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Abstract: This research investigates a model of the spread of COVID-19 in Indonesia by paying
attention to comorbid disease, self-quarantine, government-provided quarantine, and vaccination
factors. The symmetrical aspects of the model are studied. The evaluation of the model reveals
non-endemic and endemic equilibrium points and the basic reproduction number (BRN). We provide
the local and global stability analysis of the equilibriums. According to the sensitivity analysis of
the BRN, the key parameters impacting the spread of COVID-19 are the susceptible recruitment rate,
contact rate, infection death rate, and probability of infected individuals having no comorbidities.
In addition, we provide a sensitivity analysis to examine the effect of parameter changes in each
subpopulation. We discovered that the natural death rate is the most sensitive parameter based on the
sensitivity index after reaching equilibrium. Symmetry aspects appear in some of the visualizations
of the model’s solution and the sensitivity of the BRN and parameters.
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1. Introduction

COVID-19 is an illness caused by the severe acute respiratory syndrome coronavirus
2 infection (SARS-CoV-2). The illness can induce a range of respiratory system problems,
from mild symptoms like the flu to severe lung infections like pneumonia [1]. Antiviral
medicines and vaccines for COVID 19 prevention were identified in 2021. In order to
combat COVID-19, health professionals and mathematicians can work together to analyze,
evaluate, anticipate, and optimize the prevention strategies. For example, mathematical
models can be utilized to analyze COVID-19 prevention with less effective vaccines [2], to
study the vaccine and treatment for the disease [3,4], and to examine the optimal control to
combat the spread of the disease [5–9].

There are many approaches for modeling the COVID-19 spread by considering various
factors. Ahmed et al. [10] analyzed the COVID-19 model with a numerical analysis and
logistic model. Arino and Portet [11] proposed a COVID-19 model by taking into account
susceptible, latently infected, symptomatic and asymptomatic infectious, and recovered
individuals. Arfan et al. [12] investigated a fractional dynamical system of COVID-19 based
on a modified susceptible–exposed–infectious–recovered type with a nonsingular kernel
derivative. Arfan et al. [13] examined the non-integer-order population dynamical model
of the COVID-19 pandemic in relation to various values of the heavily impacted system
parameter of immigration for both susceptible and infected populations. Sugiyanto and
Abrori [14] studied the model of COVID-19 spread by considering the case of with and

Symmetry 2022, 14, 2269. https://doi.org/10.3390/sym14112269 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7250-4521
https://orcid.org/0000-0002-4588-3885
https://doi.org/10.3390/sym14112269
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112269?type=check_update&version=2


Symmetry 2022, 14, 2269 2 of 15

without lockdown. Khan et al. [15] considered the model of COVID-19 dynamics where
the infected subpopulations have isolation and quarantine.

Several researchers have studied models of the COVID-19 spread in different parts of
the world. Annas et al. [16] analyzed and provided numerical simulations for the model
of COVID-19 spread of the susceptible–exposed–infectious–recovered type in Indonesia.
Fitriani et al. [17] studied the dynamic of COVID-19 transmission in Central Java, Indone-
sia. Anggriani et al. [18] investigated the model of COVID-19 propagation in West Java,
Indonesia. Okuonghae and Omame [19] reviewed the model of the COVID-19 contagion
in Lagos, Nigeria. Kifle and Obsu [20] considered the model of COVID-19 infectious in
Ethiopia between March 2020 and July 2021. Asempapa et al. [21] studied the model of
COVID-19 spread in Brazil and South Africa among populations at risk of death through
the provision of natural medicine preventatives.

Various attempts have been made to estimate the data of COVID-19 cases in order to
predict its spread. Postnikov [22] studied the criteria for predicting the COVID-19 spread
using the susceptible–infectious–recovered-type model. Using data provided in China,
Macau, Hong Kong, and Taiwan, Ivorra et al. [23] determined the characteristics of the
COVID-19 model which is used to predict the disease transmission in other countries and
also in Wuhan, China, as used by Yang and Wang [24]. Barmparis and Tsironis [25] pro-
vided an estimation technique of COVID-19 distribution parameters using data from nine
nations. Sreeramula and Rahardjo [26] presented an estimation of COVID-19 propagation
parameters in Indonesia.

