016/j.atmosenv.2014.10.010
http://doi.org/10.3390/atmos5030669
http://doi.org/10.1016/j.atmosenv.2018.05.061
http://doi.org/10.1007/s10666-010-9244-0
http://doi.org/10.1016/j.atmosenv.2012.05.055
http://doi.org/10.5194/acp-17-2839-2017
http://doi.org/10.1016/j.atmosenv.2019.06.009
http://doi.org/10.5194/acp-8-3509-2008
https://unfoundation.org/blog/post/intergovernmental-panel-climate-change-30-years-informing-global-climate-action/?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0tbEnQGUmOYXG0pfT10doW_0UfJfL5LTY8fB4s3tcU5Nhhv5JWTYwaAjwTEALw_wcB
https://unfoundation.org/blog/post/intergovernmental-panel-climate-change-30-years-informing-global-climate-action/?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0tbEnQGUmOYXG0pfT10doW_0UfJfL5LTY8fB4s3tcU5Nhhv5JWTYwaAjwTEALw_wcB
https://unfoundation.org/blog/post/intergovernmental-panel-climate-change-30-years-informing-global-climate-action/?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0tbEnQGUmOYXG0pfT10doW_0UfJfL5LTY8fB4s3tcU5Nhhv5JWTYwaAjwTEALw_wcB
http://doi.org/10.3390/atmos11040366
http://doi.org/10.15244/pjoes/138207
http://doi.org/10.15244/pjoes/137375
http://doi.org/10.15244/pjoes/70631
http://doi.org/10.15244/pjoes/124755
http://doi.org/10.15244/pjoes/139328
http://doi.org/10.15244/pjoes/139307
http://doi.org/10.15244/pjoes/141811
http://doi.org/10.15244/pjoes/122228
http://doi.org/10.15244/pjoes/141804
http://doi.org/10.15244/pjoes/139304


Symmetry 2022, 14, 1989 35 of 37

31. Hermansyah; Cahyadi, H.; Fatma; Miksusanti; Kasmiarti, G.; Panagan, A.T. Delignification of Lignocellulosic Biomass Sugarcane
Bagasse by Using Ozone as Initial Step to Produce Bioethanol. Pol. J. Environ. Stud. 2021, 30, 4405–4411. [CrossRef]

32. Li, J.; Zhang, K.; Zhang, X.; Lv, W.; Gou, Y.; Zhi, M.; Li, J. Analysis on the Influence and Cause of a Heavy Pollution Process on Air
Quality in Baoding during COVID-19. Pol. J. Environ. Stud. 2022, 31, 735–747. [CrossRef]

33. Guo, B.; Wang, X.; Zhang, D.; Pei, L.; Zhang, D.; Wang, X. A Land Use Regression Application into Simulating Spatial Distribution
Characteristics of Particulate Matter (PM2.5) Concentration in City of Xi’an, China. Pol. J. Environ. Stud. 2020, 29, 4065–4076.
[CrossRef]

34. Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The
MODIS Fire Products. Remote Sens. Environ. 2002, 83, 244–262. [CrossRef]

35. Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens.
Environ. 2016, 178, 31–41. [CrossRef]

36. Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.;
van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires
(1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [CrossRef]

37. Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie,
M.; et al. Biomass Burning Emissions Estimated with a Global Fire Assimilation System Based on Observed Fire Radiative Power.
Biogeosciences 2012, 9, 527–554. [CrossRef]

38. Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR
(FINN): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geosci. Model Dev. 2011, 4, 625–641.
[CrossRef]

39. Mieville, A.; Granier, C.; Liousse, C.; Guillaume, B.; Mouillot, F.; Lamarque, J.-F.; Grégoire, J.-M.; Pétron, G. Emissions of Gases
and Particles from Biomass Burning during the 20th Century Using Satellite Data and an Historical Reconstruction. Atmos.
Environ. 2010, 44, 1469–1477. [CrossRef]

40. Wooster, M.J.; Zhukov, B.; Oertel, D. Fire Radiative Energy for Quantitative Study of Biomass Burning: Derivation from the BIRD
Experimental Satellite and Comparison to MODIS Fire Products. Remote Sens. Environ. 2003, 86, 83–107. [CrossRef]

41. Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science
and Management. Curr. For. Rep. 2020, 6, 81–96. [CrossRef]

42. Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.;
et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens.
Environ. 2019, 225, 45–64. [CrossRef]

