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Abstract: In this paper, natural convective heat transfer in a rectangular cavity filled with (50% CuO-
50% Al2O3)/water hybrid nanofluids connected to a wall containing a phase change material (PCM)
has been experimentally investigated. The vertical walls were heated at varying temperatures while
the horizontal walls were kept adiabatic. The considered parameters were the concentration of hybrid
nanomaterial (Φ = 0.03, 0.05), the cavity inclination angle (θ = 0◦, 30◦, 45◦), and the temperature
difference between the hot and cold sides (∆T = 10, 15, 20 ◦C). The results have been validated and
agree well with previously published papers. Furthermore, the main results stated that when the
nanomaterial concentration increased, the heat transfer rate by free convection also increased. By
increasing the natural convection flows via high temperature, symmetrical vortexes may appear near
the heated wall. It also found that the PCM can potentially reduce the temperature of the hot side
by up to 22% due to its high absorbability and heat storage. Furthermore, the inclusion of hybrid
nanofluids in addition to the PCM enhanced its efficiency in heat storage and, therefore, its capacity
to cool the hot side. Moreover, the influence of the inclination cavity enhanced the heat transfer,
where θ = 30◦ was the optimal angle in terms of thermal conductivity.

Keywords: hybrid nanofluid; inclined cavity; natural convection; PCM; rectangular cavity

1. Introduction

Many applications, including solar energy and electronic cooling, rely heavily on
convective heat transfer characteristics. For that reason, many experimental and theoretical
investigations have been conducted to study natural heat transfer using active and passive
techniques. Some authors have added nanoparticles to a base fluid to enhance the working
fluid’s thermal conductivity [1–5]. Other researchers have studied hybrid nanofluids and
their effects on improving heat transfer [6–12]. Some researchers have also found that
using a phase change material (PCM) can help manage heat transfer, which led authors to
discover its importance in thermal storage [13–26].

Shili et al. [27] experimentally and numerically examined the impact of liquid selection
on a PCM. Water and SilOil were used in the proximity of a phase transition material
(synthetic paraffin). The considered cavity, a rectangular container, was filled with phase
change material (PCM) and heated from the left side while the other walls were kept
isolated. The novelty of the study is that it separated the hot plate from the PCM by a layer
of liquid, water, or SilOil. The findings indicated that restricting the PCM in the liquid
increases thermal conductivity at the hot plate, improves heat transmission, and protects
the PCM from overheating. In addition, when water surrounds the PCM, the copper sheet
temperature decreases by approximately 20%. Kean et al. [28] numerically studied the
effect on free convection of a PCM combined with nanomaterials in a square cavity. The
authors considered two cases: the first assumed that the vertical walls were the hot and
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cold walls and isolated the horizontal walls; the second considered the horizontal walls as
hot and cold walls and isolated the vertical walls. The authors considered different types of
nanoparticles, such as alumina, copper oxide, and zinc oxide in various volume fractions
(Φ = 0, 0.02, and 0.05). The findings revealed that adding nanoparticles with a low volume
fraction can enhance the performance of the PCM. Furthermore, the wax melted in the first
case faster than in the second case.