Modeling COVID-19 transmission in relation to other diseases can give a rich ex-
amination of the infectious dynamics characteristics. Mekonen et al. [27] evaluated the
model for the spread of tuberculosis coinfected with COVID-19. Ssebuliba et al. [28]
studied the COVID-19 contagion by considering the infected individuals having par-
tially comorbid diseases. In [29,30], the COVID-19 spread was examined where the indi-
viduals with comorbid diseases had interventions of natural remedies and vaccination.
Okyere and Ackora-Prah [31] analyzed the COVID-19 transmission dynamics by taking
into account diabetes.

In the dynamic model of COVID-19 spread studied by Ssebuliba et al. [28], individuals
infected with COVID-19 with or without comorbid diseases are shifted to the hospital (local
government quarantine) without reference to the self-quarantine in their respective homes.
On the basis of the Ssebuliba et al. [28] model, in this paper, we extend the model by taking
into account the transfer rate from individuals infected with COVID-19 without comorbid
disease to the self-quarantine individuals. This is important to note because, according to
real data from Indonesia, individuals infected with COVID-19 without comorbid diseases
are generally isolated in their respective homes because they can recover by consuming
nutritious foods, taking vitamins, getting enough rest, exercising, and adhering to health
protocols [1]. The symmetrical aspects for the dynamical system are analyzed, such as
the non-endemic and endemic equilibrium points and their stability and also the basic
reproduction number. We perform some numerical simulations to visualize the solution of
the system, the sensitivity analysis of the basic reproduction number to study the stability
of the system, and the sensitivity of the model’s parameters to study their effects on the
solution of the system. The symmetry appears in some of these visualizations. Based
on the sensitivity index after reaching equilibrium, we determine which parameter is the
most sensitive.

2. The Spread of COVID-19 with Comorbid Diseases

Consider a population which is divided into six subpopulations. S denotes the suscep-
tible subpopulation which consists of individuals who are still healthy but susceptible to
infection of COVID-19. Ih denotes the subpopulation which is infected with COVID-19 but
has no comorbid diseases. Ic denotes the subpopulation which is infected with COVID-19
and has a history of comorbid diseases, such as hypertension, diabetes mellitus, heart
disease, respiratory disorders, chronic renal disease, neurological disorders, endocrine
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disorders, and liver. Qh represents the self-quarantine subpopulation which consists of
persons infected with COVID-19 without comorbid diseases. QH represents the subpopu-
lation of COVID-19-infected persons with comorbid diseases who are isolated in a local
government-supplied quarantine. R represents the recovered subpopulation which consists
of individuals who have recovered from or are immune to COVID-19.

The following are the model’s underlying assumptions: (1) New recruits are intro-
duced into the susceptible subpopulation. (2) Individuals from the susceptible subpopu-
lation are immunized against COVID-19 and enter the recovered subpopulation. (3) Sus-
ceptible subpopulation who come in contact with COVID-19-infected individuals become
infected. (4) COVID-19-infected individuals who do not have comorbid diseases are self-
quarantined in their residences. (5) Individuals infected with COVID-19 and comorbid
diseases are quarantined in a local government-provided facility. (6) The subpopulation
died of natural causes. (7) The majority of individuals who received treatment or supple-
ments healed. (8) Those infected with COVID-19 may perish. A schematic representation
of the spread of COVID-19 by paying attention to comorbid diseases is depicted in Figure 1.

Figure 1. Schematic diagram of the spread of COVID-19 with regard to comorbid diseases.

On the basis of the assumptions and the schematic diagram in Figure 1, the following
system of differential equations is derived,

dS
dt

= Λ− βS(Ih + Ic)

N
− (p1ν + µ)S

dIh
dt

=
pβS(Ih + Ic)

N
− (α + µ)Ih

dIc

dt
=

(1− p)βS(Ih + Ic)

N
− (d1 + δ + µ)Ic

dQh
dt

= αIh − (γ + µ)Qh

dQH
dt

= δIc − (d2 + η + µ)QH

dR
dt

= p1νS + γQh + ηQH − µR

. (1)

The description of the parameters of system (1) are presented in Table 1. Their value is
derived in part from Indonesian journals, calculated based on data from the Ministry of
Health of the Republic of Indonesia, and assumed in a minor part.
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Table 1. Description of the parameters and their value.

