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Abstract: Based on the concept of band topology in phonon dispersion, we designed a topological
phononic crystal in a thin plate for developing an efficient elastic waveguide. Despite that various
topological phononic structures have been actively proposed, a quantitative design strategy of the
phononic band and its robustness assessment in an elastic regime are still missing, hampering the
realization of topological acoustic devices. We adopted a snowflake-like structure for the crystal
unit cell and determined the optimal structure that exhibited the topological phase transition of the
planar phononic crystal by changing the unit cell structure. The bandgap width could be adjusted
by varying the length of the snow-side branch, and a topological phase transition occurred in the
unit cell structure with threefold rotational symmetry. Elastic waveguides based on edge modes
appearing at interfaces between crystals with different band topologies were designed, and their
transmission efficiencies were evaluated numerically and experimentally. The results demonstrate
the robustness of the elastic wave propagation in thin plates. Moreover, we experimentally estimated
the backscattering length, which measures the robustness of the topologically protected propagating
states against structural inhomogeneities. The results quantitatively indicated that degradation of
the immunization against the backscattering occurs predominantly at the corners in the waveguides,
indicating that the edge mode observed is a relatively weak topological state.

Keywords: phononic crystal; topological acoustic; elastic waveguide; backscattering length; lamb wave

1. Introduction

Acoustic waveguides based on phononic crystals [1–10] have been attracting increasing
attention for controlling wave transmission along designed paths at desired operating
frequencies [11–14] using a band-engineering scheme similar to the electronic structure
design in semiconductors. However, the practical application of acoustic waveguides
using phononic crystals has been hindered by inevitable transmission loss owing to the
scattering of sound waves at defects and bending in the waveguide [13,14]. In this study,
we adopt the concept of a topological insulator (TI) for a phononic band design. In recent
years, considerable attention has been paid to topological insulators, materials that are
insulators inside objects but exhibit metallic properties at surfaces [15,16]. The electronic
energy dispersion in the material can be devised to design highly efficient conduction at the
surface/interface based on bulk-edge correspondence [17]. A TI undergoes a topological
transition in the electronic wavefunction via a continuous change in the structure/phase.
Such topological phase transitions can also occur in classical wave propagation modes in
periodic structures [18]. Consequently, the topologically protected edge state that appears
at the interface enables highly robust sound wave control against defects and bending in
the waveguide [18–27].

We have previously studied the valley topological phase transition in two-dimensional
phononic structures with C3v symmetric unit cells [27] embedded in water. Wave prop-
agation in such systems is inherently limited to longitudinal modes. In view of further
applications by implementing functionality in on-chip systems, phononic systems must
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be designed in three-dimensional solid-state media. Recently, studies on such on-chip
phononic topological insulators have been progressing rapidly [28–31]. In this study, a
topological phononic structure in a thin plate and its interface mode (“edge mode”) was
designed to develop an efficient elastic waveguide. The realization of next-generation
mobile communication devices relies on the development of not only high-speed logic
gates but also efficient signal-processing components, such as surface acoustic wave (SAW)
filters. The design strategy based on topological phononics is a promising approach for a
highly efficient SAW device operating at high frequencies. The use of the edge mode, which
is immune to the backscattering and reflection of elastic waves at corners and bending, is
key to such device applications. Although a variety of phononic structures exhibiting a
topologically protected edge mode have been proposed, there are few reports on the quanti-
tative analysis of the robustness of topological edge modes, especially in thin plates. In this
paper, we discuss the relationship between robustness and edge mode characteristics with
the effects of the associated band gaps from the results of the propagation efficiency in topo-
logical acoustic waveguides using finite-element numerical simulations and experimental
measurements of the displacement field distribution in the samples.