Sivashankar et al. [29] investigated heat transfer in concentrated photovoltaic (CPV)
cells utilizing a phase change material (PCM) and graphene nanoplatelets (GNP). The
efficiency of a CPV cell with a pure PCM was investigated and compared to the efficiency
in the case of using a nano-augmented PCM (n-PCM) with a range of concentrations (0.1%-
0.5%). The results stated that the efficiency of the CPV was much higher when using the
nano-augmented PCM than the pure PCM. Ebadi et al. [30] numerically studied the effect of
a bio-based nanoPCM on heat transfer in a perpendicular cylindrical thermal energy storage
(C-TES) system. The variables which were considered were a Ra number (106 ≤ Ra ≤ 108)
and the solid volume proportion of the hybrid nanofluid (0 ≤ ϕ ≤ 0.05). The results
showed that the value of Nuavg increased at the early stage of the melting and then dropped
sharply with time. Furthermore, as the nanoparticle volume fraction increased, the stored
energy decreased. It is worth mentioning that the results stated that the importance of
solidification and melting had the same effect on performance. Abdelrazik et al. [31]
numerically discussed the impact of a nano-PCM on thermal and electrical performance.
The results stated that using the PCM increased the efficiency of the panel’s cooling, which
leads to higher electrical efficiency. Nada et al. [32] numerically examined the temperature
management and efficiency of PV-building integrated systems using phase change materials
and Al2O3 nanoparticles. Two separate PV-PCM modules were produced using pure PCM
and PCM with added nanoparticles. The characteristics used were solar radiation intensity,
wind speed, and PV voltage. The results showed that adding Al2O3 nanoparticles to the
PCM improved the integrated modules’ heat efficiency and temperature management.
Integrating the PV units with pure PCM and PCM augmented by nanoparticles lowered the
temperature of the modules by 8.1 and 10.6 ◦C, while the efficiency rose by 5.7 and 13.2%,
respectively. Chavan et al. [33] performed a numerical inquiry of natural convection of the
melting process in a rectangular enclosure. A compound phase change material (paraffin
wax 98%) was utilized as the base material, with the addition of copper nanoparticles (2%).
One side of the container was heated, the other was isothermal, and the different sides
were thermally insulated. An enclosed domain with two distinct directions, enclosures
that were both deep and shallow, was assumed for the thermal storage model. The results
showed that the shallow enclosure showed a quicker rate of charging and discharging than
the large enclosure (up to 10% less).

From the previous literature, it can be noticed that there is a lack of experimental
work; for that reason, this paper introduces a novel geometry, which is an application of
solar energy, to investigate the free convection of hybrid nanofluid flow in a uniform cavity
with a PCM material. A wide range of volume concentrations, temperature gradients, and
inclination angles were considered in order to understand their effect on flow streams and
heat transfer.

2. Experimental Work
2.1. Test Rig

This section describes the main parts of the experimental setup. Figure 1 shows the
schematic diagram of the experimental design, while the experimental setup apparatus can
be seen in Figure 2. A cavity containing a hybrid nanofluid was combined with another
cavity with a phase change material. In this portion, the heating system (which consisted
of a heater, a controller, and a DC power supply), the cooling unit (constant temperature
water bath), and the measuring system (thermal camera, data logger tool) are installed.
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41.  
Figure 2. Experimental setup apparatus: (1) sensitive balance, (2) mechanical stirrer, (3) ultrasonic
wave apparatus, (4) Fluke Ti300 thermal imaging camera, (5) datalogger, PC, and test section.
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2.2. Test of the Physical Problem

Figure 3 depicts the test section, which consisted of two rectangular cavities. The left,
connected to the hot wall, consisted of an aluminum plate heated by an electric temperature
control heater. The left cavity was 20 cm high, 3 cm wide, and 20 cm deep, and was divided
into three horizontal grooves filled with PCM. The right side of the second cavity was
connected to the cold wall. It was 20 cm high, 10 cm wide, and 20 cm deep, and was meant
to operate as a thermal exchanger. It was constructed of an aluminum plate and adjusted
the temperature by running water through it. It was filled with a hybrid nanofluid; Table 1
shows the physical properties of the fluid and nanoparticles [34], while Table 2 shows the
PCM properties [35]. Three thermocouples were inserted in each of the two walls to detect
temperatures, and 35 thermocouples were installed in the center of the cavity to assess
temperature dispersion throughout the case.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 21 
 

 

Figure 2. Experimental setup apparatus: (1) sensitive balance, (2) mechanical stirrer, (3) ultrasonic 
wave apparatus, (4) Fluke Ti300 thermal imaging camera, (5) datalogger, PC, and test section. 