Parameters Description Value Source

Λ Recruitment rate of individuals entering the
susceptible subpopulation

4589 [1]

p Probability of infected individuals entering
the Ih subpopulation

0.65 Estimated

β Individual contact rate of the susceptible sub-
population with the infected subpopulations

0.036 [14]

ν Individual rate of the susceptible subpopula-
tion being vaccinated

0.1 [16]

p1 Chances of vaccine effectiveness 0.55 Estimated
µ Natural death rate of each subpopulation 1

65×365 Estimated
α Individual transfer rates from the Ih to Qh

subpopulations
0.2143 Assumed

d1 Death rate of individuals infected with
COVID-19

7.344× 10−7 [16]

δ Individual transfer rates from subpopulation
Ic to QH

0.0714 Assumed

γ Recovery rate of individuals who are infected
with COVID-19 but have no comorbidities

0.003065 Estimated

d2 Death rate of individuals infected with
COVID-19 and having comorbid diseases

0.0177 [1]

η Recovery rate of individuals infected with
COVID-19 and having comorbid diseases

0.00124 [1]

3. Model Analysis

The total population is bounded at any time t > 0. The following lemmas show that
the solution of system (1) is bounded.

Lemma 1. The feasible region Ω defined by Ω = {(S(t), Ih(t), Ic(t), Qh(t), QH(t), R(t)) ∈
R6
+ | 0 < N(t) ≤ max{N(0), Λ/µ}, with initial conditions S(t) ≥ 0, Ih(t) ≥ 0, Ic(t) ≥

0, Qh(t) ≥ 0, QH(t) ≥ 0, R(t) ≥ 0, is non-negative invariant and associated with Equation (1)
for t > 0.

Proof. Equation dS/dt in (1), for all t > 0, can show the change in the number of susceptible
per time,

dS
dt
≥ pβS(Ih + Ic)

N
+

(1− p)βS(Ih + Ic)

N
+ (ν + µ)S = −

(
β(Ih + Ic)

N
+ ν + µ

)
S.

Solving the differential equation yields

S(t) ≥ S0 exp
(
−
[

µt +
∫ t

0

β(Ih(k) + Ic(k))
N

dk
])

,

and therefore
lim
t→∞

inf S(t) ≥ 0.

Similarly, it can be shown that Ih(t) ≥ 0, Ic(t) ≥ 0, Qh(t) ≥ 0, QH(t) ≥ 0, R(t) ≥ 0.
When all initial conditions are non-negative, it can be shown that the solutions of system (1)
are non-negative.

Lemma 2. Solutions of system (1) are bounded for all t ∈ [0, t1].
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Proof. The change in total population per unit time is

dN
dt

= Λ− d1 Ic − d2QH − µN.

Therefore, the total population is bounded, that is

0 ≤ lim
t→∞

sup N(t) ≤ Λ
µ

.

This indicates that all solutions of system (1) are bounded for all t ∈ [0, t1].

3.1. Non-Endemic Equilibrium Point

The necessary and sufficient conditions for obtaining a non-endemic equilibrium
point are the number of changes in subpopulations per unit time is constant, and the
number of individuals confirmed positive for COVID-19 and the number of individuals
quarantined are both zero. From (1), by setting dS

dt = dIh
dt = dIc

dt = dQh
dt = dQH

dt = dR
dt = 0 and

Ih = Ic = Qh = QH = 0, we obtain the non-endemic equilibrium point as follows

E1 = (S∗1 , I∗h1, I∗c1, Q∗h1, Q∗H1, R∗1) =
(

Λ
µ

, 0, 0, 0, 0,
νΛ

µ(ν + µ)

)
. (2)

The local stability of the non-endemic equilibrium is given below.

Theorem 1. The non-endemic equilibrium point E1 is locally asymptotically is stable.