2. Design of Valley-Type Topological Elastic Waveguides
2.1. Optimization of Band Structure in Snowflake-like Phononic Crystal

The phononic structure adopted in this study consists of a three-dimensional unit
cell with snowflake-shaped holes in a hexagonal grid. The valley-shaped band structure
can be varied by changing the length of the six legs of the snowflake. Snowflake-like
unit cells have been adopted in a variety of studies on phononic crystals as simple but
highly controllable structural units for designing phonon band structures [32–38]. For
example, D. Hatanaka et al. [37] suggest that a wide range of full bandgap appears around
0.3 GHz by optimizing snowflake-type phononic crystals in a GaAs membrane. Addition-
ally, they fabricated a defect linear waveguide based on the designed phononic crystal and
confirmed the presence or absence of the propagation modes. Furthermore, the phonons
can be highly controllable by coupling them with a resonator adjacent to the waveguide.
Masrura et al. [38] designed a snowflake-type phononic crystal that can control thermal
phonons, which propagate at a much higher frequency than acoustic phonons. In this
study, the authors reported that the size and position of the bandgap could be easily ad-
justed by changing the width of the branches of the snowflake structure. Furthermore, the
transmission in the phononic crystals was indeed small within a wide bandgap frequency,
whereas thermal phonons were conducted only in the frequency range outside the bandgap.
Snowflake-type phononic crystals with high versatility have been actively used to control
phonons in various frequency domains.

As shown in Figure 1a, the hexagonal lattice has dimensions with a lattice constant of
a = 6 mm and a thickness of t = 3.8 mm. The snowflake-like scatterer has six legs with a
width w = 1.1 mm, and the legs with lengths r1 (center-to-red outline) and r2 (center-to-blue
outline) are alternatively arranged. The mirror symmetry of the unit cell can be broken
by changing the difference between r1 and r2 (∆r = r2 − r1) while maintaining the total
length constant. (We chose r1 + r2 = 3.8 mm so that each leg is precisely fabricated without
touching/coalescing with each other.) In our design, the plate was made of polypropylene
(PP), and the mass density, Young’s modulus, and Poisson’s ratio of PP were 900 kg/m3,
1.47 GPa, and 0.4, respectively. Numerical calculations on eigenmode analyses and elastic
wave propagations were performed by solving the linear elastic wave equation for isotropic
materials using the COMSOL Multiphysics software package [39] based on the finite
element method (FEM).
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Figure 1. (a) Snowflake-like unit-cell structure in a phononic crystal and (b) phonon band diagrams 
and eigenmodes at K points for three unit-cell structures with different Δr. 

First, the band structure was optimized by varying Δr. This is a novel choice of pa-
rameter for the structural change in contrast to the previous works that were based on 
structural change by rotation of the holes around the central axis normal to the plate 
[27,31]. A continuous decrease in Δr leads to the gap closing at Δr = 0 mm, forming a Dirac 
point, whereas a further decrease in Δr opens the gap again. Moreover, both K+ and K− 
pseudo-spin modes appear above and below the gap between the K and K′ points in the 
Brillouin zone, respectively. Furthermore, by optimizing the crystal band diagram by var-
ying Δr, the optimal structure with the widest bandgap topological phase transition was 
identified as Δr = ±1.76 mm. Figure 1b shows the band diagram of a phononic structure 
with a snowflake-shaped unit cell, revealing that the bandgap opens at Δr = +1.76 mm. 
Although the two eigenmodes have similar shapes, the vortex directions of the mechanical 
energy flow are opposite. Furthermore, the direction of the vortices changes above and 
below the band at Δr = 0. As this indicates a topological phase transition, valley chiral edge 
states might appear around this frequency [21]. From Figure 1b, the phonon-band topo-
logical phase transition was confirmed to occur in the reciprocal space and could be easily 

Figure 1. (a) Snowflake-like unit-cell structure in a phononic crystal and (b) phonon band diagrams
and eigenmodes at K points for three unit-cell structures with different ∆r.