2.2. Test of the Physical Problem 
Figure 3 depicts the test section, which consisted of two rectangular cavities. The left, 

connected to the hot wall, consisted of an aluminum plate heated by an electric tempera-
ture control heater. The left cavity was 20 cm high, 3 cm wide, and 20 cm deep, and was 
divided into three horizontal grooves filled with PCM. The right side of the second cavity 
was connected to the cold wall. It was 20 cm high, 10 cm wide, and 20 cm deep, and was 
meant to operate as a thermal exchanger. It was constructed of an aluminum plate and 
adjusted the temperature by running water through it. It was filled with a hybrid 
nanofluid; Table 1 shows the physical properties of the fluid and nanoparticles [34], while 
Table 2 shows the PCM properties [35]. Three thermocouples were inserted in each of the 
two walls to detect temperatures, and 35 thermocouples were installed in the center of the 
cavity to assess temperature dispersion throughout the case. 

 
Figure 3. Schematic description of the physical model. 

Table 1. Thermophysical properties of some nanoparticles and water [34]. 

Property Pure Water Al2O3 CuO 
ρ (kg/m3) 997.1 3970 6500 

Cp (J/kg·K) 4179 765 540 
k (W/m·K) 0.613 40 18.0 
ν [m2/s] 0.891 × 10−6 ---- ---- 

β [1/T] (1/K) 2.1 × 10−4 8.5 × 10−6 0.85 × 10−5 
α (m2/s) 1.47 × 10−7 13.17 × 10−6 51.28 × 10−7 

  

Figure 3. Schematic description of the physical model.

Table 1. Thermophysical properties of some nanoparticles and water [34].

Property Pure Water Al2O3 CuO

ρ (kg/m3) 997.1 3970 6500
Cp (J/kg·K) 4179 765 540
k (W/m·K) 0.613 40 18.0
ν [m2/s] 0.891 × 10−6 —- —-

β [1/T] (1/K) 2.1 × 10−4 8.5 × 10−6 0.85 × 10−5

α (m2/s) 1.47 × 10−7 13.17 × 10−6 51.28 × 10−7
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Table 2. Thermophysical properties of PCM [35].

T-Solidus 38 ◦C
T-liquidus 43 ◦C

Latent heat of melting 174 kJ/kg

Density 800 kg/m3 (solid)
760 kg/m3 (liquid)

Thermal expansion coefficient 0.00081/◦k
Specific heat capacity 2 kJ/kg·K
Thermal conductivity 0.2 W/m·K

3. The Effective Thermophysical Properties of Hybrid Nanofluid

The relations that describe the effective physical properties of nanofluid in this study,
determined according to the following equations [36,37], are:

The density of hybrid nanofluid ρhnf is:

ϕhn f= ϕCuo+ϕAl2o3 (1)

ρhn f = ϕCuo·ρCuo + ϕAl2o3·ρAl2o3 +
(

1 − ϕhn f

)
·ρb f (2)

ρhn f ·Cphn f = ϕCuo·ρCuo·CpCuo + ϕAl2O3·ρAl2O3·CpAl2O3 +
(

1 − ϕhn f )·ρb f ·Cpb f (3)

(ρβ)hn f = ϕCuo·ρCuo·βCuo + ϕAl2O3·ρAl2O3·βAl2O3 +
(

1 − ϕhn f )·ρb f ·βb f (4)

The dynamic viscosity ratio of hybrid nanofluid is estimated using the Brinkman and
Maxwell model, given by [38] as follows:

µhn f

µb f
=

1

(1 − (ϕCuo + ϕAl2O3)
2.5 (5)

The thermal conductivity is found by using the Maxwell correlation [38]:

khn f

kb f
=

(
(ϕCuo ·kcuo+ϕAl2O3·kAl2o3)

∅hn f
+ 2kb f + 2(ϕCuo·kcuo + ϕAl2O3·kAl2o3)− 2∅hn f ·kb f

)
(ϕCuo ·kcuo+ϕAl2O3·kAl2o3)