Proof. In the manner used by Diekmann and Heesterbeek [32], by substituting the non-
endemic equilibrium point in the Jacobian matrix of system (1), we obtain

J(E1) =



−p1ν− µ −k −k 0 0 0
0 pk− α− µ pk 0 0 0
0 (1− p)k (1− p)k− d1 − δ− µ 0 0 0
0 α 0 −γ− µ 0 0
0 0 δ 0 −d2 − η − µ 0

p1ν 0 0 γ η −µ

,

with k = βΛ
µN . Eigenvalues of the Jacobian matrix J(E1) are λ1 = −µ, λ2 = −− p1ν− µ,

λ3 = −d2 − η − µ, λ4 = −γ− µ, λ5 = − 1
2 (α + d1 + δ− 2µ) + 1

2 k− 1
2

√
A, λ6 = − 1

2 (α +

d1 + δ− 2µ) + 1
2 k + 1

2

√
A, where

A = 4kp(d1 + δ− α) + (α− d1)
2 + 2α(k− δ) + d1(d1 + 2δ− 2k) + (δ− k)2.

Because it can be observed that λi < 0, i = 1, 2, 3, 4, 5, and λ6 will be negative if

1
2
(kp + α + d1) + µ > d +

1
2

√
A, (3)

then the equilibrium point E1 is asymptotically stable if (3) is fulfilled.

3.2. The Basic Reproduction Number

The basic reproduction number is an essential indicator for determining whether the
rate of disease transmission is rising or decreasing. The basic reproduction number is
usually denoted by R0. The interpretation is that if R0 > 1, then the disease is increasing,
and if R0 < 1, then the disease is decreasing or disappearing. Based on the system (1),
the basic reproduction number can be determined using the next-generation matrix [33].
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The Jacobian matrix, taking into account the susceptible subpopulation in contact with the
infected, denoted by JG, is given as follows

JG =
1
N

 β(Ih + Ic) −βS −βS
pβ(Ih + Ic) pβS pβS

(1− p)(Ih + Ic) (1− p)βS (1− p)βS

.

Evaluating JG at the non-endemic equilibrium results

GF := JG(E1) =


0 − βΛ

µN − βΛ
µN

0 pβΛ
µN

pβΛ
µN

0 (1−p)βΛ
µN

(1−p)βΛ
µN

.

The Jacobian matrix of susceptible and infected subpopulations that enter and are
contactless is

GV =

p1ν + µ 0 0
0 α + µ 0
0 0 d1 + δ + µ

.

Eigenvalues of GFG−1
V are λ1 = 0, λ2 = 0, λ3 = βΛ[p(d1+δ−α)+α+µ]

µN(α+µ)(d1+δ+µ)
. According to [33],

the basic reproduction number of the system (1) is

R0 =
βΛ[p(d1 + δ− α) + α + µ]

µN(α + µ)(d1 + δ + µ)
. (4)

3.3. Endemic Equilibrium Point

The necessary conditions for obtaining the endemic equilibrium point of system (1)
are dS

dt = dIh
dt = dIc

dt = dQh
dt = dQH

dt = dR
dt = 0. The endemic equilibrium point is

E2 = (S∗2 , I∗h2, I∗c2, Q∗h2, Q∗H2, R∗2),

with

S∗2 =
k2k3N

β[p(k3 − k2) + k2]
,

I∗h2 =
pβΛ(k2 − k3) + k2(k1k3N − βΛ)

βk2[p(k2 − k3)− k2]
,

I∗c2 =
(1− p)[pβΛ(k2 − k3) + k2(k1k3N − βΛ)]

pβk3[p(k2 − k3)− k2]
,

Q∗h2 =
pαβΛ(k2 − k3) + k2(k1k3N − βΛ)

βk2k4[p(k2 − k3)− k2]
,

Q∗H2 =
(1− p)δ[pβΛ(k2 − k3) + δk2(k1k3N − βΛ)]

pβk3k5[p(k2 − k3)− k2]
,

R∗2 =
p1rS∗2 + γQ∗h2 + ηQ∗H2

µ
,

where k1 = p1ν + µ, k2 = α + µ, k3 = d1 + δ + µ, k4 = γ + µ, k5 = d2 + η + µ.
The local stability of the endemic equilibrium is provided below.

Theorem 2. The endemic equilibrium point E2 is locally asymptotically stable.