43. Li, F.; Zhang, X.; Roy, D.P.; Kondragunta, S. Estimation of Biomass-Burning Emissions by Fusing the Fire Radiative Power
Retrievals from Polar-Orbiting and Geostationary Satellites across the Conterminous United States. Atmos. Environ. 2019, 211,
274–287. [CrossRef]

44. Xu, W.; Wooster, M.J.; Kaneko, T.; He, J.; Zhang, T.; Fisher, D. Major Advances in Geostationary Fire Radiative Power (FRP)
Retrieval over Asia and Australia Stemming from Use of Himarawi-8 AHI. Remote Sens. Environ. 2017, 193, 138–149. [CrossRef]

45. Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of Biomass Combustion Rates and Totals from Fire Radiative
Power Observations: FRP Derivation and Calibration Relationships between Biomass Consumption and Fire Radiative Energy
Release. J. Geophys. Res. Atmos. 2005, 110, 1–24. [CrossRef]

46. Zha, S.; Zhang, S.; Cheng, T.; Chen, J.; Huang, G.; Li, X.; Wang, Q. Agricultural Fires and Their Potential Impacts on Regional Air
Quality over China. Aerosol Air Qual. Res. 2013, 13, 992–1001. [CrossRef]

47. Loboda, T.V.; Csiszar, I.A. Reconstruction of Fire Spread within Wildland Fire Events in Northern Eurasia from the MODIS Active
Fire Product. Glob. Planet. Chang. 2007, 56, 258–273. [CrossRef]

48. Ribeiro, N.; Ruecker, G.; Govender, N.; Macandza, V.; Pais, A.; Machava, D.; Chauque, A.; Lisboa, S.N.; Bandeira, R. The Influence
of Fire Frequency on the Structure and Botanical Composition of Savanna Ecosystems. Ecol. Evol. 2019, 9, 8253–8264. [CrossRef]

49. Vadrevu, K.P.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot Analysis of Vegetation Fires
and Intensity in the Indian Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–238. [CrossRef]

50. Peterson, D.; Hyer, E.; Wang, J. Quantifying the Potential for High-Altitude Smokeinjectio n in the North American Boreal
Forestusing the Standard MODIS FIre Productsand Subpixel-Based Methods. J. Geophys. Res. 2014, 119, 180–198. [CrossRef]

51. Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is Burn Severity Related to Fire
Intensity? Observations from Landscape Scale Remote Sensing. Int. J. Wildl. Fire 2013, 22, 910–918. [CrossRef]

52. Sparks, A.M.; Kolden, C.A.; Smith, A.M.S.; Boschetti, L.; Johnson, D.M.; Cochrane, M.A. Fire Intensity Impacts on Post-Fire
Temperate Coniferous Forest Net Primary Productivity. Biogeosciences 2018, 15, 1173–1183. [CrossRef]

53. Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.; Wang, Y.; Gao, Z. Satellite-Observed Impacts of Wildfires on Regional Atmosphere
Composition and the Shortwave Radiative Forcing: A Multiple Case Study. J. Geophys. Res. Atmos. 2018, 123, 8326–8343.
[CrossRef]

54. Ichoku, C.; Ellison, L. Global Top-down Smoke-Aerosol Emissions Estimation Using Satellite Fire Radiative Power Measurements.
Atmos. Chem. Phys. 2014, 14, 6643–6667. [CrossRef]

55. Niu, Y.; Li, Y.; Yun, H.; Wang, X.; Gong, X.; Duan, Y.; Liu, J. Variations in Diurnal and Seasonal Net Ecosystem Carbon Dioxide
Exchange in a Semiarid Sandy Grassland Ecosystem in China’s Horqin Sandy Land. Biogeosciences 2020, 17, 6309–6326. [CrossRef]