∅hn f
+ 2kb f − 2(ϕCuo·kcuo + ϕAl2O3·kAl2o3) +∅hn f ·kb f

(6)

4. Rayleigh and Nusselt Numbers and Validation

The Rayleigh and Nusselt numbers of the hybrid nanofluids could be computed using
the heating power, the observed temperatures of the left and right walls, and the transport
properties as below:

Qh = V × I (7)

The heat transfer on the cold side of the heat exchanger is estimated by:

Qc =
.

m·Cp × (Tco − Tci) (8)

where Tci and Tco are the inlet and outlet temperatures on the cold wall, respectively.
The heat transfer coefficient could be calculated as:

h =
Q

A(Th − Tc)
(9)

The Rayleigh number could be calculated as:

Ra =
gβδ2Cp(Th − Tc)L3

µK
(10)
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The Nusselt number could be calculated using the correlation equation as a function
of the Ra and Pr provided by Berkovesky and Polevikov [39], as given below:

Nu = 0.18
(

Pr
0.2 + Pr

Ra
)0.29

1 <
H
L

2 and
Ra × Pr
0.2 + Pr

103 (11)

Catton [40] also gives a correlation for Nu given in Equation (12):

Nu = 0.22
(

Pr
0.2 + Pr

Ra
)0.28

(
H
L
)

−1
4

1 <
H
L
< 2, and Ra < 1010 (12)

This is inferred from experimental findings compared to previously documented
correlations of water’s natural convection in an enclosure, as illustrated in the graph
below, Figure 4.
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existence of correlations.

The experimental results for the water-filled cavity showed good agreement with the
correlation of Berkovesky and Polevikov [39] and Catton [40].

5. Results

This work examined the natural convection of a (50%CuO–50%Al2O3)/water hy-
brid nanofluid in a rectangular cavity with PCM connected to its vertical hot wall. Var-
ious parameters’ effects were investigated, including the concentration of nanoparticles
(0.03 ≤ ϕ ≤ 0.05), cavity inclination angle (0◦ ≤ θ ≤ 45◦), the temperature difference be-
tween the cold and hot walls (10 ≤ ∆T ≤ 20) ◦C, and times at (15 ≤ time ≤ 60) min.

The experimental results are presented in complete thermal camera temperature
distribution results and thermocouple data collected along the midline of the cavity.
Figures 5 and 6 show the temperature distribution with time using full PCM φ = 0.03%,
∆T = 10◦, 15◦, and 20 ◦C. When the hot wall temperature was 35 ◦C (∆T = 10 ◦C), PCM
solubility was not recorded even on reaching a steady state. This happened due to the high
latent heat of paraffin wax. A constant decline rate for the temperature of the PCM at the
top cavity had a greater temperature than at the bottom, and the difference approached
3 ◦C due to free convection currents in the hybrid nanofluid cavity caused by the buoyant
force. In a hybrid nanofluid cavity, the heat transfers from the lift wall to the cold wall.
At a time of 15 min, the high temperature could be seen near the top left corner due to
the buoyant force. After a period of time (30 min), the heat transferred along the vertical
wall, and the fluid flow moved faster, which meant that heat transferred quicker, and all
the cavity temperatures rose. After more time, at 60 min, most of the heat transferred to
the cold side, and the heat was kept at a lower level. A consistent decline rate for the hot
wall temperature was recorded at 11%. The same behavior could be seen after raising the
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temperature of the hot wall to 40 ◦C(∆T = 15 ◦C). It can be seen that the heat transmission
through conduction was dominating, and the rate of decrease in the hot wall temperature
was 18%.
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Figure 6. Temperature profiles at midline of the enclosures at various times for the PCM and hybrid
nanofluid at ϕ = 0.03, θ = 0◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.
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When the hot wall temperature rose to 45 ◦C (∆T = 20 ◦C), the paraffin wax became
relatively liquid, especially near the top of the cavity. The heat transfer was dominated
by free convection, with the maximum temperature on the upper left side of the PCM
cavity and the lowest temperature on the bottom right side of the other cavity filled with a
hybrid nanofluid. In this case, the decreased hot wall temperature rate was 21%. In general,
the melting rate of paraffin wax increased as the hot wall temperature rose (over 38 ◦C),
but it did not reach the complete melting stage even when the hot wall temperature was
higher than the melting point of paraffin wax. This was due to the impact of the hybrid
nanofluid, which accelerated heat transfer via free convection (heat removal), allowing
the wall adherent to the right wall of the PCM cavity to remain cool. In addition, as time
passed the effect of heat transfer via natural convection due to the buoyant force and the
related vortices could be seen in the hybrid nanofluid cavity, as shown in Figure 6. When
the amount of removed heat increased, the temperature inside the cavity decreased. This
was demonstrated by the enhanced heat transport rate and temperature reduction of the
PCM, which sped up the cooling process of the heated wall.