Proof. By substituting the endemic equilibrium point E2 into the Jacobian matrix of sys-
tem (1), we obtain
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J(E2) =



−β∗ − p1ν− µ − βS∗2
N − βS∗2

N 0 0 0
pβ∗

pβS∗2
N − α− µ

pβS∗2
N 0 0 0

(1− p)β∗
(1−p)βS∗2

N
(1−p)βS∗2

N − d1 − δ− µ 0 0 0
0 α 0 −γ− µ 0 0
0 0 δ 0 −d2 − η − µ 0

p1ν 0 0 γ η −µ


,

where β∗ =
β(I∗h2+I∗c2)

N .
The characteristic polynomial of J(E2) is

P(x) =
1

N2 (λ1 + µ)(λ + γ + µ)(λ + d2 + η + µ)G(λ),

with λ1 = −µ, λ2 = −γ− µ,λ3 = −d2 − η − µ, and

G(λ) = λ3 + c1λ2 + c2λ + c3, (5)

where

c1 =
1
N
([(p + 1)k6 − p1ν + α + k3]N + βS∗2(p− 1)),

c2 =
([
−pk2

6 + ((p1ν− d1 − δ)p + k2 + k3)k6 − ν(α + k2 + k3)p1 + α(δ + d1)− µ2
]

N2

S∗2 [(2− p)pk6 + (1− p)(p1ν− α)]βN + pβ2S∗2
2(p− 1)

) λ

N2 ,

c3 = − 1
N2

[
k3N2(k1 − k6)(−pk6 + k2)− S∗2

[
(p− 1)µ2 +−p2k6 + k1(p− 1)

]
µ

− p2νk6 p1 + [(p1ν− d1 − δ)k6 + αp1ν]p− αp1νβN − p(p− 1)β2S∗2
2k1

]
,

with k6 =
β(I∗h2+I∗c2)

N .
To show that the equilibrium point E2 is locally asymptotically stable, we must prove

that all roots of the polynomial (5) are negative. Based on the Routh–Hurwitz criteria,
all roots of (5) are negative if they are fulfilled c1 > 0, c2 > 0, c3 > 0 and c1c2 − c3 > 0.
Using the parameter values in Table 1 and the initial subpopulation values S∗2 , Ih2∗, Ic2∗.
We obtain c1 = 0.218156, c2 = 0.01161589, c3 = 0.00067804, and we can verify that
c1c2 − c3 = 0.00185604. This shows that c1 > 0, c2 > 0, c3 > 0, and c1c2 − c3 > 0.
Therefore, the endemic equilibrium point E2 is locally asymptotically stable.

3.4. Global Stability Analysis

Following [34], the global stability of equilibrium point E2 is analyzed. The expression
of E2 can be written as

Λ =
qS∗2(I∗h2 + I∗c2)

N
+ (p1ν + µ)S∗2 , I∗h2 =

S∗2 I∗c2
(α + µ)N − pqS∗2

,

I∗c2 =
(1− p)qS∗2 I∗h2

(d1 + δ + µ)N − (1− p)qS∗2
, (γ + µ)Q∗h2 = αI∗h2,

(d2 + η + µ)Q∗H2 = δI∗c2, µR∗2 = p1νS∗2 + γQ∗h2 + ηQ∗H2,

with q is multiplication of a constant by the parameter β.
The global stability of the endemic equilibrium is given below.

Theorem 3. If R0 > 1, then the endemic equilibrium E2 is globally asymptotically stable.
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Proof. Define a Lyapunov function

L =
∫ S

S∗2

(
1− S∗2

y

)
dy +

∫ Ih2

I∗h2

(
1−

I∗h2
y

)
dy +

∫ Ic2

I∗c2

(
1−

I∗c2
y

)
dy

+
∫ Qh2

Q∗h2

(
1−

Q∗h2
y

)
dy +

∫ QH2

Q∗H2

(
1−

Q∗H2
y

)
dy +

∫ R

R∗2

(
1− R∗2

y

)
dy.