http://doi.org/10.15244/pjoes/132263
http://doi.org/10.15244/pjoes/140560
http://doi.org/10.15244/pjoes/118426
http://doi.org/10.1016/S0034-4257(02)00076-7
http://doi.org/10.1016/j.rse.2016.02.054
http://doi.org/10.5194/acp-10-11707-2010
http://doi.org/10.5194/bg-9-527-2012
http://doi.org/10.5194/gmd-4-625-2011
http://doi.org/10.1016/j.atmosenv.2010.01.011
http://doi.org/10.1016/S0034-4257(03)00070-1
http://doi.org/10.1007/s40725-020-00116-5
http://doi.org/10.1016/j.rse.2019.02.013
http://doi.org/10.1016/j.atmosenv.2019.05.017
http://doi.org/10.1016/j.rse.2017.02.024
http://doi.org/10.1029/2005JD006318
http://doi.org/10.4209/aaqr.2012.10.0277
http://doi.org/10.1016/j.gloplacha.2006.07.015
http://doi.org/10.1002/ece3.5400
http://doi.org/10.1109/JSTARS.2012.2210699
http://doi.org/10.1002/2013JD021067
http://doi.org/10.1071/WF12087
http://doi.org/10.5194/bg-15-1173-2018
http://doi.org/10.1029/2017JD027927
http://doi.org/10.5194/acp-14-6643-2014
http://doi.org/10.5194/bg-17-6309-2020


Symmetry 2022, 14, 1989 36 of 37

56. Ichoku, C.; Kaufman, Y.J. A Method to Derive Smoke Emission Rates from MODIS Fire Radiative Energy Measurements. IEEE
Trans. Geosci. Remote Sens. 2005, 43, 2636–2649. [CrossRef]

57. Mebust, A.K.; Cohen, R.C. Space-Based Observations of Fire NO$_{x}$ Emission Coefficients: A Global Biome-Scale Comparison.
Atmos. Chem. Phys. 2014, 14, 2509–2524. [CrossRef]

58. Mebust, A.K.; Russell, A.R.; Hudman, R.C.; Valin, L.C.; Cohen, R.C. Characterization of Wildfire NOX Emissions Using MODIS
Fire Radiative Power and OMI Tropospheric NO2 Columns. Atmos. Chem. Phys. 2011, 11, 5839–5851. [CrossRef]

59. Schreier, S.F.; Richter, A.; Kaiser, J.W.; Burrows, J.P. The Empirical Relationship between Satellite-Derived Tropospheric NO 2
and Fire Radiative Power and Possible Implications for Fire Emission Rates of NOx. Atmos. Chem. Phys. 2014, 14, 2447–2466.
[CrossRef]

60. Zhang, T.; de Jong, M.; Wooster, M.; Xu, W.; Wang, L. New Eastern China Agricultural Burning Fire Emission Inventory and
Trends Analysis from Combined Geostationary (Himawari-8) and Polar-Orbiting (VIIRS-IM) Fire Radiative Power Products.
Atmos. Chem. Phys. Discuss. 2020, 20, 1–30. [CrossRef]

61. Freeborn, P.H.; Wooster, M.J.; Roy, D.P.; Cochrane, M.A. Quantification of MODIS Fire Radiative Power (FRP) Measurement
Uncertainty for Use in Satellite-Based Active Fire Characterization and Biomass Burning Estimation. Geophys. Res. Lett. 2014, 41,
1988–1994. [CrossRef]

62. Freeborn, P.H.; Cochrane, M.A.; Wooster, M.J. A Decade Long, Multi-Scale Map Comparison of Fire Regime Parameters Derived
from Three Publically Available Satellite-Based Fire Products: A Case Study in the Central African Republic. Remote Sens. 2014, 6,
4061–4089. [CrossRef]

63. Geo-Informatics and Space Technology Development Agency (Public Organization): GISTDA Thailand Fire Monitoring System.
Available online: http://fire.gistda.or.th/download.html (accessed on 17 September 2021).

64. Zheng, L.; Robinson, R.M.; Wang, X. All Accidents Are Not Equal: Using Geographically Weighted Regressions Models to Assess
and Forecast Accident Impacts. In Proceedings of the 3rd International Conference on Road Safety and Simulation, Indianapolis,
IN, USA, 14–16 September 2011; pp. 1–13.

65. Soroori, E.; Mohammadzadeh Moghaddam, A.; Salehi, M. Modeling Spatial Nonstationary and Over dispersed Crash Data:
Development and Comparative Analysis of Global and Geographically Weighted Regression Models Applied to Macrolevel
Injury Crash Data. J. Transp. Saf. Secur. 2021, 13, 1000–1024. [CrossRef]

66. Li, Z.; Wang, W.; Liu, P.; Bigham, J.M.; Ragland, D.R. Using Geographically Weighted Poisson Regression for County-Level Crash
Modeling in California. Saf. Sci. 2013, 58, 89–97. [CrossRef]

67. Li, Z.; Lee, Y.; Lee, S.H.; Valiou, E. Geographically-Weighted Regression Models for Improved Predictability of Urban Intersection
Vehicle Crashes. In Proceedings of the Transportation and Development Institute Congress 2011: Integrated Transportation and
Development for a Better Tomorrow, Chicago, IL, USA, 13–16 March 2011; pp. 1315–1329.