First, the band structure was optimized by varying ∆r. This is a novel choice of param-
eter for the structural change in contrast to the previous works that were based on structural
change by rotation of the holes around the central axis normal to the plate [27,31]. A contin-
uous decrease in ∆r leads to the gap closing at ∆r = 0 mm, forming a Dirac point, whereas
a further decrease in ∆r opens the gap again. Moreover, both K+ and K− pseudo-spin
modes appear above and below the gap between the K and K′ points in the Brillouin zone,
respectively. Furthermore, by optimizing the crystal band diagram by varying ∆r, the opti-
mal structure with the widest bandgap topological phase transition was identified as
∆r = ±1.76 mm. Figure 1b shows the band diagram of a phononic structure with a
snowflake-shaped unit cell, revealing that the bandgap opens at ∆r = +1.76 mm. Although
the two eigenmodes have similar shapes, the vortex directions of the mechanical energy
flow are opposite. Furthermore, the direction of the vortices changes above and below the
band at ∆r = 0. As this indicates a topological phase transition, valley chiral edge states
might appear around this frequency [21]. From Figure 1b, the phonon-band topological
phase transition was confirmed to occur in the reciprocal space and could be easily con-
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trolled using a single parameter ∆r. In addition, the unit cell structure with an intermediate
value of ∆r (= −0.88 mm) demonstrated a bandgap (Figure 2a,b) ranging from 71.993
to 88.378 kHz. This gap width (16.385 kHz) was approximately 40% narrower than that in
the unit cell with ∆r =±1.76 mm, and the gap width decreased as the value of ∆r decreased.
Furthermore, in supercells formed with intermediate values of ∆r (±0.88 mm), the distance
between the edge and bulk bands decreased as the gap width reduced. Consequently, the
edge and bulk modes coexist at certain frequencies, preventing the efficient propagation of
elastic waves through the edge mode. Therefore, a unit cell with ∆r = +1.76 mm possessing
the wider bandgap is required to design topological waveguides without degradation by a
mixture of edge and bulk modes. As the bandgap increases, however, the Berry phases may
not be well concentrated in the valleys [31,40]. This limits the gap size to an appropriate
value for optimal design.
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Figure 2. (a) Snowflake-like unit-cell structure in an intermediate phononic crystal and (b) its phonon
band diagram.

2.2. Excitation of Topological Edge Mode and Transmittance Analysis

Based on the above analysis, we calculated the phononic band structures and simulated
the elastic wave propagations in a linear waveguide and a Z-shaped waveguide designed
with a valley topological phononic structure. Figure 3 depicts the band diagrams for
supercells of two topological phononic crystals along the kx direction and the out-of-
plane displacement distribution in elastic wave propagation for an incident wave in linear
waveguides. Figure 3a,b shows a band diagram for the supercell with ∆r = +1.76 mm at the
top (designated as “I”) and ∆r = −1.76 mm at the bottom (“II”) and a linear waveguide
designed with an array of the supercell (31(W) × 28(H) unit cells). Similarly, Figure 3c,d
shows the band diagram for the supercell constructed with vertically exchanged unit
cells and a linear waveguide designed with an array of supercells (31 × 28 unit cells). In
Figure 3a, an edge mode, in which elastic waves propagate at the interfaces of the cells
with different ∆r (designated as “I–II”), appears between 85.838 and 86.774 kHz, as shown
by the red lines. Similarly, in Figure 3c (for the interface “II–I”), an edge mode appears
between 81.746 and 87.605 kHz, as indicated by the blue line. The displacement field in
elastic waves with an incident pressure of 1 Pa is shown in Figure 3b,d. The incident
frequencies for these simulations are 86.5 kHz in Figure 3b and 84.2 kHz in Figure 3d. Thus,
the edge state of the topological acoustic was confirmed to be excited at the frequency
estimated from the band diagrams in Figure 3a,c. The transmittances of the waveguides
were measured by using a domain probe with a diameter of 1 mm. It was calculated from
the absolute value of the amplitude of the maximum out-of-plane displacement among
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10 points near the antinode in the wave profile for both the input and output ports. As a
result, the transmittance was as high as 93% for the waveguide in Figure 3b and 92% for
that in Figure 3d. In these simulations, as depicted in Figure 3b,d, the perfect match layer
(PML) algorithm [41] was applied to eliminate reflection by the upper, lower, left, and right
boundaries of the structures.
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with an array (31 columns) of the supercell. (c,d): The same as in (a,b), respectively, but for the
supercell with the II–I interface. (Wave numbers in (a,c) are in unit of π/a).