The first derivative of the Lyapunov function is given by

L′ =
(

1− S∗2
S

)
S′2 +

(
1−

I∗h2
Ih2

)
I′h2 +

(
1−

I∗c2
Ic2

)
I′c2 +

(
1−

Q∗h2
Qh2

)
Q′h2

+

(
1−

Q∗H2
QH2

)
Q′H2 +

(
1− R∗2

R

)
R′2,

where(
1− S∗2

S

)
S′2 =

(
1− S∗2

S

)(
qS∗2(I∗h2 + I∗c2)

N
+ k1S∗2 −

βS(Ih + Ic)

N
− k1S

)
= (p1ν + µ)S∗2

(
2− S

S∗2
− S∗2

S

)
+

(
1− S∗2

S

)[
qS∗2(I∗h2 + I∗c2)

N
− βS(Ih + Ic)

N

]
,(

1−
I∗h2
Ih

)
I′h2 =

(
1−

I∗h2
Ih

)(
pβS(Ih + Ic)

N
− k2 Ih

)
=

(
1−

I∗h2
Ih

)(
pβS(S∗2 I∗c2 + [k2N − pqS∗2 ])Ic

k2N2 − pqNS∗2
−

k2S∗2 I∗c2
k2N − pqS∗2

)
,(

1−
I∗c2
Ic

)
I′c2 =

(
1−

I∗c2
Ic

)(
(1− p)βS(Ih + Ic)

N
− k3 Ic

)
=

(
1−

I∗c2
Ic

)(
(1− p)βS(Ih + I∗h2)

N
−

(1− p)qk3S∗2 I∗h2
k3N − (1− p)qS∗2

)
,(

1−
Q∗h2
Qh

)
Q′h2 =

(
1−

Q∗h2
Qh

)
[αIh − (γ + µ)Qh]

=

(
1−

Q∗h2
Qh

)
α

(
S∗2 I∗c2

k2N − pqS∗2
− I∗h2

)
,(

1−
Q∗H2
QH

)
Q′H2 =

(
1−

Q∗H2
QH

)
(δIc − k3QH)

=

(
1−

Q∗H2
QH

)
δ

(
(1− p)qS∗2 I∗h2

k3N − (1− p)qS∗2
− I∗c2

)
,(

1− R∗2
R

)
R′2 =

(
1− R∗2

R

)
[p1ν(S− S∗2) + γ(Qh −Q∗h2) + η(QH −Q∗H2)].

Then, we have

L′ = µS∗2

(
2− S

S∗2
− S∗2

S

)
+

β

N

(
3− S∗2

S
− Ih

I∗h2
−

I∗h2Qh

Q∗h2 Ih
− Ic

I∗c2

[
SQ∗h2
S∗2 Qh

− 1
])

+
β

N

(
3− S∗2

S
− Ic

I∗c2
−

I∗c2QH

Q∗H2 Ic
− Ih

I∗h2

[
SQ∗H2
S∗2 QH

− 1
])

. (6)
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From (6), we have

µS∗2

(
2− S

S∗2
− S∗2

S

)
≤ 0,

β

N

(
3− S∗2

S
− Ih

I∗h2
−

I∗h2Qh

Q∗h2 Ih
− Ic

I∗c2

[
SQ∗h2
S∗2 Qh

− 1
])
≤ 0,

β

N

(
3− S∗2

S
− Ic

I∗c2
−

I∗c2QH

Q∗H2 Ic
− Ih

I∗h2

[
SQ∗H2
S∗2 QH

− 1
])
≤ 0.

Thus, the largest invariant subset is obtained L′ = 0. By Lasalle’s invariance princi-
ple [35], if R0 > 1, then E2 is globally asymptotically stable.

4. Result and Discussion
4.1. Numerical Solutions

The numerical simulations in this study use the parameter values in Table 1, and the
number of initial subpopulations in 2020 of the spread of COVID-19 in Indonesia with the
initial number of each subpopulation is S(0) = 267823870, Ih(0) = 23601, Ic(0) = 3842,
Qh(0) = 8630, QH(0) = 2034, R(0) = 286, and N = 268000000. We solve the system (1)
numerically by using the Runge–Kutta order 45 method; in Matlab, we use package function
ode45. The graphs of the numerical solution of the system are given in Figure 2. We group
the subpopulations S with R, Ih with Ic, and Qh and QH , based on the value level and
comparison meaning. Here, we can observe that a symmetrical aspect appears in the
susceptible and recovered subpopulations.