68. Rahman, M.T.; Jamal, A.; Al-Ahmadi, H.M. Examining Hotspots of Traffic Collisions and Their Spatial Relationships with Land
Use: A GIS-Based Geographically Weighted Regression Approach for Dammam, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2020, 9, 540.
[CrossRef]

69. Xuan, W.; Zhang, F.; Zhou, H.; Du, Z.; Liu, R. Improving Geographically Weighted Regression Considering Directional Nonsta-
tionary for Ground-Level PM2.5 Estimation. ISPRS Int. J. Geo-Inf. 2021, 10, 413. [CrossRef]

70. Littidej, P.; Buasri, N. Built-up Growth Impacts on Digital Elevation Model and Flood Risk Susceptibility Prediction in Muaeng
District, Nakhon Ratchasima (Thailand). Water 2019, 11, 1496. [CrossRef]

71. Prasertsri, N.; Littidej, P. Spatial Environmental Modeling for Wildfire Progression Accelerating Extent Analysis Using Geo-
Informatics. Polish J. Environ. Stud. 2020, 29, 3249–3261. [CrossRef]

72. Mansour, S. Spatial Modeling of Residential Crowding in Alexandria Governorate, Egypt: A Geographically Weighted Regression
(GWR) Technique. J. Geogr. Inf. Syst. 2015, 7, 369–383. [CrossRef]

73. Noresah, M.S.; Ruslan, R. Modelling Urban Spatial Structure Using Geographically Weighted Regression. In Proceedings of the
18th World IMACS Congress MODSIM 2009, Cairns, QLD, Australia, 13–17 July 2009; 29; pp. 1950–1956.

74. Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression-Modelling Spatial Non-Stationarity. J. R. Stat.
Soc. Ser. D Stat. 1998, 47, 431–443. [CrossRef]

75. Amini Parsa, V.; Yavari, A.; Nejadi, A. Spatio-Temporal Analysis of Land Use/Land Cover Pattern Changes in Arasbaran
Biosphere Reserve: Iran. Model. Earth Syst. Environ. 2016, 2, 1–13. [CrossRef]

76. Li, X.; Yeh, A.G.-O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr.
Inf. Sci. 2002, 16, 323–343. [CrossRef]

77. Fischer, G.; Sun, L. Model Based Analysis of Future Land-Use Development in China. Agric. Ecosyst. Environ. 2001, 85, 163–176.
[CrossRef]

78. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating
Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

79. Liu, X.; Li, X.; Shi, X.; Wu, S.; Liu, T. Simulating Complex Urban Development Using Kernel-Based Non-Linear Cellular Automata.
Ecol. Modell. 2008, 211, 169–181. [CrossRef]

80. Liping, C.; Yujun, S.; Saeed, S. Monitoring and Predicting Land Use and Land Cover Changes Using Remote Sensing and GIS
Techniques—A Case Study of a Hilly Area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [CrossRef]

http://doi.org/10.1109/TGRS.2005.857328
http://doi.org/10.5194/acp-14-2509-2014
http://doi.org/10.5194/acp-11-5839-2011
http://doi.org/10.5194/acp-14-2447-2014
http://doi.org/10.5194/acp-2019-968
http://doi.org/10.1002/2013GL059086
http://doi.org/10.3390/rs6054061
http://fire.gistda.or.th/download.html
http://doi.org/10.1080/19439962.2020.1712671
http://doi.org/10.1016/j.ssci.2013.04.005
http://doi.org/10.3390/ijgi9090540
http://doi.org/10.3390/ijgi10060413
http://doi.org/10.3390/w11071496
http://doi.org/10.15244/pjoes/115175
http://doi.org/10.4236/jgis.2015.74029
http://doi.org/10.1111/1467-9884.00145
http://doi.org/10.1007/s40808-016-0227-2
http://doi.org/10.1080/13658810210137004
http://doi.org/10.1016/S0167-8809(01)00182-7
http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1016/j.ecolmodel.2007.08.024
http://doi.org/10.1371/journal.pone.0200493