Figures 7 and 8 show the temperature distribution with time when the hybrid nanofluid
was at φ = 0.03%, θ = 30o, ∆T = 10, 15, and 20 ◦C. When the hot wall temperature was
35 ◦C (∆T = 10), the heat transmission by conduction was dominant due to the paraffin
wax not remaining in its solid condition. The temperature reduction rate in the paraffin
wax cavity was 10.9%. When the hot wall temperature was 40 ◦C (∆T = 15 C), a reduced
rate of 16% was recorded. When the hot wall temperature reached 45 ◦C, the paraffin wax
began to melt, and the rate of temperature decrease was 20.4%.

The same behavior could be seen when θ = 45◦, as shown in Figures 9 and 10. The
results show that the reduction rates were 13%, 18.25%, and 21.5% when ∆T equaled 10,
15, and 20 ◦C, respectively. Figures 11–13 show the temperature distribution along the
midline of the cavities with time using PCM when the hybrid nanofluid was at φ = 0.05%,
θ = 0◦, 30◦, and 45◦, ∆T = 10, 15, and 20 ◦C. The same behavior can be seen when the
inclination angle changed from 0 to 45◦, and the temperature increased by increasing the
hybrid nanofluid volume fraction. The maximum heat reduction was 22.2% when θ = 30◦.
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Figure 7. Temperature distribution in the enclosure at various time for PCM and (CuO-Al2O3/water),
Φ = 0.03, θ = 30◦, ∆T = 10, 15, and 20 ◦C.
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Figure 8. Temperature profiles at midline of the enclosures at various time for the PCM and hybrid
nanofluid at ϕ = 0.03, θ = 30◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.

The Nusselt number was calculated using the correlation equation on the left wall
of the hybrid nanofluid cavity. Due to using a PCM, the left-side hot temperature was
not constant, whereas the cold wall temperature was maintained at 25 ◦C. The Nusselt
number could determine and quantify the amount of heat transfer by free convection
inside the hybrid nanofluid cavity and the effect of phase change materials on the hot wall
during the heat transmission process. Nusselt numbers were performed at various hot wall
temperatures (T = 35, 40, and 45 ◦C), concentrations, and cavity inclination angles.