(a) (b) (c)
Figure 2. Numerical solution of the system (1). Panel (a) is for susceptible (S) and recovered (R)
subpopulations, panel (b) is for infected without comorbid (Ih) and infected with comorbid (Ic)
subpopulations, and panel (c) is for self-quarantine (Qh) and local government-supplied quarantine
(QH) subpopulations.

4.2. Basic Reproduction Number Sensitivity Analysis

The basic reproduction number R0 in (4) can be viewed as a function of parameters.
So, we can visualize R0 as a function of two parameters by making other parameters the
constant and then plot the graph. We have plotted the contour plots of the R0 function for
every combination of two parameters that appeared in (4), and most of them give results
with the contour of R0 having a value below 1. Only from the combination of parameters
Λ, β, p, and d1, there can be seen the spectrum of the R0 value varying from below 1 up to
above 1, as shown in Figure 3. We can conclude that the combination of these parameters
has a big role in determining the stability of the system. In other words, these parameters
have the most effect on the spread of COVID-19.

Geometrically, Figure 3 shows the contour plot of the basic reproduction number R0
as a function of two parameters. The color bar placed on the right shows the value of R0; in
other words, it shows the height of the R0’s surface. Because 1 is the critical point for R0
that concludes the system’s stability, then the interpretation of Figure 3 can be performed
by observing the effect of the changes in the parameter value on the R0 value, whether it
makes the R0 approach or leave 1. Figure 3a–c successively show that the combination of
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parameters Λ and β, p and β, and d1 and β have a dominant influence on increasing or
decreasing the spread of COVID-19, whereas Figure 3d–f show that the combination of
parameters p and Λ, d1 and Λ, and d1 and p does not have a dominant effect on increasing
or decreasing the spread of COVID-19.

(a) (b) (c)

(d) (e) (f)
Figure 3. Contour plot of the basic reproduction number for the two combinations of parameters
Λ, β, p, and d1. Panel (a–f) is the case of β and Λ, β and p, β and d1, Λ and p, Λ and d1, p and
d1, respectively.

4.3. Sensitivity Analysis of Parameters

A sensitivity analysis is performed to examine the effect of changes in the model’s
parameters to the dynamics of the model’s compartments. Some papers have used this sen-
sitivity technique in several research areas [36–38]. Suppose we have a vector of variables
X = (S, Ih, Ic, Qh, QH , R)T , vector parameters P = (Λ, p, β, ν, p1, µ, α, d1, δ, γ, d2, η)T , and a
vector of the right side of system (1) denoted by F = (F ,G,H, I ,J ,K)T , where dS/dt = F ,
dIh/dt = G, dIc/dt = H, dQh/dt = I , dQH/dt = J , dR/dt = K.

Define a sensitivity function V = ∂X
∂P . Because X contains P and t, and F contains X and

P, then by performing total derivative for function V, we can derive a system of differential
equations as follows

dV
dt

= J(X)V +
∂F
∂P

, (7)

where J(X) is the Jacobian matrix 6× 6. There are six variables and twelve parameters. The
size of matrix V is 6× 12 and of matrix ∂F

∂P is 6× 12. Therefore, Equation (7) is a 6× 12
matrix equation. If we pull out the elements of this matrix equation, we have a system with
seventy-two (as many as the number of elements of V) plus six (number of elements of X)
differential equations.

For further writings, we denote ∂S
∂Λ = vS

Λ, ∂S
∂p = vS

p, ∂S
∂β = vS

β, . . . , ∂S
∂η = vS

η , and so on
for the other variables. By solving the system (7) numerically, we can obtain solutions
for the sensitivity of parameters over time. This time-dependent sensitivity is presented
in Figure 4. At any given time, we can observe the effect of each parameter’s changes to
each variable. The positive value of the sensitivity means that if the parameter is raised,
then the variable goes higher; otherwise, the negative value of the sensitivity means that if
the parameter is raised, then the variable goes lower, and the zero value of the sensitivity
means that the changes in the parameter’s value do not affect the variable at all.