We further designed and examined a Z-shaped waveguide and its transmission prop-
erties for incident waves. As the interface along the oblique line in the Z shape has the
same type of symmetry as that along the horizontal lines, these waveguides were used
to assess the robustness of wave propagation against backscattering by the corners of the
paths. Figure 4 illustrates the designed waveguides (36 × 31 unit cells) along the interfaces
between a phononic structure with different ∆r, ∆r = +1.76 and−1.76 mm (I–II) in Figure 4a
and inverted interface (II–I) in Figure 4b. The transmittance in these waveguides was
also evaluated in a manner similar to the analysis of linear waveguides. As a result, the
transmittance was as high as 90% in Figure 4a and 89% in Figure 4b. Thus, we confirmed
that highly efficient elastic-wave transmission can be achieved even in a waveguide with
corners, proving that the edge mode designed through the analysis of the topological phase
transition in the phonon band diagram is topologically protected.

To demonstrate that the current numerical design also optimizes robustness, we
performed a transmission analysis of the intermediate parameters ∆r. Figure 5a shows
the supercell band diagram with ∆r = +0.88 mm at the top and ∆r = −0.88 mm (I–II) at
the bottom. Figure 5b shows the transmission analysis results of the Z-shaped waveguide
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excited with the 88.33 kHz edge mode shown in red, which appeared in the supercell
analysis. It can be observed that the displacement near the end of the waveguide is smaller
and blurred owing to the leakage of the wave into the bulk despite the edge mode. This can
be attributed to the coupling of the edge mode with the bulk mode in the band (Figure 5a),
as described in Section 2.1.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. Structures and displacement fields for incident wave at 84.2 kHz in Z-shaped topological 
waveguides designed with (a) I–II and (b) II–I interfaces, respectively, between the unit cells of Δr 
= ±1.76 mm. 

To demonstrate that the current numerical design also optimizes robustness, we per-
formed a transmission analysis of the intermediate parameters Δr. Figure 5a shows the 
supercell band diagram with Δr = +0.88 mm at the top and Δr = −0.88 mm (I–II) at the 
bottom. Figure 5b shows the transmission analysis results of the Z-shaped waveguide ex-
cited with the 88.33 kHz edge mode shown in red, which appeared in the supercell anal-
ysis. It can be observed that the displacement near the end of the waveguide is smaller 
and blurred owing to the leakage of the wave into the bulk despite the edge mode. This 
can be attributed to the coupling of the edge mode with the bulk mode in the band (Figure 
5a), as described in Section 2.1. 

 
Figure 5. (a) Band diagram of the intermediate supercell with the I–II interface and (b) Z-shaped 
waveguide designed with an array of the supercell. (Wave numbers in (a) are in unit of π/a).  

3. Fabrication and Wave-Transmission Measurement of Topological Phononic  
Waveguide in a Thin Plate 
3.1. Fabricated Topological Linear and Z-Shaped Waveguides and Measurement of  
Out-of-Plane Displacement 

Figure 6 shows the experimental setup for the measurement of elastic wave propa-
gation. In the experiment, a continuous wave of 4.7 Vpp (peak-to-peak voltage) obtained 
from a function generator on the transmitting side was amplified to 188 Vpp using a power 
amplifier and converted into an elastic wave through a transducer. The induced elastic 
waves were measured and mapped using a laser-Doppler vibrometer. Unnecessary waves 
due to reflection from the edge of the plate were removed by attaching a sound-absorbing 
material to the sides. Figures 7 and 8 include photographs of waveguide fabricated using 
a 3D printer (Form 3+ manufactured by Formlabs Co.) [42]. For a topological linear wave-
guide with a boundary between two phases (I–II), the displacement was measured at 140 
points (Figure 7a), and for another type of interface (II-I), it was measured at 113 points 

Figure 4. Structures and displacement fields for incident wave at 84.2 kHz in Z-shaped topological
waveguides designed with (a) I–II and (b) II–I interfaces, respectively, between the unit cells of
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Figure 5. (a) Band diagram of the intermediate supercell with the I–II interface and (b) Z-shaped
waveguide designed with an array of the supercell. (Wave numbers in (a) are in unit of π/a).