Figure 14 displays the average Nusselt number for various values of the temperature
difference and various cavity inclination angles. It was found that by increasing the
concentration of hybrid nanomaterial, the Nusselt number increased for different values of
cavity inclination angle. The reason for this was increase in the thermal conductivity of a
hybrid nanofluid, which accelerates the flow of convection between opposite vertical cavity
walls. In addition, the Nusselt number increased as the temperature difference increased
due to the cavity containing the hybrid nanofluids’ increased capacity for heat transfer due
to temperature difference. It was found that irrespective of the base fluid composition, the
heat enhancement was highest at the inclination angle θ = 30◦.
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Figure 10. Temperature profiles at the midline of the enclosures at various times for the PCM and
hybrid nanofluid at ϕ = 0.03, θ = 45◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.
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Figure 11. Temperature profiles at the midline of the enclosures at various times for the PCM and
hybrid nanofluid at ϕ = 0.05, θ = 0◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.
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Figure 12. Temperature profiles at the midline of the enclosures at various times for the PCM and
hybrid nanofluid at ϕ = 0.05, θ = 30◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.
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Figure 13. Temperature profiles at the midline of the enclosures at various times for the PCM and
hybrid nanofluid at ϕ = 0.05, θ = 45◦: (a) at ∆T = 10 ◦C, (b) at ∆T = 15 ◦C, (c) at ∆T = 20 ◦C.
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6. Conclusions

An experimental study of natural convective heat transfer in a rectangular cavity
filled with a (50%CuO–50%Al2O3)/water hybrid nanofluid with phase change material
connected to its vertical hot wall was investigated in this study, and the impacts of several
parameters were examined, including: nanoparticle concentration ϕ = 0.03% and 0.05%,
inclination angle of the cavity θ = 0◦, 30◦, and 45◦, temperature difference between the cold
and hot walls ∆T = 10 ◦C, 15 ◦C, and 20 ◦C, and time effects at 15, 30, and 60 min.

The following are some significant conclusions that may be drawn from the experi-
mental results:

1. In general, temperatures were observed to be more widely distributed in the up-
per half of the cavity due to the effects of buoyant force and different densities on
natural convection.

2. When the concentration of hybrid nanofluid was increased, the thermal conductivity
increased; therefore, the reduction rate of heat transfer increased due to the high
thermal conductivity of the hybrid nanomaterial.

3. The effect of the cavity inclination angle on heat transfer was pronounced, with θ = 30◦

being the optimal angle for temperature reduction, where its reduction rate reached
the highest value (22.2%) compared to θ = 0◦.
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4. The temperature differential between hot and cold walls affected the reduction rate
where proportionality was established between them, with the greatest value occur-
ring when ∆T = 20 ◦C, and 22% was reached.

5. The value of the Nusselt number increased by increasing the temperature difference,
which happened due to the increase in the buoyant force in the hybrid nanofluid cavity.

6. Increase in the Nusselt number means an increase in the natural convection heat
transmission rate in the nanofluid cavity, but at the same time indicates that a large
amount of heat crossed through the middle wall due to the lack of paraffin wax, which
was responsible for lowering the temperature.

7. Adding paraffin wax along the hot wall was the optimal method for lowering the
temperature of the wall by absorbing the high heat and decreasing the transient heat
of the nanofluid cavity.

8. The Nusselt number increased with increasing nanomaterial concentration, which was
caused by greater heat exchange between the paraffin wax and the hybrid nanofluid.
Heat transfer via natural convection increased as thermal conductivity rose, as we
have previously shown by increasing the hybrid nanofluid concentration.

Future work could consider new types of nanomaterials to study the effects of adding
different types of nanofluids. Some new complex geometries can be also considered, which
need to choose a suitable position for the PCM. Furthermore, it is worthwhile to use
different types of PCM to study their effects on heat transfer.
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Nomenclature

A Area
Cp Specific heat, J·kg−1·K−1

g The acceleration of gravity, m·s−2

h Heat transfer coefficient
I Current (ampere)
K Thermal conductivity, W·m−1·K−1

m. Mass flow rate of the fluid
Nu Nusselt number
P Non-dimensional pressure
PCM Phase change material
Pr Prandtl number
Q Heat transfer
Ra Rayleigh number
Tc Cold temperature, K
Th Hot temperature, K
V Voltage (volts)
Greek symbols
θ Inclination angle of the cavity
µ Dynamic viscosity, kg·m−1·s−1

α Thermal diffusivity, m2·s−1

β Thermal expansion coefficient, K−1

Φ Volume concentration of the nanofluid
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