Symmetry 2022, 14, 1989 37 of 37

81. Lubis, J.P.G.; Nakagoshi, N. Land Use and Land Cover Change Detection Using Remote Sensing and Geographic Information
System in Bodri Watershed, Central Java, Indonesia. J. Int. Dev. Coop. 2011, 18, 139–151. [CrossRef]

82. Sulaiman, N.A.F.; Shaharudin, S.M.; Ismail, S.; Zainuddin, N.H.; Tan, M.L.; Abd Jalil, Y. Predictive Modelling of Statistical
Downscaling Based on Hybrid Machine Learning Model for Daily Rainfall in East-Coast Peninsular Malaysia. Symmetry 2022,
14, 927. [CrossRef]

83. Lee, S.; Jeong, T. Forecasting Purpose Data Analysis and Methodology Comparison of Neural Model Perspective. Symmetry 2017,
9, 108. [CrossRef]

84. Pandiyan, V.; Caesarendra, W.; Glowacz, A.; Tjahjowidodo, T. Modelling of Material Removal in Abrasive Belt Grinding Process:
A Regression Approach. Symmetry 2020, 12, 99. [CrossRef]

85. Garud, K.S.; Seo, J.H.; Cho, C.P.; Lee, M.Y. Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modelling to
Predict Thermal Performances of Thermoelectric Generator for Waste Heat Recovery. Symmetry 2020, 12, 259. [CrossRef]

86. Yu, C.; Chen, J. Landslide Susceptibility Mapping Using the Slope Unit for Southeastern Helong City, Jilin Province, China: A
Comparison of ANN and SVM. Symmetry 2020, 12, 1047. [CrossRef]

87. Zhang, H.; Srinivasan, R.; Yang, X. Simulation and Analysis of Indoor Air Quality in Florida Using Time Series Regression (TSR)
and Artificial Neural Networks (ANN) Models. Symmetry 2021, 13, 952. [CrossRef]

88. Aslan, M.F.; Sabanci, K.; Ropelewska, E. A New Approach to COVID-19 Detection: An ANN Proposal Optimized through
Tree-Seed Algorithm. Symmetry 2022, 14, 1310. [CrossRef]

89. Batty, M.; Couclelis, H.; Eichen, M. Urban Systems as Cellular Automata. Environ. Plan. B Plan. Des. 1997, 24, 159–164. [CrossRef]
90. Kok, K.; Winograd, M. Modelling Land-Use Change for Central America, with Special Reference to the Impact of Hurricane

Mitch. Ecol. Modell. 2002, 149, 53–69. [CrossRef]
91. Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at

a 1-Km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059.
[CrossRef]

92. Gorr, W.; Kurland, K. GIS Tutorial for Crime Analysis; Suppl. ArcGIS 10.2; Esri Press: Redlands, CA, USA, 2012; p. 296.
93. Gustafson, E.J.; Shifley, S.R.; Mladenoff, D.J.; Nimerfro, K.K.; He, H.S. Spatial Simulation of Forest Succession and Timber

Harvesting Using LANDIS. Can. J. For. Res. 2000, 30, 32–43. [CrossRef]
94. D’Aquino, P.; August, P.; Balmann, A.; Berger, T.; Bousquet, F.; Brondízio, E.; Brown, D.G.; Couclelis, H.; Deadman, P.; Goodchild,

M.F.; et al. Agent-Based Models of Land-Use and Land-Cover Change—Report and Review of an International Workshop, 4–7 October 2001;
LUCC Report Series No. 6; LUCC: Bloomington, IN, USA, 2002.

95. Omar, N.Q.; Sanusi, S.A.M.; Hussin, W.M.W.; Samat, N.; Mohammed, K.S. Markov-CA Model Using Analytical Hierarchy Process
and Multiregression Technique. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 1–18. [CrossRef]

96. Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int.
J. Geosci. 2017, 8, 611–622. [CrossRef]

97. Sim, J.; Wright, C.C. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Phys. Ther.
2005, 85, 257–268. [CrossRef] [PubMed]

98. Pollution Control Department Thailand’s Air Quality and Situation Reports. Available online: http://air4thai.pcd.go.th/webV2
/index.php (accessed on 17 September 2021).