3. Fabrication and Wave-Transmission Measurement of Topological Phononic
Waveguide in a Thin Plate
3.1. Fabricated Topological Linear and Z-Shaped Waveguides and Measurement of
Out-of-Plane Displacement

Figure 6 shows the experimental setup for the measurement of elastic wave propa-
gation. In the experiment, a continuous wave of 4.7 Vpp (peak-to-peak voltage) obtained
from a function generator on the transmitting side was amplified to 188 Vpp using a power
amplifier and converted into an elastic wave through a transducer. The induced elas-
tic waves were measured and mapped using a laser-Doppler vibrometer. Unnecessary
waves due to reflection from the edge of the plate were removed by attaching a sound-
absorbing material to the sides. Figures 7 and 8 include photographs of waveguide fabri-
cated using a 3D printer (Form 3+ manufactured by Formlabs Co.) [42]. For a topological
linear waveguide with a boundary between two phases (I–II), the displacement was mea-
sured at 140 points (Figure 7a), and for another type of interface (II-I), it was measured at
113 points (Figure 7b). The results are presented in Figure 7c,d. The values on the vertical
axis in Figure 7c,d are the amplitudes of the out-of-plane displacement normalized by the
amplitude at the points near the incident wave. Similar to the numerical simulations in
Figure 3b,d, a large displacement can be observed only along the interfaces.
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Figure 6. Experimental system: The electrical signal output from the function generator is amplified
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manufactured by Polytec GmbH).
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Next, topological Z-shaped waveguides were fabricated in the same manner as the
straight waveguide. The dimensions of the samples were 15 × 11 unit cells. The boundary
between the two phases (I–II) exists in a Z-shaped path, as shown by the boundary between
the differently colored regions in Figure 8a. Similarly, another type of interface (II–I)
was fabricated, as shown in Figure 8b. The displacement at 187 points was measured
in the topological Z-guide with a boundary between the two phases (I–II), and that at
155 points in another type of interface (II–I). Figure 8c,d depicts the spatial distribution
of the displacement. In interface types, a large displacement was observed only along
the interface regions, indicating that highly efficient wave propagation was realized, as
predicted by the numerical simulations shown in Figure 4a,b. These results reveal that
the possible frequency of the edge mode excitation is 86.5 kHz for the I–II interface and
84.2 kHz for the II–I interface. Furthermore, transmittance was calculated based on the
results obtained from the displacements measured using the laser Doppler vibrometer.
Here, transmittance is defined as the ratio of the measured out-of-plane displacement
(absolute values) at the end of the waveguide to that near the point where the incident
wave is emitted.