Based on the sensitivity analysis in Figure 4a, if the value of the parameter Λ increases,
then the number of subpopulations R and S increases. In Figure 4b,h,k, the increase in the
values of the parameters p, d1, or d2 results in the increase in the number of subpopulation
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Qh and the decrease in the number of subpopulations Ic or QH . In Figure 4c, if the value
of parameter β increases, then the number of subpopulations Qh, QH , Ic, and Ih increases,
but the number of subpopulations R and S decreases. In Figure 4d,e, if the value of the
parameters ν or p1 increases, then the number of subpopulation R increases, but the number
of subpopulation S decreases. In Figure 4f, if the value of parameter µ increases, then the
number of subpopulations R and S decreases. In Figure 4g, the increase in the value of
parameter α results in the increase in the number of subpopulations R, Ic, and S but the
decrease in the number of subpopulation Ih. In Figure 4i, if the value of parameter δ
increases, then the number of subpopulations R, QH , and S increases, but the number of
subpopulations Ic and QH decreases. In Figure 4j,l, if the value of the parameters γ or η
increases, then the number of subpopulation R increases, but the number of subpopulation
Qh decreases.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 4. Time-dependent sensitivity of parameters to the variables. Panel (a–l) is the case of
parameter Λ, p, β, ν, p1, µ, α, d1, δ, γ, d2, η, respectively.

From Figure 4, we can observe that some sensitivity has a positive value at some point
in the first period, but at the next period, the sensitivity value becomes negative or tends
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to zero. From these sensitivity graphs, especially at the peak point, we can observe the
time when the parameter changes have the most effect on the variable. Therefore, another
interesting result can be derived by observing the sensitivity index after arriving at the
equilibrium. This can be performed by taking the sensitivity values when the time is very
long. By this method, we can determine which one of the parameters is the most sensitive
to the model when converging to the equilibrium. In Figure 5, we present the sensitivity
index of all the parameters for each variable. We give four different scales for depicting
the sensitivity index, because some variables have values quite larger than other variables;
thus, it makes the sensitivity index have a different level for each variable. From each panel
of Figure 5, we can observe that parameter µ, which stands for the natural death rate for
each subpopulation, is the most sensitive parameter.

(a)

(b)

(c)
Figure 5. Cont.
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(d)
Figure 5. Sensitivity index after arriving at the equilibrium. Panel (a–d) is for the case of scale view
[−10, 10], [−103, 103], [−105, 105], [−107, 107], respectively.

5. Discussion and Conclusions

This article explores the dynamic model of COVID-19 where infected individuals
with comorbid disease are quarantined in hospitals provided by the local government and
infected individuals without comorbid disease are self-isolated. Based on the results of the
model analysis, the following are obtained: non-endemic and endemic equilibrium points;
the basic reproduction number to determine whether the spread of COVID-19 is increasing
or decreasing; the local asymptotic stability theorem of the non-endemic equilibrium point;
and the local and global asymptotic stability theorems of the endemic equilibrium point.

According to the results of the sensitivity analysis of the basic reproduction number
using a contour plot, the parameters for which their combination significantly impacts the
system stability are the recruitment rate of individuals entering the susceptible subpop-
ulation, probability of infected individuals that have no comorbid disease, contact rate
between the susceptible subpopulation and the infected subpopulation, and death rate
of individuals infected with COVID-19. In addition, the combination of the contact rate
with the other three parameters produces a wider range of COVID-19 spread. Therefore,
minimizing the contact rate is very good advice to be implemented in the government
policy in order to reduce the disease contagion.

In addition, we provided a sensitivity analysis to examine the effect of the parameter
changes in each subpopulation. From the visualization of the sensitivity function over time,
we can observe the dynamical effect of each of the parameter’s changes. We found, based
on the sensitivity index after achieving equilibrium, that the natural death rate is the most
sensitive parameter. The implication of this result is that the estimation of the natural death
rate parameter must be performed carefully in order to avoid a transgression in depicting
the true dynamics of the COVID-19 spread.

We also found that the symmetry aspects appear in the visualization of the susceptible
and recovered subpopulations over time, the image of some of the basic reproduction
number sensitivity, and the depiction of some parameters’ sensitivity over time.
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