99. Yao, R.; Li, Z.; Zhang, Y.; Wang, J.; Zhang, S.; Xu, H. Spatiotemporal Evolution of PM2.5 Concentrations and Source Apportionment
in Henan Province, China. Polish J. Environ. Stud. 2021, 30, 4815–4826. [CrossRef]

100. Yang, H.; Guo, Z.; Leng, Q. High-Resolution Population Exposure to PM2.5 in Nanchang Urban Region Using Multi-Source Data.
Pol. J. Environ. Stud. 2021, 30, 4801–4814. [CrossRef]

101. Zhang, X.; Fan, Y.; Yu, W.; Wang, H.; Zhang, X. Variation of Particulate Matter and Its Correlation with Other Air Pollutants in
Xi’an, China. Pol. J. Environ. Stud. 2021, 30, 3357–3364. [CrossRef]

102. Ministry of Energy Thailand Alternative Energy Situation 2019. Available online: https://webkc.dede.go.th/testmax/sites/
default/files/Thailand_Alternative_Energy_Situation_2019.pdf (accessed on 25 March 2022).

103. Littidej, P. Sweetness & Power (10)—Isaan Will Be Choking on Toxic Air Again Soon. Available online: https://theisaanrecord.
co/2019/09/18/sweetness-and-power-part-10/ (accessed on 18 August 2022).

http://doi.org/10.15027/32459
http://doi.org/10.3390/sym14050927
http://doi.org/10.3390/sym9070108
http://doi.org/10.3390/sym12010099
http://doi.org/10.3390/sym12020259
http://doi.org/10.3390/sym12061047
http://doi.org/10.3390/sym13060952
http://doi.org/10.3390/sym14071310
http://doi.org/10.1068/b240159
http://doi.org/10.1016/S0304-3800(01)00514-2
http://doi.org/10.1080/24694452.2017.1303357
http://doi.org/10.1139/x99-188
http://doi.org/10.1088/1755-1315/20/1/012008
http://doi.org/10.4236/ijg.2017.84033
http://doi.org/10.1093/ptj/85.3.257
http://www.ncbi.nlm.nih.gov/pubmed/15733050
http://air4thai.pcd.go.th/webV2/index.php
http://air4thai.pcd.go.th/webV2/index.php
http://doi.org/10.15244/pjoes/132639
http://doi.org/10.15244/pjoes/134297
http://doi.org/10.15244/pjoes/129912
https://webkc.dede.go.th/testmax/sites/default/files/Thailand_Alternative_Energy_Situation_2019.pdf
https://webkc.dede.go.th/testmax/sites/default/files/Thailand_Alternative_Energy_Situation_2019.pdf
https://theisaanrecord.co/2019/09/18/sweetness-and-power-part-10/
https://theisaanrecord.co/2019/09/18/sweetness-and-power-part-10/

	Introduction 
	Materials and Methods 
	Study Area 
	The Expansion of Sugarcane Plots and Sugar Mills 
	Evaluating Emission Factors (EFs) 
	Fire Radiative Power (FRP) Distribution 
	Geographically Weighted Regression (GWR) Model Assessing Influential Environmental Factors in the Burning of Sugarcane Plantations 
	Spatial Unit Design Approach for Sugarcane Burning GWR Modeling 
	Independent Variable Modeling from Spatial Relationship Impact to Sugarcane Burning Area 
	Transport Distances for Sugarcane Plots Index (X1,j ) 
	Percentage of Sugarcane Plantations in Service Areas ( X2,j )  
	FRP Differences (X3,j ) 
	Density of Sugarcane Yield (X4,j ) 
	Spatial Autocorrelation of Population Density (X5,j ) 
	Spatial Autocorrelation of Sugarcane Area (X6,j ) 
	Prevalence of Road Networks (X7,j ) 

	The Heat Map Simulation of Burned Sugarcane Plots in 2031 Using the Artificial-Neural-Network-Based Cellular Automaton (ANN-CA) 

	Results and Discussion 
	Spatial Distribution of FRP 
	Spatial Relationship of Dependent Variables to FRP 
	Results of an Optimal GWR Model with Spatial Relationship Variables Associated with Sugarcane Plot Burning 
	Results for Sugarcane Plot Predictions of the ANN-CA 
	Sugarcane Burning Causes High FRP and PM2.5  Levels 
	How to Respond to Air Pollution Caused by the Sugarcane Industry in the Northeast 

	Conclusions 
	References