3.2. Analyses on Transmittance and Backscattering Length

Table 1 summarizes the results of transmittance for each topological elastic waveguide
obtained by experimental measurements and FEM analysis. It can be seen from the table
that the experimentally obtained transmittances of all waveguides were slightly smaller
than those obtained from the numerical results. One of the reasons for this systematic
degradation in the transmittance obtained in the experiment is that the FEM analysis
assumed no material loss owing to the elastic vibration in this frequency range. For
comparison, we confirmed this effect by performing an additional simulation of the edge-
mode propagation in a topological straight waveguide with an isotropic loss of 0.005,
which is the typical value of the material. We found that the transmittance decreased by
approximately 2% owing to this effect. The remaining discrepancy between the experiments
and simulations may be attributed to the unknown frequency dependence of the loss factor,
particularly at high frequencies. We also observed that the transmission of the Z-shaped
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waveguide was approximately 5% lower than that of a straight waveguide. Recently, such
degradation of robustness in the presence of corners and/or structural randomness has
been quantitatively evaluated in terms of the “backscattering length” ξ in valley topological
photonic waveguides [43–45]. The same evaluation is valid in terms of ξ for the valley
topological phononic waveguide. Figure 9a,b shows logarithmic plots of the transmittance
(T) along the paths of the Z-shaped waveguides in the experiment. The points designated
by A, B, C, and D in Figure 9a,b correspond to the points in Figure 8a,b. The negative
inverse of the slope of the graphs defines the backscattering length ξ. The values of ξ
were evaluated for each segment AB and CD to provide approximately 414a and 336a
(a = 3.8 mm is the lattice constant), respectively, at the II–I interface and 437a and 285a,
respectively, at the I–II interface. However, at B and C (corners in the waveguides), a smaller
ξ (~100) than the former was observed. This indicates that the effect of backscattering in the
corner sections is more pronounced than the structural randomness in the straight sections.
The reason for the lower values of the Z-shaped topological waveguide than those of the
straight topological waveguide was thereby identified quantitatively.

Table 1. Transmittance of four types of topological elastic waveguide.

Type of Waveguide Simulation Experiment

Linear waveguide (I–II) 93% 89%
Linear waveguide (II–I) 92% 90%

Z-shaped waveguide (I–II) 90% 85%
Z-shaped waveguide (II–I) 89% 85%
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The origin of the larger loss at corners may reflect the characteristics of the edge state
in the present structures. As mentioned in Section 2.1, the valley topological phase in
wide bandgap can be less localized, which weakens the robustness. Additionally, the edge
bands depicted in Figure 3 are rather nondispersive (not crossing over the gap). Hence,
these cases may be classified as weak topological states [40,46]. The immunization of
backscattering was thereby degraded. Nevertheless, the present values of approximately
400a in straight waveguides prove eminent efficiency compared with the reported values
(~100a) in valley-topological photonic systems [44,45].

4. Conclusions

We designed valley-type topological phononic crystals in plastic plates, in which
the topological phase transition of the phonon band occurs by changing the structural
parameters. A snowflake-type unit cell structure was employed as a simple but highly
controllable structural unit for designing the phonon band structure. By varying ∆r, we
optimized the band structure and designed linear and Z-shaped topological waveguides
with topological interfaces using two types of unit cells with ∆r = ±1.76 mm. The ap-
pearance of edge states for efficient elastic wave propagation was demonstrated using 3D
finite element method (FEM) simulations. Observation of the out-of-plane displacement
distribution at the interface and the transmission analysis of the designed waveguides with
linear and Z-shaped paths proved highly efficient and robust elastic wave propagation
via topologically protected edge modes. On the other hand, the intermediate structures
with ∆r = ±0.88 mm showed that the propagation loss became significant owing to the
appearance of a narrow bandgap and the mixing of the edge mode with the bulk ones,
revealing that the precise design of the gap width is important for realizing edge mode
propagation. On the basis of these numerical analyses, both linear and Z-shaped topo-
logical waveguides (∆r = ±1.76 mm) were fabricated using a 3D printer. Transmission
measurements were performed to show that the fabricated topological waveguide has high
efficiency and robustness in elastic wave propagation at approximately 85 kHz. In addition,
we quantitatively identified the magnitude and sources of the transmission loss in terms of
the backscattering length estimated from the decaying behavior of the displacement field
distributions along the paths. The results revealed that predominant loss was observed at
the corners, whereas an extremely low loss (large values of the backscattering length) was
estimated in the other straight segments in the topological interfaces. This can be attributed
to the fact that the edge modes depicted in Figure 3 have appeared without crossing over
the gap, implying the edge states weakly topological [46]. Nevertheless, the backscattering
lengths estimated here give promises for practical device applications.

In summary, the present study showed that the structural design based on the band
topology of snowflake-type topological phononic crystals can be applied to highly efficient
elastic-wave devices as alternative and/or complementary components for information
carriers in next-generation communication platforms.
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